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Quantum optics and moving dissipative media: A phenomenological approach
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In this paper, we present a phenomenological quantization of the electromagnetic field in the presence of a
moving absorptive and dispersive magnetodielectric slab (MDS) with uniform velocity in the direction parallel
to its interface. As our main result, we use this quantization scheme to derive the quantum input-output relations
for the case in which quantum states propagate perpendicularly to the moving MDS. We thoroughly investigate
the impact of the motion of the moving MDS on quantum properties of the incident states. To illustrate this,
we compute the quadrature squeezing and the Mandel parameter for the transmitted state when the incident
states from left and right sides are, respectively, the coherent and the quantum vacuum states. We find that the
quantum features of the incident state are degraded through transmission in the moving MDS in the low- and
moderate-velocity ranges.
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I. INTRODUCTION

The electrodynamics of moving media is a fundamental
issue dating back to 1908, when Minkowski presented a
covariant theory of electrodynamics in moving media by using
Einstein’s special relativity theory [1–3]. In particular, he
introduced the relativistic constitutive equations to explain
the electromagnetic phenomena related to the moving media.
Since then, the electrodynamics of moving media has been
the subject of numerous theoretical and experimental inves-
tigations and has been applied in a variety of physical fields
such as the optics of moving media [3–8], radiation of fast
charged particles in media [9], and astrophysics [10].

Among these studies, the problem of the scattering of
electromagnetic waves from moving media is a problem of
both fundamental interest and practical importance which has
long received much attention. At first, Pauli and Sommerfeld
studied the frequency shift of a reflected plane wave by
a moving mirror [11,12]. Later on, many authors analyzed
in detail this problem for the case of a moving half-space
dielectric and moving dielectric slab, and then generalized
these calculations to an arbitrary direction of motion [10,13–
20].

There has been a revival of interest in the scattering of
electromagnetic waves by moving media over the past decade,
and it has now become a rather topical area of research.
Most of these works deal with fascinating and fundamen-
tal issues in the classical theory of electrodynamics such
as the analogy between light propagating in moving media
and in curved space-times [21,22], the optical analog of
the Aharonov-Bohm effect [23], the generation of negative
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refraction [24–27], the optically induced magnetoelectric ef-
fect [28,29], the occurrence of linear birefringence [30,31],
and generation of coherent light by a moving medium [32]. On
the other hand, there are some problems such as the emission
of light due to fast changes of the geometry [33,34], uniform
motion of media [35–40], and rotating objects [41–44] which
can only be illuminated in the framework of a full quantum
approach.

It was recently shown that quantum optics can pose a less
known challenge to effective-medium theories when a stream
of photons rather than an electromagnetic wave is used to
probe metamaterials [45,46]. It is surprising is that quantum
emitters embedded near metamaterials, such as invisibility
clocking devices and optical black holes, can provide a chal-
lenge to the classical operation of these devices in the few-
photon regime [47–49]. One may ask whether such challenges
can be applied to media in uniform motion which are closely
related to negative refraction and similarly associated with
certain metamaterials. In this paper, we will investigate this
question.

The scattering of quantum states of light from a disper-
sive and absorptive medium at rest has been discussed in
Refs. [45,46,50–57]. However, to the best of our knowledge,
this problem has not been studied before for the case of a
moving medium whose velocity may have any value up to
the speed of light in free space. An incident light with a non-
classical nature that propagates through a moving absorbing
medium will be affected by quantum noise associated with the
loss. Definitely, the motion of the medium affects the quantum
noise and, in turn, quantum statistical properties of the output
light. As our main result, we derive how the flux of noise
photons emitted by a moving magnetodielectric slab (MDS)
depends on the velocity and the material property of the slab.
We explore how quantum states of light can be used to analyze
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properties of the moving media, and investigate the scattering
of quantum states of light from moving media in detail.

In order to analyze these problems, a quantum treatment
for the propagation of electromagnetic fields in moving media
seems to be indispensable. To this end, we first need to quan-
tize the electromagnetic field in the presence of an absorptive
and dispersive moving medium. This is a more complicated
task than in the case of stationary media. Nevertheless, two
phenomenological and canonical quantization schemes have
been developed in unbounded moving media [58–63].

The use of a sophisticated canonical approach, although
strictly rigorous, may tend to obscure the simple physical
concepts. Instead, we follow the phenomenological quanti-
zation scheme presented in [59,60] and extend this method
to the more general and practical case in which a MDS
surrounded by free space is in motion. This makes it possible
to investigate the scattering of an incident nonclassical light
field by a moving polarizable and magnetizable slab in the
laboratory, and we would expect that the optical properties
of light propagating through a moving slab are modified
differently from light propagating through the same slab at
rest. In the quantization process, we found that the motion
leads to effective velocity-dependent electric permittivity and
magnetic permeability which exhibit an anisotropic character
for an observer in the laboratory frame, even if the medium is
isotropic in its rest frame. These effective parameters enable
us to reduce the phenomenological scheme of the electromag-
netic field quantization in a moving slab to that of a stationary
slab in a straightforward manner.

The paper is organized as follows: In Sec. II, we present the
phenomenological quantization of the electromagnetic field
in the presence of a moving MDS. We derive the optical
input-output relations for quantized electromagnetic waves
normally incident upon a MDS moving with uniform velocity
in the direction parallel to its interface, and further analyze the
reflection and transmission coefficients of the moving MDS.
Given that a coherent state (CS) of light is of considerable
practical interest in low-noise optical communication systems
and in general a dielectric object is not at rest, we study the
effects of transmission of the CS through a moving slab on
some statistical properties, such as quadrature squeezing and
photon counting statistics, in Sec. III. A summary and inter-
esting conclusions are deduced in Sec. IV. We provide further
details of our calculations for the square root of the imaginary
part of effective tensors, boundary conditions, the elements of
transformation, and absorbing matrices in Appendices A, B,
C and D, respectively.

