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Modeling of quasi-phase-matched cavity-enhanced second-harmonic generation
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We propose a mean-field model to describe second-harmonic generation in a resonator made of a material
with zinc-blende crystalline structure. The model is obtained through an averaging of the propagation equations
and boundary conditions. It considers the phase-mismatched terms, which act as an effective Kerr effect. We
analyze the impact of the different terms on the steady state solutions, highlighting the competition between

nonlinearities.
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I. INTRODUCTION

Frequency conversion plays an important role in the pro-
duction of optical sources [1] or in many technological ap-
plications in biophotonics [2] and quantum information [3].
Nanometric scale waveguides are particularly well suited
for nonlinear optics as they allow confining light down to
subwavelength scales, strongly increasing light-matter inter-
actions. While many different materials have been used for
integrated frequency conversion, the ones with a stronger
quadratic response, such as III-V semiconductors and lithium
niobate, have recently attracted increasing attention [4,5].
Ring resonators in particular have allowed for record con-
version efficiencies as both the power and the interaction
length are greatly enhanced [6]. Harnessing these resonators
for efficient frequency conversion requires to fulfill a phase
matching condition [7]. Quasi-phase-matching (QPM) is at-
tractive because it allows the coupling between fundamental
modes, maximizing the effective nonlinearity. While most
often engineered by poling [8,9] or orientation patterning [10],
QPM also naturally occurs in some crystals such as BBO
[11,12] and III-V semiconductors [13,14]. In the latter, the
sign of the effective nonlinearity changes every quarter round
trip, because of the 4 symmetry of the material. The propaga-
tion geometry is hence equivalent to that in a poled medium
with a R period, where R is the radius of the resonator, and
similar nonlinear dynamics is to be expected. In the case of
second-harmonic (SH) generation, QPM is known to induce
an effective Kerr nonlinearity through cascaded three-wave
mixing [15]. Because there are mismatched nonlinear inter-
actions, a fraction of the SH wave gets converted back to the
pump with a shifted, power-dependent phase [16]. This effect
allows engineering competing nonlinearities [17] and can be
used for pulse compression [18] as well as ultrabroadband
light generation [19]. However, despite potential applications,
the impact of cascaded nonlinearities on the dynamics of
QPM resonators is, to the best of our knowledge, still poorly
understood.

In this paper, we derive a mean-field model that describes
SH generation in a passive quasi-phase-matched III-V-on-
insulator cavity. We investigate the impact of cascaded three-
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wave mixing and find that it can affect the conversion effi-
ciency in some circumstances.

While our analysis focuses on III-V semiconductor rings,
we stress that it can readily be generalized to any resonator
with a periodic modulation of the nonlinear susceptibility
and/or refractive index [9,11].

The paper is organized as follows. In Sec. II, we describe
light propagation in a bent waveguide and study the impact
of the curvature on the nonlinear coefficient. In Sec. III, we
derive a mean-field equation which models the propagation in
a III-V resonator and takes into account the phase-mismatched
terms. Section IV is devoted to the study of stationary so-
lutions. Finally, in Sec. V, we summarize our results and
discuss their implications on the design of cavity-enhanced
SH generation.

II. DESCRIPTION OF THE PROPAGATION
IN A RESONATOR

The resonator under study is sketched in Fig. 1. It is made
of indium gallium phosphide (InGaP), grown in the [010]
direction, bonded on silica [20,21].

The electric field E(r_ , ¢, @) can be expressed as a sum of
two modes:

E — a(¢)ea(ria wO)ei(ﬁaR(ﬁ*wﬂf)

a
€(TL. 200) g, Rp—2001)

VN

where, B,, and B, are the propagation constants of the funda-
mental wave (FW) and SH, wy is the frequency of the FW,
la(¢)|? and |b(¢)|*> represent the power carried by the FW
and SH modes respectively, e, and ey, are the corresponding
vector mode distributions of the electric field, and ¢ is the
azimuthal angle. N; are the normalization constants provided
by the following expression:

+b(¢) (D

Re(/ e,-(rJ_, 0)) X h;f(rl, a)) . dS) = 21\7,'8,'1', (2)

©2020 American Physical Society


https://orcid.org/0000-0001-5564-5365
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.043818&domain=pdf&date_stamp=2020-04-14
https://doi.org/10.1103/PhysRevA.101.043818

C.MAS ARABI et al.

