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Optomechanically induced transparency is an important quantum phenomenon in cavity optomechanics. Here,
we study the properties of optomechanically induced transparency in the simplest optomechanical system
(consisting of one cavity and one mechanical resonator) considering a nonlinear effect that was ignored in
previous works. With the nonlinear effect, we find the ideal optomechanically induced transparency dip can
be easily achieved, and the width of the optomechanically induced transparency dip can become very narrow
especially in the unresolved sideband regime. Finally, we study the properties of optomechanically induced
gain, and give the analytic expression about the maximum value of gain.
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I. INTRODUCTION

Cavity optomechanics [1] exploring the interaction be-
tween macroscopic mechanical resonators and light fields
has received increasing attention for the broad applica-
tions in testing macroscopic quantum physics, high-precision
measurements, and quantum information processing [1–5].
Various experimental systems exhibiting such interactions
are proposed and investigated, such as Fabry-Perot cavities
[6,7], whispering-gallery microcavities [8–10], membranes
[11–14], and superconducting circuits [15,16]. In these op-
tomechanical systems, the motion of the mechanical oscil-
lator can be affected by the radiation pressure of the cavity
field, and this interaction can generate various quantum phe-
nomena, such as ground-state cooling of mechanical modes
[17–22], quantum entanglement [23–29], nonclassical me-
chanical states [30–33], normal mode splitting [34–36], and
nonreciprocal optical transmissions [37–39], etc.

Optomechanically induced transparency (OMIT) is an in-
teresting and important phenomenon. It was theoretically
predicted by Agarwal and Huang [40] and experimentally
observed in a microtoroid system [41], a superconducting
circuit cavity optomechanical system [16], and a membrane-
in-the-middle system [14]. More recently, the study of OMIT
has attracted much attention [42–64]. For instance, Huang
studied OMIT in a quadratically coupled optomechanical
systems where two-phonon processes occur [53]. Jing et al.
studied OMIT in a parity-time symmetric microcavity with a
tunable gain-to-loss ratio [54]. Lü et al. studied OMIT in a
spinning optomechanical system [55], and also studied OMIT
at exceptional points [56]. Ma et al. studied OMIT in the
mechanical-mode splitting regime [57]. Dong et al. studied
the transient phenomenon of OMIT [58] and the Brillouin
scattering induced transparency in a high-quality whispering-
gallery-mode optical microresonator [59]. Ma et al. studied
tunable double OMIT in a hybrid optomechanical system with
Coulomb coupling [60]. Kronwald et al. studied OMIT in the
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nonlinear quantum regime [61]. Xiong et al. studied OMIT in
higher-order sidebands [62], and the review articles on OMIT
can be found in Refs. [63,64].

The most prominent application of OMIT is light delay
and storage [45,51,63] due to the abnormal dispersion accom-
panied with the narrow transparency window. Hence, having
both a large depth and a small width at the transparency win-
dow is important for OMIT. Although increasing the power
of the control field can lead to the increase of transparency
depth, at the same time the width of the transparency window
also increases. In addition, the ideal depth of the transparency
window cannot be achieved due to the nonzero mechanical
damping rate. These problems can be resolved if we consider a
nonlinear effect in the response of the optomechanical system
to the probe field.

In this paper, we mainly study OMIT in the simplest
optomechanical model, described in Fig. 1, considering a
nonlinear effect which was ignored in previous works. The
Hamiltonian of the system is nonlinear and we can solve
the nonlinear Heisenberg-Langevin equations using the per-
turbation method since the probe field is much weaker
than the driving field. Note that if we linearize the non-
linear Heisenberg-Langevin equations following the usual
linearization procedure [17,18,28], then the key nonlinear
term will not exist in the response of the optomechanical
system to the probe field. Considering the nonlinear term, we
obtain the conditions for OMIT and find it has a strong impact
on the absorptive and dispersive behavior of the optome-
chanical system to the probe field. First, the ideal depth of
OMIT can be achieved easily even with nonzero mechanical
damping rate, and there is only one suitable driving strength
that can make the ideal OMIT occur. Second, the width of
the transparency window depends only on three parameters
of the system, and can become very narrow for the small
mechanical damping rate especially in the unresolved side-
band regime. And third, if the driving strength continues to
increase, the system will exhibit optomechanically induced
gain, and the gain will become very large in the unresolved
sideband regime.
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FIG. 1. Sketch of the standard optomechanical system consisting
of one mechanical resonator interacting with a cavity via radiation
pressure effects. The cavity is driven by a coupling field with
frequency ωc (amplitude εc) and a weak probe field with frequency
ωp (amplitude εp).