II. QUANTIZATION OF THE ELECTROMAGNETIC FIELD
IN THE PRESENCE OF A MOVING MDS

A. Basic equations

Consider a homogeneous isotropic MDS moving uni-
formly at velocity v with respect to the laboratory frame. In
the rest frame of the medium, the electromagnetic response
of the slab is characterized by the electric permittivity ε

and magnetic permeability μ that satisfy the Kramers-Kronig
relations. We assume that the moving MDS is surrounded by
vacuum, i.e., the permittivity and permeability in the regions

outside the moving MDS are unity. The propagation of the
classical electromagnetic waves in this slab can be described
by the macroscopic Maxwell equations together with suitable
constitutive relations. From the point of view of a reference
system comoving with the medium, the macroscopic Maxwell
equations have the same mathematical form as that of an
observer in the laboratory frame [3]. However, due to the uni-
form motion of the medium, the relativistic relations between
the macroscopic electromagnetic fields E, D, B, and H in
the laboratory frame are given by the well known Minkowski
constitutive relations. Taking the Fourier transform of these
fields with respect to time, we can write the Minkowski
constitutive relations for the positive frequency part of the
fields as [64]

D+(r, ω) = ε0ε ¯̄α · E+(r, ω) + 1

c
¯̄m · H+(r, ω), (1a)

B+(r, ω) = −1

c
¯̄m · E+(r, ω) + μ0μ ¯̄α · H+(r, ω), (1b)

where boldface symbols and boldface symbols along with
double overlines are used to identify vector and second-rank
tensor quantities, respectively. Here, ¯̄I is the unit tensor, ¯̄m is
an antisymmetric tensor defined as m × ¯̄I, and the symmetric
tensor ¯̄α and the vector m are defined as

¯̄α = ¯̄Iα + (1 − α)v̂v̂, (2)

m = mv̂, (3)

where m = β(n2 − 1)/(1 − n2β2), β = v/c, and α =
(1 − β2)/(1 − n2β2) with n = √

εμ being the refractive
index of the medium in the rest frame of the medium, v̂ the
unit vector of the velocity of the medium, and c the velocity
of light in free space.

As mentioned in Introduction, the phenomenological quan-
tization of the electromagnetic fields in unbounded moving
media was developed previously [59,60]. Here, we briefly
summarized the main results needed for an understanding
of the present paper, and then extend this approach to the
practical case of a moving MDS.

Unfortunately, the above form of the constitutive relations
are not convenient for the phenomenological approach. Unlike
the electromagnetic fields, the electric permittivity and the
magnetic permeability are parameters observed in the rest
frame of the medium. Using the Maxwell equations in recip-
rocal space, these constitutive relations can be cast into a more
convenient form as [59,60]

D+(k, ω) = ε0 ¯̄εeff · E+(k, ω) + P+
N (k, ω), (4a)

H+(k, ω) = μ−1
0

¯̄μ−1
eff · B+(k, ω) − M+

N (k, ω), (4b)

where εeff and μeff are the effective electric permittiv-
ity and the magnetic permeability tensors which show the
material parameters of the moving medium as seen by the
observer in the laboratory frame. The explicit forms of these
nonsymmetric tensors are given by [59,60]

¯̄εeff = ε

(
¯̄α + ( ¯̄α · P)m − (m · P) ¯̄α

α2n2

)
, (5a)
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¯̄μeff = μ

(
¯̄α + ( ¯̄α · P) m − (m · P) ¯̄α

α2n2

)
, (5b)

where P = q−1k + m in which q = ω/c and k is the wave
vector. From above equations, one observes that the field D
(B) is not in the direction of E (H); hence a moving medium
is anisotropic even thought it is isotropic in the rest frame
of the the medium. This is the case because the isotropy
and anisotropy properties are not invariant under the Lorentz
transformation [65]. Furthermore, it is seen that the noise
polarization PN and the noise magnetization MN are added
to the Minkowski constitutive relations (1) due to material
absorption associated with the electric and magnetic losses.
These noise operators are unavoidably required in order to
preserve the well-known canonical field commutation rela-
tions, and therefore lead to the correct Heisenberg equations
of motion for the fields [59,66,67]. In this manner, the quanti-
zation of electromagnetic fields in presence of a moving slab
can be carried out similarly to the method accomplished for a
stationary anisotropic slab in Refs. [68,69].

By making use of the Weyl gauge, which has the advan-
tage that the scalar potential is zero, and by combining the
Maxwell equation and Minkowski constitutive relations, the
wave equation for the the positive frequency part of the vector
potential operator is obtained as

( ¯̄k · ¯̄μ−1
eff · ¯̄k + q2 ¯̄εeff ) · Â+(k, ω) = −μ0Ĵ+

N (k, ω), (6)

where ¯̄k = k × ¯̄I is an antisymmetric tensor and Ĵ+
N (k, ω) =

−iωP+
N (k, ω) + i ¯̄k · M+

N (k, ω) is the Fourier-transformed
current operator. Neglect of this noise operator leads to a
spatially damped vector potential, and therefore the canonical
field commutation relations are not preserved. This noise
operator operator can be described in term of the fundamental
variables of the system as follows [59]:

Ĵ+
N (k, ω) = ω

√
2h̄ ε0

S
¯̄εI

eff · f̂e(k, ω)

+ i ¯̄k ·
√

−2h̄

Sμ0

¯̄μ−1 I
eff · f̂m(k, ω), (7)

where the superscript I stands for the imaginary part of a
function, S is the transverse normalized area, and f̂e(k, ω)
and f̂m(k, ω) are the Fourier transforms of the bosonic field
operators f̂e(r, ω) and f̂m(r, ω) for the electric and magnetic
excitations of the system. The components of these bosonic
operators satisfy the commutation relations:

[ f̂λ,i(k, ω), f̂ †λ′, j (k
′, ω′)] = δλλ′δi jδ(k − k′)δ(ω − ω′), (8a)

[ f̂λ,i(k, ω), f̂ †λ′, j (k
′, ω′)] = 0, (8b)

where λ, λ′ = e, m and i, j = x, y, z. Moreover, in writing
Eq. (7), the square roots of the imaginary part of the effective
optical tensors are defined as [59]√

¯̄εI
eff ·

√
¯̄εI

eff

†
= i

2
(¯̄εeff − ¯̄ε†eff )∗, (9a)

√
¯̄μ−1 I

eff ·
√

¯̄μ−1 I
eff

†
= i

2
( ¯̄μ−1

eff − ¯̄μ−1
eff

†
)∗. (9b)

FIG. 1. The geometry representation of the system for the fields
impinging leftwards and rightwards on the MDS which is moving
perpendicular to the incident field and parallel to its outer surface.
The arrows together with the bosonic operators show the input and
the output modes defined in the input-output relations (26).