PHYSICAL REVIEW A 101, 043818 (2020)

[

"
s Si0,
_— \
/ \ s

e
c
S\
~<:/
£

FIG. 1. Sketch of the considered resonator. The coordinates
(uy, uy, u,) stand for the crystal axis while (u,, u,, uy) refer to the
cylindrical basis of the resonator. The inset shows the transverse
structure of the ring that is composed of a rectangular waveguide
of height 4 and width w.

where §;; is the Kronecker delta and h is the vector mode
distribution of the magnetic field. The field amplitudes are
governed by the following system of ordinary differential
equations:

d )
_1£ _ —%a + l-K*(qJ))ba*e—zAﬁqu’
(3)
Rilﬁ = —a—bb + i/c(¢)a2eiA‘3R¢
do 2 ’

where AB = 28, — B, corresponds to the wave-vector mis-
match, «,, o are the loss coefficients associated to the prop-
agation, and k(¢) is the nonlinear coefficient. To focus on
the effects of cascaded three-wave mixing, we neglect higher-
order nonlinearities.

The value of k(¢) is determined by the symmetries of
the crystalline structure and the propagation direction. In
the case of materials with 43m structure, the only nonzero

tensorial element of the electric susceptibility (x; jk) ) is X3

with x # y # z. The value of x!2) has been measured for
indium gallium phosphide to be as high as 220 pm/V around
1550 nm [22]. When the propagation direction is aligned
with a crystallographic axis, the effective nonlinearity (x)
reads [21]

__€o@o (2) (X Y )2 *Y X 2 *Z X Y
K = m ; Xxy: (ejfele’ + ey el + e eel)dS, (4)

where e’;(e’}j) is the component of e,(e;) along the crys-
tal axis k, and the integration is restricted to the in-
dium gallium phosphide cross-section (G). During prop-
agation, the relative orientation between the crystal and
the propagation direction changes. Both frames can be re-
lated through the transformation ((uy, uy, u;) = (u, cos(¢) —
uy sin(¢), uy, u, sin(¢) + ug4 cos(¢)), where (uy, uy, u;) are
the vectors of the cartesian basis and (u,, u,, uy) the cylin-
drical ones. For simplicity, we limit ourselves to the most
efficient processes, i.e., the ones involving a quasi-TE FW
mode and a quasi-TM SH mode [21]. Thus, the first and third
terms in Eq. (4) can be safely neglected.

The effective nonlinearity can then be expressed as a sum
of two Fourier modes: k (¢) = «k,.e”? + k_e™?% [14], where

2 #\2
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=T AN, IN, o T ( aa 2 )

The values of k. depend on the modal distribution. In
Figs. 2(a) and 2(b), the imaginary and real parts of these non-
linear coefficients are plotted as a function of the angle ¢ for
two different modes. In Figs. 2(c) and 2(d), we show the coef-
ficients of the Fourier series of « (¢). In Figs. 2(a) and 2(c), the
spatial distribution of the SH is the fundamental TM mode,
while in Figs. 2(b) and 2(d) it is the mode TM;y. We have
calculated k (¢) by means of the commercial software LUMER-
ICAL MODE SOLUTIONS [23]. The waveguide has a width
w = 1250 nm, a height # = 135 nm, and a bend radius of R =
15 pum. The FW wavelength is fixed to 1550 nm. The values
of the nonlinear coefficients are x; = —1869i W~/>m~! and
k_ = 1466i W~2m~! when the spatial mode of SH is the
TMyo and «; =20i W 2m~" and x_ = 1158 W~/?m™!
when the SH spatial mode is the TMg. It is worth noticing
that while in the first case the values of x4 are of the same
magnitude, when the SH spatial mode is TM ¢, k1 have very
different values [13,24].

Next, we have numerically computed x4 as a function of
the ring radius for the two examples previously considered.
Figures 2(e) and 2(f) show |« | as a function of the waveguide
bend radius R for the TMyy and TM;y modes, respectively.
The insets correspond to the Poynting vector of the SH spatial
mode with R = 15 um. In the TM g case, |k | can be orders
of magnitude smaller than |«_|. For radii close to 15 um, we
expect phase mismatched SHG to impact the dynamics. To
investigate this regime of cascaded non-linearities, we derive
below a mean-field model that includes the phase-mismatched
terms.