II. SYSTEM AND EQUATIONS

We consider the standard optomechanical model in which
a cavity is coupled to a mechanical resonator (e.g., a movable
end mirror) with frequency ωm via radiation pressure effects
(see Fig. 1). The cavity annihilation (creation) operator is
denoted by c (c†) with the commutation relation [c, c†] = 1.
Momentum and position operators of the mechanical res-
onator with mass m and damping rate γ are represented by
p and q, respectively. The mechanical resonator makes small
oscillations under the action of the radiation pressure force
exerted by the photons within the cavity. In turn, the mechan-
ical displacement q modifies the cavity resonance frequency,
represented by ω0(q) which can be expanded to leading order
in the displacement with L the cavity length and ω0 the optical
resonance frequency for q = 0, i.e., ω0(q) ≈ ω0(1 − q

L ) [1].
Hence, the interaction Hamiltonian between the cavity and
mechanical resonator can be described by −χ0c†cq with
χ0 = h̄ω0/L being the optomechanical coupling constant. The
cavity is driven by a strong coupling field with frequency
ωc (amplitude εc) and a weak probe field with frequency
ωp (amplitude εp). We define ℘c and ℘p as the input powers
of relevant fields and κ as the cavity decay rate, then the
field amplitudes can be described as εc = √

2κ℘c/(h̄ωc) and
εp = √

2κ℘p/(h̄ωp). Thus, the Hamiltonian of the system can
be written as

H = h̄ω0c†c + p2

2m
+ 1

2
mω2

mq2 + ih̄εc(c†e−iωct − ceiωct )

+ih̄(c†εpe−iωpt − cε∗
peiωpt ) − χ0c†cq. (1)

In this paper, we deal with the mean response of the
system to the probe field in the presence of the coupling field,
hence we do not include quantum fluctuations. We use the
factorization assumption 〈qc〉 = 〈q〉〈c〉 and also transform the
cavity field to a rotating frame at the frequency ωc; the mean
value equations are then given by

〈q̇〉 = 〈p〉
m

,

〈ṗ〉 = −mω2
m〈q〉 + χ0〈c†〉〈c〉 − γ 〈p〉,

〈ċ〉 = −[κ + i(ω0 − ωc − χ0〈q〉/h̄)]〈c〉 + εc + εpe−iδt . (2)

Here, δ = ωp − ωc is the detuning between probe field and
coupling field. Equation (2) are nonlinear, and therefore some
of the nonlinear effects will be omitted if we linearize Eq.
(2) by the usual linearization method. Considering that the
probe field εp is much weaker than the coupling field εc,

we can solve Eq. (2) by the perturbation method attaining
its steady-state solutions just to the first order in εp, i.e.,
〈s〉 = s0 + εpe−iδt s+ + ε∗

peiδt s− (s = q, p, c). The solutions,
such as c0 = εc/(κ + i	) with the effective detuning 	 =
ω0 − ωc − χ0q0/h̄, can be easily obtained. We will not list
them one by one, because here we just care about the field
with frequency ωp in the output field.

According the input-output relation [40,65], the quadrature
of the optical components with frequency ωp in the output
field can be defined as εT = 2κc+ [40]. The real part Re[εT ]
and imaginary part Im[εT ] represent the absorptive and dis-
persive behavior of the optomechanical system to the probe
field, respectively. Because it is known that the coupling
between the cavity and the resonator is strong at the near-
resonant frequency, here we consider δ ∼ 	 ∼ ωm and set
x = δ − ωm. After some calculations (see the detailed calcu-
lations in Appendix A), the result of εT can be obtained as

εT = 2κ

κ − ix + β
γ

2 −ix+N
, (3)

where

N = − β

κ − 2iωm
, (4)

β = χ2
0 ε2

c

2mωmh̄
(
κ2 + ω2

m

) . (5)

The term N is the key term which will not exist in the
subfraction of Eq. (3) if we adopt the usual linearization
method to solve Eq. (2). Hence the origin of this term should
be nonlinear effects and we call N the nonlinear term in the
following.

With the nonlinear term, the conditions of the ideal OMIT
dip can be easily obtained. It can be obviously seen from
Eq. (3) that the location of the pole in the subfraction of Eq. (3)
can give the conditions. According to the location of the pole,
setting γ

2 − ix + N = 0, the conditions can be obtained as

x = xo ≡ −γωm

κ
, (6)

β = βo ≡ γ
(
κ2 + 4ω2

m

)
2κ

. (7)

Equation (6) gives the concrete location xo where the ideal op-
tomechanically induced transparency dip appears, and Eq. (7)
gives the suitable βo [corresponding to the suitable amplitude
εc of coupling field according to Eq. (5)] that can make the
ideal OMIT dip occur even with nonzero mechanical damping
rate γ . While if we ignore the nonlinear term N , the real part
Re[εT ] = 2γ κ

2β+γ κ
at the transparency window (x = 0), which

means that the ideal optomechanically induced transparency
dip cannot appear because γ 	= 0 and moreover it is necessary
to increase coupling strength β for large transparency depth.