With the help of Eq. (6), and by using the inverse Fourier
transforms, the explicit form of the vector potential operator
in the real space can be obtained as

Â(r, ω) = − μ0

4π2

∫ ∞

0
dω

∫
d3k

× ( ¯̄G(k, ω) · JN (k, ω)ei(k·r−ωt ) + H.c.), (10)

where ¯̄G is the electromagnetic Green’s tensor (GT) of
the system as uniquely defined by the Helmholtz equation,
( ¯̄k · ¯̄μ−1

eff · ¯̄k + q2 ¯̄εeff ) · ¯̄G(k, ω) = ¯̄I, subject to the appropriate
boundary condition. It is known that the solution of this
Helmholtz equation for an infinite moving medium is given
by [59]

¯̄G(k, ω) = 1

q2ε

(k + qm)(k + qm) − n2q2α2 ¯̄α−1

(k + qm) · ¯̄α · (k + qm) − n2q2α2
. (11)

Let us consider the z axis of the laboratory Cartesian frame
that is normal to the interface of the slab moving with a
constant velocity in the direction parallel to its interface.
Interfaces are in the xy plane, and the coordinate origin is
taken at the center of the slab. Without loss of generality, we
assume that the slab is moving with a constant speed along
the y axis, i.e., v = vŷ, as illustrated schematically in Fig. 1.
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By recalling Eq. (5), the effective tensors ¯̄εeff and ¯̄μeff of the
moving MDS are simplified as

¯̄εeff = ε

⎛
⎜⎝

α2n2−m2

αn2 0 0
0 1 0

0 ckzm
ωαn2

α2n2−m2

αn2

⎞
⎟⎠, (12a)

¯̄μeff = μ

⎛
⎜⎝

α2n2−m2

αn2 0 0

0 1 0

0 ckzm
ωαn2

α2n2−m2

αn2

⎞
⎟⎠. (12b)

Here, for the sake of convenience, the effective tensors are
written in matrix form. Accordingly, after lengthy calcula-
tions, the square roots of the imaginary part of the effective

tensors
√

¯̄εI
eff (ω) and

√
¯̄μ−1 I

eff (ω) can be obtained as

√
¯̄εI

eff (ω) =
⎛
⎝e11 0 0

0 e22 e23

0 e32 e33

⎞
⎠, (13a)

√
¯̄μ−1 I

eff (ω) =
⎛
⎝m11 0 0

0 m22 m23

0 m32 m33

⎞
⎠, (13b)

where the explicit form of these elements has been presented
in Appendix A. From here on, we restrict our attention to
the case in which a quantized linearly polarized wave is
normally incident along the z axis toward the moving slab.
Using Eq. (11) and the fact that the slab is translationally
invariant in the plane of the surface, the GT of system in the
reciprocal space is obtained as

¯̄G(k, ω) = 1

q2ε
(
k2

z α + q2m2 − n2q2α2
)

×

⎛
⎜⎝

−n2q2α 0 0

0 q2m2 − n2q2α2 qmkz

0 qmkz k2
z − n2q2α2

⎞
⎟⎠.

(14)

By using the inverse Fourier transformation and taking the
contour integration over kz, we straightforwardly arrive at the
electromagnetic GT in the coordinate space as follows:

¯̄G(z, z′, ω) = eik|z−z′ |

⎛
⎜⎜⎝

−iμ
2k 0 0

0 −iμeff,xx

2k
im

2αεω/c

0 im
2αεω/c

i(k2c2/ω2−n2α2 )
2αεk

⎞
⎟⎟⎠.

(15)

Here, k = neffω/c, where neff =
√

(α2n2 − m2)/α =
γ
√

n2 − β2 is the refraction index in the laboratory frame,
in which γ = (1 − β2)−1/2 is the usual Lorentz factor. This
refraction index is in agreement with the classical results
derived earlier in a different way for the dispersion relation of
moving media [64].

By combining Eqs. (15) and (10), the vector potentials for
different polarized waves can be represented in a convenient
form as

Âx(z, ω) =
√

h̄ξ (ω)

32π4Sε0c ω

μ

neff
[eiηωz/câx+(z, ω)

+ e−iηωz/câx−(z, ω) + H.c.], (16a)

Ây(z, ω) =
√

h̄ξ ′(ω)

32π4Sε0c ω

μeff,xx

neff
[eiηωz/cây+(z, ω)

+ e−iηωz/cây−(z, ω) + H.c.], (16b)

where the operators

âx±(z, ω) = i
√

2κ (ω)ω/c e∓κ (ω)zω/c

×
∫ ±z

−∞
dz′e−ineff (ω)z′ω/c

⎡
⎣

√
¯̄εI

eff,xx f̂e,x
(± z′, ω

)
√

¯̄εI
eff,xx+|neff (ω)|2Em

± neff (ω)
√

Em f̂m,⊥
(±z′, ω

)
√

¯̄εI
eff,xx + |neff (ω)|2Em

⎤
⎦, (17a)

ây±(z, ω) = i
√

2κ (ω)ω/c e∓κ (ω)zω/c

×
∫ ±z

−∞
d z′ e−ineff (ω)z′ω/c

⎡
⎣ √

Ee f̂e,⊥
(±z′, ω

)
√

Ee − |neff (ω)|2 ¯̄μ−1 I
eff,xx

±
ineff (ω)