III. DERIVATION OF THE MODEL

Our starting point is the system of equations Eqs. (3) and
the following boundary condition equations:

a"*h(0) = V1 - 62" 2m)e’" + bay,
b(m+l)(0) =1 sz(m)(zn )eiﬁbL’

where a™, b are the field amplitudes at the mth round trip,
|ain|? is the input power, L = 27 R is the resonator length, and
0 is the field transmission coefficient of the coupler. These
conditions link the output of the mth round trip with the input
of the (m + 1)th one. To further proceed, boundary conditions
are injected into the evolution equations. A similar approach
has been already employed to generalize the Lugiato-Lefever
model of passive fiber cavities [25] and microresonators [26].
This method consists in unfolding the cavity and modeling
it as a waveguide with periodic localized gain and losses.
Mathematically, these conditions can be expressed by making
use of a Dirac delta comb that we include on the right-hand
side of Egs. (3). We expand both propagation constants around
the closest resonances: B,p) = 27N p) — da,p))/L, Where
N(a,py are integer numbers. In addition, we perform a phase-

(6)

. : da ) .
rotationa — ae'=?, and b — bei9. Therefore, the evolution
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FIG. 2. (a) and (b) show the nonlinear coefficient as a function of ¢. (a) shows k(¢) when the SH mode is TMyyg. (b) shows « (¢) when the
SH mode is TM . (c) and (d) are the coefficients of the Fourier series of the functions represented in (a) and (b), respectively. (e) and (f) show
|k | and |«_| as a function of the bending radius for a SH modes TMy (e) and TM, ().

equations read

d 80 o
R’lﬁ + <iz + %)a — ik ()bt a0
a.La
= (— o+ Gam) > 8(R¢p —mL),
db (8 :
R”% + <zz” + %)b — ik (¢p)a*e )P

Lb
_ _O‘T >8R — mL), ©)

where o, = 02L~'. These equations are similar to Egs. (3),
but forced by a Dirac delta comb. The forcing that appears in
Eqgs. (7) models the periodic gain and losses described by the
boundary conditions of the resonator. The Dirac delta comb
can be expressed as a Fourier series by making use of the
Poisson resummation identity:

;a(zw —mL) = % Xm:e"m‘f’.

Proceeding in this way, and employing Eq. (8), Egs. (7)
become

R da e
— i
do
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Without loss of generality, the process involving k. is consid-
ered to be quasi-phase-matched, i.e., 2n, — n, = —2. How-
ever, the results that we will obtain can be easily generalized
to 2n, —np = 2 or for any poled resonator where QPM is
verified. Thus, the evolution equations become

d 84 :
R_lﬁ + (lz + %)a — ik} + i e\ ba*
a.a 0 .
— [ _Zc 2. 2 ime
- ( 2 + Lam) — 4 b
,db

5 .
rRI1E2 (zzb + %)b — (ks + ke )2

d¢

B agb Z i

m

(10)

The detunings 8, and §, are linked through the relation
8y = 28, = 280 if AB = —2R~!. As a first-order approxima-
tion, we can neglect complex exponentials on the left-hand
side of Egs. (10). However, this simplification, also known
as the fast-rotating wave (FRW) approximation, may not
be valid for large values of |k_|. To derive a model that
also describes the regimes where k_ has a non-negligible
contribution, we employ the averaging method described in
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Ref. [27]. We express a(¢) and b(¢) as Fourier series (a, b) =
> (an (@), bi(¢))e*?, where each coefficient k relates to the
longitudinal mode N of the cavity as N,, = n,p + k, and
substitute them in Egs. (10). Then, by collecting the terms that
oscillate at the same frequency, considering critical coupling,
and equal loss for both modes o, = ¢, = o), = o, we find

ey (ia+ 2700+ 2 )a
a3 "\ 2 )7

. K*
—1 Z <K_*A;;+4—k3m +A;kn—kBm>

m +

= _%ZAm"‘pv

m

B+ (aica+ 70+ )8
4Bk ; Z
dé 2 )7k
K_
—i = AtrtmAm + Ap—iAnm
le:<K+ k+4 + k )
1
==32_Bm (11)
m