It is worth pointing out that β > βo means that Re[εT ] < 0,
corresponding to gain which will not occur if we ignore the
nonlinear term N . Next, we first study the properties of OMIT
with β = βo and then the properties of optomechanically
induced gain with β > βo. In this paper, we focus on the
most studied regime of optomechanics where γ 
 ωm, κ , and
set the mechanical quality factor as Q = ωm/γ = 104 in the
following.
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FIG. 2. The real part of εT vs normalized frequency detuning
x/γ with β = βo according to Eq. (7) and with resolved sideband
parameters ωm = 5κ .

III. OPTOMECHANICALLY INDUCED TRANSPARENCY

From the above analysis, the nature of OMIT is determined
by only three parameters, i.e., γ , ωm, and κ . The width �OMIT

(full width at half maximum) of the transparency window is
an important index in OMIT. According to Eq. (3) and the
condition in Eq. (7), the analytical expression of the width
�OMIT (see the detailed calculations in Appendix B) can be
obtained as

�OMIT =
√

κ4 + 2γ κ
(
κ2 + κωm + 4ω2

m

)
2κ

+
√

κ4 + 2γ κ
(
κ2 − κωm + 4ω2

m

)
2κ

− κ, (8)

which can be simplified as

�OMIT = γ

(
1 + 4ω2

m

κ2

)
, (9)

if γω2
m 
 κ3. Equation (9) means the width �OMIT can be

very narrow especially in the unresolved sideband regime.
While if the nonlinear term N is ignored, the width �OMIT ≈
γ

2 + β

κ
[40] which means in this case the width will become

very large due to the large β needed to increase the depth
of transparency. We will discuss the properties of OMIT in
the case of the resolved sideband and unresolved sideband
regime, respectively, in the following.

A. Resolved sideband regime

In the resolved sideband regime, i.e., κ 
 ωm, the width
�OMIT in Eq. (9) will become

�OMIT = 4γω2
m

κ2
. (10)

It can be seen from Eq. (10) that the width �OMIT is much
larger than mechanical damping rate γ in the resolved side-
band regime. In Fig. 2, we plot the real part of εT vs the
normalized frequency detuning x/γ with β = βo according
to Eq. (7) and with resolved sideband parameters ωm = 5κ

which are similar to those in an optomechanical experiment on
the observation of the normal-mode splitting [34]. According

FIG. 3. The imaginary part of εT vs normalized frequency detun-
ing x/γ with the same parameters in Fig. 2.

to Eq. (10), the width �OMIT = 100γ for ωm = 5κ , which
shows an excellent agreement with the numerical result in
Fig. 2.

The dispersive behavior, represented by Im[εT ], is related
to slow light effects of the optomechanical system to the
probe field. In Fig. 3, we plot the imaginary part of εT vs
the normalized frequency detuning x/γ with βo according to
Eq. (7) and with the same parameters in Fig. 2. It can be seen
from Fig. 3 that the steepest dispersion occurs at the point xo

where the OMIT dip appears. The negative maximum value
of the dispersion curve slope can be obtained (see the detailed
calculations in Appendix C) as

Kmax = − 4κ2

γ
(
κ2 + 4ω2

m

) . (11)

Note that Eq. (11) is true for both the resolved sideband and
the unresolved sideband regimes. From Eqs. (9) and (11), we
have

Kmax × �OMIT = −4, (12)

which means that the narrower the width �OMIT is, the steeper
the dispersion curve becomes.

B. Unresolved sideband regime

Compared with the case of the resolved sideband regime,
according to Eq. (9), the width �OMIT will become more
narrow in the unresolved sideband regime. In Fig. 4, we
plot the real part of εT vs the normalized frequency detun-
ing x/γ with β = βo according to Eq. (7) and with unre-
solved sideband parameters κ = 2ωm (blue dashed line) and
κ = 5ωm (red solid line). According to Eq. (9), the width
�OMIT = 2γ for κ = 2ωm and �OMIT = 1.16γ for κ = 5ωm.
These results are consistent with the numerical results in
Fig. 4.