√
− ¯̄μ−1 I

eff,xx f̂m,x
(±z′, ω

)
√

Ee − |neff (ω)|2 ¯̄μ−1 I
eff,xx

⎤
⎦ (17b)

are associated with the amplitudes of the x and y
polarized waves propagating to the right (+) and left
(−). Here, η and κ are, respectively, the real and
imaginary parts of the refractive index neff , and the
parameters ξ (ω) and ξ ′(ω) are, respectively, defined
as (¯̄εI

eff,xx + |neff |2Em)/2κ and (Ee − |neff |2 ¯̄μ−1 I
eff,xx)/2κ ,

in which Ee = |e22 − (mneff/εαμeff,xx)e32|2 +
|e23 − mneff e33/εαμeff,xx|2 and Em = |m22|2 + |m23|2.
Moreover, the new bosonic field operators f̂e,⊥(z, ω) and
f̂m,⊥(z, ω) are defined as

f̂e,⊥(z, ω) =
(

e22 − m neff
εαμeff,xx

e32

)
f̂e,y(z, ω)

√
Ee

+
(

e23 − m neff
εαμeff,xx

e33

)
f̂e,z(z, ω)

√
Ee

, (18a)

f̂m,⊥(z, ω) = m22 f̂m,y(z, ω) + m23 f̂m,z(z, ω)√
Em

, (18b)

which satisfy the following bosonic commutation relations:

[ f̂ν,⊥(z, ω), f̂ †ν ′,⊥(z′, ω′)] = δνν ′δ(z − z′)δ(ω − ω′), (19a)

[ f̂ν,⊥(z, ω), f̂ν ′,⊥(z′, ω′)] = 0, (19b)
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where ν = e, m. With these relations in mind, the amplitude
operators âx±(z, ω) and ây±(z, ω) are found to satisfy the
commutation relations as follows:

[âσ±(z, ω), â†
σ ′±(z′, ω′)] = δσσ ′δ

(
ω − ω′), (20a)

[âσ±(z, ω), âσ ′±(z′, ω′)] = 0, (20b)

where σ, σ ′ = x, y. From Eq. (17), it can be easily shown
that these operators satisfy the following quantum Langevin
equations:

∂

∂z
âx ±(z, ω) = ∓κω/câx ±(z, ω) ± D̂x ±(z, ω), (21a)

∂

∂z
ây±(z, ω) = ∓κω/cây±(z, ω) ± D̂y±(z, ω), (21b)

in which the Langevin noise operators D̂σ±(z, ω) are defined
as

D̂x±(z, ω) = ±i
√

2κ (ω)ω/c e∓iη(ω)ωz/c

×
√

εI
eff,xx f̂e,x(±z′, ω) ± neff (ω)

√
Em f̂m,⊥(±z′, ω)√

εI
eff,xx + |neff (ω)|2Em

,

(22a)

D̂y ±(z, ω) = ±i
√

2κ (ω)ω/c e∓iη(ω) ωz/c

×
√

Ee f̂e,⊥(±z′, ω) ± ineff (ω)
√

−μ−1 I
eff,xx f̂m,x(±z′, ω)√

Ee − |neff (ω)|2μ−1 I
eff,xx

.

(22b)

Equations (21) and (22) will make it possible to calculate
output fields in terms of input fields at any position outside the
moving slab, without explicitly using the Green function (15).
We do this job in the next subsection.

B. Quantum optical input-output relations for a moving MDS

Let us consider the quantization method developed in
the previous section for a magnetodielectric slab moving
uniformly with velocity v = vŷ parallel to its outer surface.
From the perspective of an observer in the laboratory frame
and based on Eq. (5), the optical properties of the slab can
be described by the effective permittivity and permeability
tensors (12a) and (12b). As illustrated schematically in Fig. 1,
the magnetodielectric slab is taken to have a thickness l
with boundaries at z = ±l/2. We introduce the annihilation
operators of the incoming and outgoing radiations on the
left and right sides of the slab by â(1)

σ±(z, ω) and â(3)
σ±(z, ω),

respectively.
Let us now derive the input-output relations for the moving

MDS, without explicitly applying the GT (15). To accomplish
this goal, we proceed in three steps: First, by using Eqs. (17a)
and (17b), we relate the amplitude operators â(2)

σ±(z, ω) within
the slab at the positions z = ±l/2 to each other as(

â(2)
σ+(l/2, ω)

â(2)
σ−(l/2, ω)

)
= Rσ

(
â(2)

σ+(−l/2, ω)

â(2)
σ−(−l/2, ω)

)
+

(
d̂σ+
d̂σ−

)
, (23)

where σ = x, y denotes the polarization of different modes,
and Rσ is a diagonal 2 × 2 matrix with Rσ,11 = 1/Rσ,22 =
e−κωl/c. The quantum noise operators in the matrix equation
(23) are given by

d̂σ± = e∓κωl/2c
∫ l/2

−l/2
dz′D̂σ±

(
z′, ω

)
e±κωz′/c, (24)

where the Langevin noise operators D̂σ±(z, ω) were previ-
ously defined in Eqs. (22a) and (22b). In the second step,
we relate the operators â( j+1)

σ± (z j, ω) and â( j)
σ±(z j, ω) in neigh-

boring layers across the interface to each other by imposing
the boundary conditions at z = z j ( j = 1, 2), in which the
tangential components of the electric and magnetic field op-
erators must be continuous (see Appendix B). Therefore, after
some manipulations, we arrive at(

â( j+1)
σ+

(
z j, ω

)
â( j+1)

σ−
(
z j, ω

)
)

= S( j)
σ

(
â( j)

σ+
(
z j, ω

)
â( j)

σ−
(
z j, ω

)
)

. (25)

Here, z1(2) = −(+)l/2 and the elements of the transformation
matrix S j

σ are given in Appendix C. In the last step, by
applying Eq. (23) and twice Eq. (25), as our main result we
get the quantum-optical input-output relations(

â(1)
σ−(−l/2, ω)

â(3)
σ+(l/2, ω)

)
=

(
Rσ Tσ

Tσ Rσ

)(
â(1)

σ+(−l/2, ω)

â(3)
σ−(l/2, ω)

)