where we introduced the finesse F = w(aL)™' and the
following normalization: A = Sal™!, p = K+Lain(]-'/7'r)3/2,
(Ag, By) = ouc;l(ak, by), ¢ = Ra*ldn. We now have a system
of equations for each longitudinal mode of the cavity. These
modes interact via the nonlinear terms and the periodic losses
induced by the coupling with the bus waveguide. In this
expansion, the order k£ = O represents the averaged dynamics
over one round trip. Note that all the coefficients of the
system do not have the same order of magnitude, while A
and p are close to 1, F may reach values of hundreds for
high-finesse resonators. This difference allows us to make use
of a multiscale expansion when k # 0. By writing (A, By) =
Zl (A,((I), B,((Z))el , where the multiscale parameter is € = F -1
an infinite hierarchy of algebraic equations is obtained:

e':A% =0, BY =0 (12)
1/«k* A
0. 4 — A% 0
AY = —(=A3B -=)
< 8<Ki °°+(p 2))
1 /k_ BO
BY) = —(—4A3+ =), 13
i 8(K+ 0t 5 (13)

where we only show the cases where there is a coupling with
the order k = 0 at €°. For low values of p and high values of
|k—/Kk4|, we can make the approximation

K.*

B = -2 (14)

A(l) —
4 8K+

- *
8k

A By,

These equations relate the longitudinal mode k = O with the
modes k = £4. Therefore, the evolution of the dimensional
fields a(¢) and b(¢) can be expressed as

*
K* .
azboe’%,
4

Kk_R _i
b(¢) = by — Taée 0,

a($) = ap+

15)

where ag and by are governed by the following differential
equations:

d 1
R71d15 + <lz0 + Ol)a() — iK_T_b()aé

. 0
— iy (lao* — |bo|»)ao = 7 Gin:

db 25
R‘ld—(; + <’TO + a)bo — ik at + 2iylag|*bo = 0,

(16)

with y = —|k_|?L/(8m). Interestingly, higher-order wave-
mixing terms, akin to a third-order nonlinearity, appear in
Egs. (16). Note that this nonlinearity does not exactly corre-
spond to a pure Kerr interaction, since there is no self-phase
modulation term in the second equation. In addition, the self-
and cross-phase modulation terms in the first equation are of
opposite signs. The magnitude of the third-order nonlinearity
corresponds to the well-known cascading limit, which is y =
k- I?/Q2AB) [15].

To see the effect of phase-mismatched terms and com-
pare results to the outcome of a model where the FRW
approximation is used, we performed some numerical sim-
ulations. We considered a resonator with F = 300, pumped
in the TEg) mode with |aj,|*> =200 mW. We supposed a
critically coupled resonator. The dimensions of the resonator
were chosen such that the process involving «, verified
QPM at A, = 1550 nm with the SH spatial mode TMo: h =
130 nm, w = 1250 nm and R = 14.5 um. With these values,
we findky =38 W m~andx_ = 1101i W~/’>m~". Fur-
thermore, here we chose a normalized detuning A = —0.4. In
Figs. 3(a) and 3(b), we show the intracavity power evolution
of the FW and SH fields. The dark solid line corresponds
to the map, Eqgs. (3) and (6). The fast oscillations are due
to the phase-mismatched terms and are clearly appreciable
in the insets. The blue dashed-dotted line corresponds to
Egs. (16) after applying the FRW approximation, i.e., setting
y = 0. From the figure, it is clear that the FRW approximation
is not valid in the considered regime because the mean value
of the stationary states is significantly different. The green
dashed line is the numerical solution of Egs. (16). In the insets
of Fig. 3, we display a zoom of the last round trips. The
result obtained through Eqgs. (15) are plotted in dashed red in
Fig. 3(a) and in dashed magenta in Fig. 3(b). The numerical
results are shown in black for comparison. The value of ay and
by employed in the analytical expression is obtained from the
averaged value of the fields over one round trip. We can see
that both curves are nearly superimposed. We find excellent
agreement between our model and the map Egs. (3) and
(6), validating the use of a mean-field equation to describe
the competition between the phase-matched terms, driving
the frequency conversion, and an effective Kerr nonlinearity
imposed by the phase-mismatched terms.