The imaginary part of εT vs normalized frequency detuning
x/γ is plotted in Fig. 5 with the same parameters in Fig. 4.
From Fig. 5, it can be clearly seen that the dispersion curve
becomes steeper with larger ratio of κ/ωm and the negative
maximum value of the dispersion curve slope is still given by
Eq. (11).
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FIG. 4. The real part of εT vs normalized frequency detuning
x/γ with β = βo according to Eq. (7) and with unresolved sideband
parameters κ = 2ωm (blue dashed line) and κ = 5ωm (red solid line).

IV. OPTOMECHANICALLY INDUCED GAIN

Now we discuss the properties of optomechanically in-
duced gain (Re[εT ] < 0) which will occur when β > βo. Ac-
cording to Eq. (3), we can numerically obtain all the properties
of gain including the maximum gain value and the point x
where the gain takes the maximum. While if β � βo, the point
where the gain takes the maximum can be given by

x = xg ≡ − 2βωm

κ2 + 4ω2
m

, (13)

according to the same condition (Im[ γ

2 − ix + N ] = 0) as
that we use to obtain the location xo in Eq. (6). For simplicity,
we just discuss the properties of gain with x = xg according
to Eq. (13) in the following.

In fact, the gain does not always increase with the increase
of β. The reason is that the negative value of Re[εT ] ap-
proaches zero as β → ∞ according to Eq. (3). In Fig. 6, we
plot Re[εT ] vs β/κ2 with x = xg according to Eq. (13) and
with κ = 4ωm. It can be clearly seen from Fig. 6 that there
exists an optimum value β, defined as βg, that makes Re[εT ]
take the maximum negative value Gmax.

With Eq. (3) and Eq. (13), the numerical result of the
optimum value βg and the corresponding maximum negative

FIG. 5. The imaginary part of εT vs normalized frequency detun-
ing x/γ . The parameters are the same in Fig. 4.

FIG. 6. The real part of εT vs normalized drive strength β/κ2

with x = xg according to Eq. (13) and with parameter κ = 4ωm.

value Gmax can be easily found out. However, the approximate
analytic expression of βg and Gmax can be obtained as

βg =
(
κ2 + 4ω2

m

)√
γ /ωm

2
, (14)

Gmax = − 2κ2

4ω2
m + κ

√
γωm

, (15)

if κ  √
γωm.

According to Eq. (15), we have the maximum negative
value Gmax ≈ −κ2/2ω2

m 
 1 in the resolved sideband regime.
However, the maximum negative value Gmax can become very
large in the unresolved sideband regime. In Fig. 7, we plot the
real part of εT vs the normalized frequency detuning x/γ with
β = βg according to Eq. (14) and with κ = ωm (black solid
line), κ = 2ωm (blue dashed line), and κ = 4ωm (red dotted
line). According to Eq. (15), the maximum negative value
Gmax = −0.499 for κ = ωm, Gmax = −1.990 for κ = 2ωm,
and Gmax = −7.921 for κ = 4ωm. These results are consistent
with the numerical results in Fig. 7.

V. CONCLUSIONS

In summary, we have theoretically studied the properties
of optomechanically induced transparency in the simplest
optomechanical system (consisting of one cavity and one

FIG. 7. The real part of εT vs the normalized frequency detuning
x/γ with β = βg according to Eq. (14) and with κ = ωm (black solid
line), κ = 2ωm (blue dashed line), and κ = 4ωm (red dotted line).

043820-4



OPTOMECHANICALLY INDUCED TRANSPARENCY AND … PHYSICAL REVIEW A 101, 043820 (2020)

mechanical resonator) with nonlinear effect that was ignored
in previous works. We attain the conditions where the system
can exhibit perfect optomechanically induced transparency,
and obtain the expression of the width of the optomechan-
ically induced transparency dip. From these crucial expres-
sions, we can draw three important conclusions: (1) There
exists only one suitable driving strength that can make the
ideal optomechanically induced transparency dip occur, and
the properties of optomechanically induced transparency are
determined by only three system parameters (γ , κ , and ωm);
(2) the width of the optomechanically induced transparency
dip can become very narrow in the unresolved sideband
regime, and the product of the width and the dispersion slope
at the transparency window is a constant; (3) the maximum
value of optomechanically induced gain is very small in the
resolved sideband regime, while it can become very large in
the unresolved sideband regime. We believe these results can
be used to control optical transmission in quantum informa-
tion processing.