+Aσ

(
ĝσ+(ω)

ĝσ−(ω)

)
, (26)

where the reflection and transmission coefficients of the mov-
ing MDS, Rσ and Tσ , are given by the classical expressions

Rσ = (e2ineff (ω) ωl/c − 1)
[
n2

eff (ω) − ζ 2
σ

]
e−iωl/c

[ζσ + neff (ω)]2 − [ζσ − neff (ω)]2e2ineff (ω)ωl/c
, (27a)

Tσ = 4neff (ω)ζσ e−iωl/ceineff (ω)ωl/c

[ζσ + neff (ω)]2 − [ζσ − neff (ω)]2e2ineff (ω)ωl/c
. (27b)

Here, the parameter ζσ (σ = x, y) is equal to μeff,yy and
μeff,xx for the polarizations along x and y directions, respec-
tively. In Eq. (26), Aσ is the absorption matrix which arises
from dissipative nature of the slab. The elements of this 2 × 2
matrix are given in Appendix D. Also, the quantum noise
operators ĝσ±(ω) in Eq. (26) are given by

ĝσ±(ω) = [2cσ±(l, ω)]−1/2[ĝ′
σ−(ω) ± ĝ′

σ+(ω)], (28)

where

g′
x±(ω) = i

√
ω

c
eineff (ω)ωl/2c

∫ l/2

−l/2
d z′ e∓ineff (ω)z′ω/c

×
⎡
⎣

√
εI

eff xx f̂e,x(z′, ω)√
εI

eff,xx + Em|neff (ω)|2

±neff (ω)
√

Em f̂m,⊥(±z′, ω)√
εI

eff,xx + Em|neff (ω)|2

⎤
⎦, (29a)
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g′
y±(ω) = i

√
ω

c
eineff (ω)ωl/2c

∫ l/2

−l/2
d z′ e∓ineff (ω)z′ω/c

×
⎡
⎣ √

Ee f̂e,⊥(z′, ω)√
Ee − μ−1 I

eff,xx|neff (ω)|2

±
ineff (ω)

√
−μ−1 I

eff,xx f̂m,x(z′, ω)√
Ee − μ−1 I

eff,xx|neff (ω)|2

⎤
⎦, (29b)

and

cx±(l, ω) = e−κωl/c

(
sinh (κωl/c)

κ

± εI
eff,xx − Em|neff (ω)|2

εI
eff,xx + Em|neff (ω)|2

sin (ηωl/c)

η

)
, (30a)

cy±(l, ω) = e−κωl/c

(
sinh (κωl/c)

κ

± Ee + μ−1 I
eff,xx|neff (ω)|2

Ee − μ−1 I
eff,xx|neff (ω)|2

sin (ηωl/c)

η

)
.

(30b)

By applying Eqs. (19) and making use of Eqs. (28)–(30),
the quantum noise operators ĝσ±(ω) are found to satisfy the
following commutation relations:

[ĝσ±(ω), ĝ†σ ′±(ω′)] = δσσ ′δ(ω − ω′), (31a)

[ĝσ±(ω), ĝ†σ ′∓(ω′)] = 0. (31b)

Equations (26)–(31) make it possible to calculate the quan-
tum statistical properties of the output fields at any position
outside the slab, from the properties of the input fields and the
noise operators. Interestingly, the input-output relations (26)
are completely consistent with those reported in [68,69] for
the input-output relation of a stationary anisotropic slab with
εyz = μyz = 0, because, as stated earlier, an isotropic moving
MDS behaves somewhat like an anisotropic MDS.

To compare the input-output relations of the moving MDS
(26) with the corresponding relations for a dielectric slab
at rest [45,46,50,52,54,69], we define new noise operators

as
(F̂σ+(ω)

F̂σ−(ω)

)
= Aσ

(ĝσ+(ω)
ĝσ−(ω)

)
. They represent the quantum

noises associated with loss inside the moving MDS, and have
the following expectation values at the finite temperature �:

〈F |F̂ †
σ±(ω)|F 〉 = 〈F |F̂σ±|F 〉 = 0,

〈F |F̂ †
σ±(ω)F̂σ±(ω′)|F 〉 = N (γω,�)

×(1 − |Rσ |2 − |Tσ |2)δ(ω − ω′),

(32)

where |F 〉 represents the noise state of the MDS, and
N (ω,�) = [exp(h̄ω/kB� ) − 1]−1 is the mean number of
thermal photons at frequency ω and temperature �, in which
h̄ is the Planck constant per 2π and kB is the Boltzmann con-
stant. Since the input fields in the free space cannot sense the
presence of the moving MDS before arriving at it, the optical

input operators must satisfy the usual bosonic commutation
relations as[

â(1)
σ+(z, ω), â(1)†

σ ′+ (z′, ω′)
] = [

â(3)
σ−(z, ω), â(3)†

σ ′− (z′, ω′)
]

= δσσ ′δ(ω − ω′). (33)

By using the above commutation relations and the input-
output relations (26), the bosonic commutation relations for
the outgoing operators are obtained as follows:[

â(1)
σ−(z, ω), â(1)†

σ ′− (z′, ω′)
] = [

â(3)
σ+(z, ω), â(3)†

σ ′+ (z′, ω′)
]

= δσσ ′δ(ω − ω′), (34a)[
â(1)

σ−(z, ω), â(3)†
σ ′+ (z′, ω′)

] = [
â(3)

σ+(z, ω), â(1)†
σ ′− (z′, ω′)

]
= 0. (34b)

In the limiting case that the moving MDS is at rest, that
is v = 0, the effective tensors ¯̄εeff and ¯̄μeff reduce to the
stationary parameters ε and μ. Consequently, the input-output
relations (26) for μ = 1 tend to those derived in [52–54] for a
stationary dielectric slab.