IV. STATIONARY SOLUTIONS

Next, we analyze the impact of the phase-mismatched
terms on the stationary solutions of the system. In normalized
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FIG. 3. Evolution of power in the FW (a) and SH (b) modes.
Black (solid) line corresponds to the map, blue (point-dashed) line
corresponds to Egs. (16) with y =0, and green (dashed) line is
the solution of Egs. (16) with y 0. The parameters are A =
—0.4, |an)> =02 W, |kr] =38 W 2m™! | [k_| = 1101 W~ /2m~!,
R=14.5 pum.

form, Eqgs. (16) read

dAo . . 2 2 *
s + (1 +iA)Ag — i(¥ (I1Aol” — |Bol")Ao + BoA™) = p,
B 17)
d—d.f + (1 +24)By — i(A — 27140/’ Bo) = 0,
where 7 = sign(AB)|k_|?/(8|«4|>*F). The normalized coef-
ficient ¥ shows the relevance of phase-mismatched terms.
Note that ¥ has a non-negligible value when |k | have dif-
ferent orders of magnitude. More precisely, the coefficient y
confirms that mismatched terms are relevant when |«_| >
|k+]. To study the impact of ¥ and verify the validity of the

4 (a) —— FW

|A[*, B

4 3 2 1 0
Detuning (A)

—
[\
w
e

mean-field equations for different values of the detuning, we
compared the steady-state solutions obtained with the map
and with Eqs. (17). To get rid of eventual oscillations of the
map solutions, we calculated the mean value of the intensity
over one round trip. The stationary states of Eqgs. (17) were
found by imposing A = B = 0 and making use of numerical
continuation by means of the free distribution program AUTO
[28]. The value of |aj,| is chosen such that p is equal to 2.34 in
both cases. This value of p is below the threshold for bistablity
and self-pulsing [29]. The resonator dimensions are chosen
so SH generation is quasi-phase-matched at A, = 1550 nm
with R = 15.25 um and w = 1250 nm. The finesse is set to
F = 300.

The first case corresponds to a resonator where QPM is
verified for the TMyy mode. The value of the height is & =
122 nm. The values of the nonlinear coefficients are «ky =
1613i W=12m~! and «_ = 1305 W~/?m~!. The value of
y=-3x 10~* and, thus, the impact of mismatched terms
is negligible. The intracavity power of the steady states as
a function of A is displayed in Fig. 4(a). Within this limit,
resonances are symmetric with respect to the detuning and
the maximum of intracavity power for SH is found for zero
detuning [30,31].

Next, we studied the case where the SH propagates in
a TM;yp mode. The height is & = 130 nm. The values of
the nonlinear coefficients are x, = 57i W~/?m~" and x_ =
1083i W=2m~!. In this case, ¥ = —0.16, the impact of
cascaded nonlinearities can be clearly seen on the resonances.
They become asymmetric, akin to those found when the Kerr
nonlinearity is included [30].

We stress that the two configurations shown in Fig. 4 are
very different. The conversion is much weaker in the latter
case because the resonator is engineered such that the weaker
nonlinear mode (k) is quasi-phase-matched so as to maxi-
mize the impact of cascaded nonlinearities. This difference
can be appreciated by calculating the conversion efficiency
(1 = 0|bmax|?/|ain|*) for the two configurations. It is as high
as n = 970, 000 % /W in the first case, which is of the same
order of magnitude as the state of the art [6]. However, in the
other case, we find a significantly lower conversion efficiency
of n =1, 150 %/W.

Detuning (A)

FIG. 4. Comparison between the steady states obtained with the exact map (circles) and the averaged equations Eqs. (17) (blue line for SH
and red line for the FW). (a) The phase-matched term mode is TMg. Coefficients are x_ = 13051 W=2m™!, x, = —1613i W~ 1/2m~!,
7 =-=3x10"* and h = 122 nm. (b) The phase-matched mode is TM,. Coefficients are x_ = 1083i W~1/2 m™!, «x, =571 W~>m~!,

7 = —0.16 and & = 130 nm.
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Our results hence suggest that the impact of cascaded non-
linearities is negligible as long as the larger nonlinear mode
is quasi-phase-matched, as indicated from the normalized
parameter 7 = sign(AB)|k_|*/(8|ky|>F). Yet we showed
that modal phase matching allows us to engineer competing
nonlinearities, and expect the mismatched terms to have a
significant impact on the known oscillatory and modulation
instabilities arising in cavity-enhanced SH generation [29,32].

V. CONCLUSIONS

We have analyzed quasi-phase-matched SH generation
in a ring resonator made of a semiconductor with zinc-
blende structure, and hence a 43m symmetry. Starting from

the boundary conditions and propagation equations, we de-
rived a mean-field model that takes into account the phase-
mismatched processes. We showed that they act as an effective
third-order nonlinearity which plays a fundamental role for
certain configurations. Our analysis can readily be generalized
to resonators made of poled materials.
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