APPENDIX A: DERIVATION OF εT

To solve Eq. (2), we substitute the formal solution 〈s〉 =
s0 + εpe−iδt s+ + ε∗

peiδt s− (s = q, p, c) into Eq. (2) and keep
its steady-state solutions only to the first order in εp. It is
straight forward to obtain

q0 = χ0|c0|2
mω2

m

, (A1)

q+ = χ0(c0c∗
− + c∗

0c+)

m(ω2
m − iδγ − δ2)

, (A2)

q− = χ0(c0c∗
+ + c∗

0c−)

m(ω2
m + iδγ − δ2)

, (A3)

c0 = εc

κ + i	
, (A4)

c+ = ic0q+χ0/h̄ + 1

κ + i(	 − δ)
, (A5)

c− = ic0q−χ0/h̄

κ + i(	 + δ)
, (A6)

with 	 = ω0 − ωc − q0χ0/h̄.
From Eqs. (A2) and (A3), we have q+ = q∗

−, and according
to Eqs. (A2) and (A6), it can be obtained that

c0c∗
− = M

1 − M
c∗

0c+, (A7)

with

M = −i|c0|2χ2
0

mh̄
(
ω2

m − iδγ − δ2
)
(κ − i(	 + δ))

. (A8)

By substituting Eq. (A7) into Eq. (A2) and according to
Eq. (A5), we obtain the expression of c+ as

c+ = 1

κ − i(δ − 	) + β
δ2−ω2

m+iδγ
2iωm

− β

κ−i(	+δ)

, (A9)

with

β = χ2
0 |c0|2

2mh̄ωm
. (A10)

Due to the condition of near-resonant frequency, i.e., δ ∼ 	

∼ ωm, we have δ2 − ω2
m ∼ 2ωm(δ − ωm) and δ + 	 ∼ 2ωm.

If we set x = δ − ωm, Eq. (A9) can be simplified as

c+ = 1

κ − ix + β
γ

2 −ix− β

κ−2iωm

. (A11)

Finally, we obtain the quadrature εT by multiplying c+ by 2κ

[see Eq. (3)]. Besides, substituting Eq. (A4) into Eq. (A10),
we obtain Eq. (5).

APPENDIX B: DERIVATION OF WIDTH �OMIT

When the OMIT occurs, the conditions in Eqs. (6) and (7)
must be satisfied. By substituting Eq. (7) into Eq. (3) and
making a translation transformation x = y + xo [xo = − γωm

κ

according to Eq. (6)], Eq. (3) can be shown as

εT = 2κ

κ + i

(
γ (κ2+4ω2

m )
2yκ + γωm

κ
− y

) . (B1)

It can be seen from Eq. (B1) that Re[εT ] = 1 (half maximum)
when

γ
(
κ2 + 4ω2

m

)
2yκ

+ γωm

κ
− y = ±κ. (B2)

From Eq. (B2), we can obtain the two roots y1 and y2

between which the difference gives the full width at half
maximum, i.e., �OMIT = y1 − y2. The concrete expressions of
the two roots are

y1 =
γωm − κ2 +

√
(γωm − κ2)2 + 2γ κ

(
κ2 + 4ω2

m

)
2κ

,

(B3)

y2 =
γωm + κ2 −

√
(γωm + κ2)2 + 2γ κ

(
κ2 + 4ω2

m

)
2κ

.

(B4)

Due to γ 
 κ , we can safely ignore the quadratic term γ 2ω2
m

in Eqs. (B3) and (B4), and then we obtain the full width �OMIT

[see Eq. (8)].

APPENDIX C: DISPERSION CURVE SLOPE Kmax

The imaginary part Im[εT ] represents the dispersive behav-
ior of the optomechanical system to the probe field. According
to Eq. (B1), we can easily obtain the imaginary part Im[εT ] as

Im[εT ] = 4yκ2(2y2κ − 2yγωm − η)

4y4κ2 − 8y3γ κωm + y2ξ + 4yγωmη + η2
, (C1)

with

η = γ
(
κ2 + 4ω2

m

)
, (C2)

ξ = 4
(
κ4 + γ 2ω2

m − γ κ3 − 4γ κω2
m

)
. (C3)
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According to Eq. (C1), the dispersion curve slope K (= ∂Im[εT ]
∂y ) can be obtained as

K = 4y2κ2(2y2κ + η)
(
ξ − 4y2κ2 + 8yγ κωm − 8γ 2ω2

m

)
(η2 + 4yγ ηωm + 4y4κ2 + y2ξ − 8y3γ κωm)2

− 4ηκ2(η + 2y2κ )(η + 4yγωm − 8y2κ )

(η2 + 4yγ ηωm + 4y4κ2 + y2ξ − 8y3γ κωm)2
. (C4)

The dispersion curve slope will take the maximum Kmax at the transparency window where x = − γωm

κ
(y = 0). From Eq. (C4),

setting y = 0, we can obtain the expression of Kmax [see Eq. (11)].
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