III. NUMERICAL CALCULATIONS AND ANALYSIS

A. Transmission, reflection, and absorption coefficients

Due to the complexity of Eq. (27), it is difficult to predict
the results analytically. We start our numerical analysis by
examining the motion effects of the moving MDS on the
transmission and reflection properties. Consider a single-
resonance MDS of Lorentz type whose complex permittivity
and permeability functions in the rest frame of the MDS are
given by [45,46,56]

ε(ω) = ε∞

(
1 + ω2

pe

ω2
0 − ω2 − iγeω

)
, (35a)

μ(ω) = μ∞

(
1 + ω2

pm

ω2
0 − ω2 − iγmω

)
, (35b)

where ε∞ and μ∞ are, respectively, the high-frequency limit
of ε and μ, ωp and ω0 are, respectively, the plasma and the
resonance frequency, and γ is the absorbtion coefficient of the
MDS.

In Figs. 2 and 3, the squared moduli of the transmission
and reflection coefficients, |Tx|2 and |Rx|2, and the absorption
coefficient, 1 − |Rx|2 − |Tx|2, for x-polarized light are plotted
as functions of dimensionless parameters ω/ω0 and β. Here,
positive (negative) value of β represents that the MDS is
moving in the positive (negative) y direction. It is seen that
all plots are symmetric with respect to β = 0, because these
optical coefficients depend on even powers of β. Furthermore,
as β varies from 0 to 1, |Rx|2 increases very slowly with β

and then shows an oscillatory behavior followed by a fast
enhancement to 1, in the limit of β → 1. In contrast, |Tx|2
decreases very slowly and then shows an oscillatory behavior
followed by a fast decrease to zero, as β approaches to 1.
Similar behaviors are seen in Figs. 3(a) and 3(b) for the
y-polarized light incident on the moving MDS.
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FIG. 2. (a) The square modulus of the transmission coefficient |Tx|2, (b) the reflection coefficient |Rx|2, and (c) the absorption coefficient
1 − |Rx|2 − |Tx|2 for x-polarized light incident on the moving MDS with thickness ω0l/c = 1. The permittivity and permeability functions of
the MDS in its rest frame are described by the Lorentz model (35), with parameters ε∞ = 2, μ∞ = 1, γe/ω0 = 0.1, γm/ω0 = 0.2, ωpe/ω0 =
0.1, and ωpm/ω0 = 0.05.

In the low velocity limit v � c (β � 1), the absorption
coefficient reaches the maximum value of 0.14 near the res-
onance frequency. This maximum value shifts to frequencies
below the resonant frequency of the MDS with increasing β,
as seen in Figs. 2(c) and 3(c).

In the ultrarelativistic limit v � c (β � 1), the relation
|Rx|2 + |Tx|2 ≈ 1 holds, and the moving MDS acts like a
lossless slab, with |Tx|2 ≈ 0 and |Rx|2 ≈ 1; i.e., the moving
MDS behaves as a perfectly conducting slab to the incident
quantum light. This is in confirmation of the results obtained
in [20].

B. Quadrature squeezing

In this subsection, we shall proceed to study the significant
impacts of the motion of the moving MDS on the noise
properties of the transmitted states. To do so, let us start with
the definition of the quadrature operators of the output field in
the region z > l/2 as follows:

X̂ (3)
σ = 1

2

(
â(3)

σ+ + â(3)†
σ+

)
, (36a)

Ŷ (3)
σ = i

2

(
â(3)†

σ+ − â(3)
σ+

)
. (36b)

These quadratures are the analogues of the dimensionless
position and momentum operators and are subject to a similar
uncertainty relation 〈(�X̂ (3)

σ )2(�Ŷ (3)
σ )2〉 > 1/16, where the

variance of the arbitrary operator Ô is defined as 〈�Ô2〉 =
〈Ô2〉 − 〈Ô〉2. We can now quantify the quantum fluctuations
of the transmitted light through the moving MDS by evaluat-

ing the variance of these field quadratures. Consider that the
incident fields from the free space to the left and the right
sides of the MDS are, respectively, the single mode CS, |ασ 〉R,
and the conventional quantum vacuum state, |0〉L, where the
subscript indices R and L denote the direction of propagation.
Therefore, the general state of the system is written as |ψ〉 =
|ασ 〉R|0〉L|F 〉. By using Eqs. (26) and evaluating the variance
of X̂ (3)

σ with respect to the state |ψ〉, after some manipulations
we obtain 〈(

�X̂ (3)
σ

)2〉 = 1

4
(1 + 2〈F̂ †

σ+F̂σ+〉), (37a)

〈(
�Ŷ (3)

σ

)2〉 = 1

4
(1 + 2〈F̂ †

σ+F̂σ+〉). (37b)

It is clearly seen that the transmitted CS through the
moving MDS is not a CS due to the presence of the noise
flux 〈F̂ †

σ+F̂σ+〉 at the right-hand side of Eq. (37). Of course,
this noise flux vanishes at zero temperature, or at frequencies
far from the resonant frequency of the MDS, or at extreme
velocities where the moving MDS acts like a lossless slab.
In these limiting cases, the output state stays in a minimum
uncertainty state.

In what follows, for simplicity, we use the squeezing
parameter, S(3)

Xσ = 4�X̂ (3)2
σ − 1, to investigate the quadrature

squeezing of the output light. This parameter is zero for the
quantum vacuum and the coherent states and the existence of
the quadrature squeezing (squeezing in the form of reduced
quantum noise with respect to the standard limit) is manifested
in a negative-valued variance.

FIG. 3. Same as Fig. 2 but now for y-polarized light incident on the moving MDS.
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FIG. 4. (a) The squeezing parameter S(3)
X x as a function of dimensionless parameters ω/ω0 and β for the transmitted CS through the moving

MDS at temperature h̄ω0/kB� = 10/6. (b) The squeezing variance S(3)
X x as a function of dimensionless parameters h̄ω0/kB� and β for the

transmitted CS through the moving MDS at fixed frequency ω/ω0 = 1. The material properties of the moving MDS slab in its rest frame are
described by the Lorentz model (35) with parameters are identical to those used in Fig. 2. Here, the mean number of photons in the coherent
state |αx〉R is 16.

Figure 4 shows the squeezing parameter S(3)
Xσ for the trans-

mitted CS with x polarization as functions of the dimension-
less parameters β and ω/ω0. Here, we adopt the Lorentz
model (35) to characterize the dissipative and dispersive ef-
fects of the MDS in its rest frame. Since the fluctuations in
other quadrature operator S(3)

Y σ follow a similar behavior, we
confine our attention to the squeezing parameter S(3)

Xσ .
At the extreme velocity v � c, as mentioned above, the

moving MDS acts as a perfectly conducting slab to the
input states. Therefore, it is expected that the output field is
prepared in a state close to the quantum vacuum state, as
seen in Fig. 4(a). In contrast, at frequency ranges where the
relation |Rx|2 + |Tx|2 ≈ 1 holds except at extreme velocities,
the transmitted field is prepared in a state close to a single
mode CS. Therefore, in both above situations, the output state
is prepared in a minimum uncertainty state, and consequently
the squeezing parameter S(3)

Xσ becomes zero.
To compare the thermal effects of the moving MDS with

its motion effects, the squeezing parameter S(3)
Xσ at the reso-

nance frequency ω0 is shown in Fig. 4(b) with respect to the
dimensionless parameters β and h̄ω0/kBT . At elevated tem-
peratures, we observe that the squeezing parameter reaches
the maximum value around β = 0, where the noise flux is very
significant at the resonance frequency, and then decreases to
zero with increasing β, because the absorption becomes very
small in the limit of β → 1 [see Fig. 2(c)]. Therefore, at low
velocities and also at the resonance frequency, the thermal
effects have the overall effect of degrading the quantum
features of the input state.

C. Mandel parameter

In order to study the photon-counting statistics of the
transmitted CSs through the MDS at the finite temperature,
we analyze the Mandel parameter [70]

Q(3)
σ+ =

〈
â(3)†

σ+ â(3)
σ+â(3)†

σ+ â(3)
σ+

〉 − 〈
â(3)†

σ+ â(3)
σ+

〉2 − 〈
â(3)†

σ+ â(3)
σ+

〉
〈
â(3)†

σ+ â(3)
σ+

〉 , (38)

where the positive, zero, and negative values of this parameter
represent super-Poissonian, Poissonian, and sub-Poissonian
distributions, respectively [70]. By using Eq. (26), after some

algebra, the Mandel parameter (38) for the output state in the
region z > l/2 can be obtained as

Q(3)
σ = 2|Tσασ |2N (γω,�)(1 − |Tσ |2 − |Rσ |2)

|Tσασ |2 + N (γω,�)(1 − |Tσ |2 − |Rσ |2)

− (N (γω,�)
(
1 − |Tσ |2 − |Rσ |2))2

|Tσασ |2 + N (γω,�)(1 − |Tσ |2 − |Rσ |2)
. (39)

With the help of the Lorentz model (35), the motion effect
of the moving MDS on the photon counting statistics of the
transmitted x-polarized CS is shown in Fig. 5.

In Fig. 5(a), in confirmation of our recent findings in
previous subsections, we observe that the Mandel parame-
ter is positive only around regions where the absorption is
significant, i.e., the transmitted CS exhibits super-Poisson
distribution. Furthermore, at the frequencies where the rela-
tion |Rx|2 + |Tx|2 ≈ 1 holds except at extreme velocities, the
Mandel parameter becomes zero. Therefore, as far as it is
related to the photon-counting statistics, the transmitted CS
through the moving MDS is the same CS.

In Fig. 5(b), we have plotted the Mandel parameter Q(3)
x

at the resonant frequency as a function of the dimensionless
parameters β and h̄ω0/kBT . As can be seen, the thermal
effects are predominant only in the low velocity v < 0.2c,
where the absorption is significant. In the high velocities,
the thermal effects are minimal and subsequently the Mandel
parameter becomes zero, because the moving MDS with high
velocity behaves like a lossless slab at the resonant frequency
[see Fig. 2(c)].

IV. CONCLUSIONS

We have developed a phenomenological scheme for the
quantization of the electromagnetic field propagating perpen-
dicularly to a moving MDS with uniform velocity in the
direction parallel to its interface. We have derived quantum-
optical input-output relations for this MDS and described the
action of a moving lossy slab on an arbitrary quantum state
of light with either s or p polarization. We have investigated
the impact of the motion of the moving MDS on quantum
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FIG. 5. Mandel parameter Q(3)
x as a function of dimensionless parameters ω/ω0 and β for the transmitted CS through the moving MDS at

temperature h̄ω0/kB� = 10/6. (b) Mandel parameter Q(3)
x as a functions of dimensionless parameters h̄ω0/kB� and β for the transmitted CS

through the moving MDS at fixed frequency ω/ω0 = 1. The material parameters are identical to those used in Fig. 2.

properties of the incident states. To this end, the input-output
relations are used to investigate the impact of the motion of
the moving MDS on the quantum properties of the incident
states.

By modeling the dispersive and dissipative effects of the
moving MDS by the Lorentz model in its rest frame, we
have analyzed the reflection and transmission coefficients
of the moving MDS, which is a fundamental problem in
classical electrodynamics, and the results may be applied to
some aspects of optics and astrophysics. We then evaluated
the quadrature squeezing and the Mandel parameter for the
transmitted CS through the moving MDS. As a subsidiary
result, we found that the moving MDS at extreme velocity acts
as a perfectly conducting slab to the input states. Therefore,
the output field is prepared in a state close to the quantum
vacuum state. At the low and moderate velocities, v < 0.8c,
and also at the frequencies regions where the absorbtion is
weak, the transmitted field is prepared in a state close to a
single mode CS. It is shown that the thermal effects have a
significant role in degrading the quantum features of the input
state only in the low- and moderate-velocity ranges.

APPENDIX A: SQUARE ROOT OF TENSORS

The elements of the square root of the imaginary part of the

effective tensors
√

¯̄εI
eff (ω) and

√
¯̄μ−1 I

eff (ω) can be expressed as

e11 =
√

¯̄εI
eff,xx, (A1a)

e22 =
( − ¯̄εI

eff,yy + ¯̄εI
eff,zz

)
(Me − Ne)

2De
+ De(Me + Ne)

2De
,

(A1b)

e23 =
((

¯̄εI
eff,yy − ¯̄εI

eff,zz

)2 − D2
e

)
(Me − Ne)

2i ¯̄ε∗
eff,zyDe

, (A1c)

e32 = −i ¯̄ε∗
eff,zy(Me − Ne)

2De
, (A1d)

e33 =
(
¯̄εI

eff,yy − ¯̄εI
eff,zz

)
(Me − Ne)

2De
+ De(Me + Ne)

2De
,

(A1e)

m11 =
√

¯̄μ−1 I
eff,xx, (A1f)

m22 =
( − ¯̄μ−1 I

eff,yy + ¯̄μ−1 I
eff,zz

)
(Mm − Nm)

2Dm
+ Dm(Mm + Nm)

2Dm
,

(A1g)

m23 =
((

¯̄μ−1 I
eff,yy − ¯̄μ−1 I

eff,zz

)2 − D2
m

)
(Mm − Nm)

2i ¯̄μ−1 ∗
eff,zyDm

,

(A1h)

m32 = −i ¯̄μ−1 ∗
eff,zy(Mm − Nm)

2Dm
, (A1i)

m33 =
(

¯̄μ−1 I
eff,yy − ¯̄μ−1 I

eff,zz

)
(Mm − Nm)

2Dm
+ Dm(Mm + Nm)

2Dm
,

(A1j)

where De =
√

( ¯̄εI
eff,yy − ¯̄εI

eff,zz)2 + | ¯̄εI
eff,zy|2,

Me =
√

( ¯̄εI
eff,yy + ¯̄εI

eff,zz − De)/2, and Ne =√
( ¯̄εI

eff,yy + ¯̄εI
eff,zz + De)/2. Furthermore, the parameters

Dm, Mm, and Nm are obtained from the previous relations by
replacing ¯̄εI

eff with ¯̄μ−1 I
eff .

APPENDIX B: BOUNDARY CONDITIONS

Considering the continuity of the tangential electric and
magnetic fields across the boundaries of the MDS, and taking
into account that the vector potential with components (16a)
and (16b) is continuously differentiable at the interface be-
tween the MDS and the vacuum, the boundary conditions at
z = z j ( j = 1, 2) can be written as

√
ξ j+1

μeff j+1,yy

n j+1

[
eiη j+1ωz j/câ( j+1)

x+ (z j, ω)

+ e−iη j+1 ωz j/câ( j+1)
x−

(
z j, ω

)]
= √

ξ j
μeff j,yy

n j

[
eiη j ωz j/câ( j)

x+
(
z j, ω

)
+ e−iη jωz j/câ( j)

x−(z j, ω)
]
, (B1a)
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√
ξ ′

j+1
μeff xx,j+1

n j+1

[
eiη j+1ωz j/câ( j+1)

y+ (z j, ω)

+ e−iη j+1ωz j/câ( j+1)
y− (z j, ω)

]
=

√
ξ ′

j
μeff xx,j

n j

[
eiη j ωz j/câ( j)

y+(z j, ω)

+ e−iη jωz j/câ( j)
y−(z j, ω)

]
, (B1b)

and

√
ξ j+1

[
eiη j+1ωz j/câ( j+1)

x+
(
z j, ω

)
− e−iη j+1 ωz j/câ( j+1)

x−
(
z j, ω

)]
= √

ξ j
[
eiη jωz j/câ( j)

x+(z j, ω) − e−i η jωz/câ( j)
x−(z j, ω)

]
,

(B2a)√
ξ ′

j+1

[
eiη j+1ωz j/câ( j+1)

y+ (z j, ω)

− e−iη j+1ωz j/câ( j+1)
y− (z j, ω)

]
=

√
ξ ′

j

[
eiη jωz j/câ( j)

y+
(
z j, ω

) − e−i η jωz j/câ( j)
y−(z j, ω)

]
,

(B2b)

where η j and κ j are, respectively, the real and imaginary parts
of the refractive index n j . Here, n2 = neff is the refractive
index of the moving MDS in the laboratory frame. Notice that
because of the moving MDS is surrounded by vacuum, we
have ε1 = ε3 = μ1 = μ3 = 1. Therefore, we have η1 = η3 =
1, κ1 = κ3 = 0, μeff 1,xx = μeff 1,yy = μeff 3,xx = μeff 3,yy = 1,
and εeff 1,xx = εeff 1,yy = εeff 3,xx = εeff 3,yy = 1.

APPENDIX C: ELEMENTS OF THE
TRANSFORMATION MATRIX

We can now relate the operators â( j+1)
σ± (z j, ω) and

â( j)
σ±(z j, ω) to each other using the boundary conditions (B1)

and (B2). After straightforward calculations, we arrive at
Eq. (25), where the elements of the transformation matrix S( j)

read as

S( j)
11,x =

√
ξ j√

ξ j+1

n j+1μeff j,yy + n jμeff j+1,yy

2n jμeff j+1,yy

×e−i(η j+1−η j )z jω/c

= S( j)
22,xe−i 2 (η j+1−η j )z jω/c, (C1a)

S( j)
12,x =

√
ξ j√

ξ j+1

n j+1μeff j,yy − n jμeff j+1,yy

2n jμeff j+1,yy

×e−i(η j+1+η j )z jω/c

= S( j)
21,xe−i2(η j+1+β j )z jω/c, (C1b)

S( j)
11,y =

√
ξ ′

j√
ξ ′

j+1

n j+1μeff j,xx + n jμeff j+1,xx

2n jμeff j+1,xx

×e−i(η j+1−η j )z jω/c

= S( j)
22,ye−i2(η j+1−η j )z jω/c, (C1c)

S12,y =
√

ξ ′
j√

ξ ′
j+1

n j+1μeff j,xx − n jμeff j+1,xx

2ne, jμeff j+1,xx

×e−i(η j+1+η j )z jω/c

= S21,ye−i2(η j+1+η j )z jω/c. (C1d)

APPENDIX D: ELEMENTS OF THE
ABSORPTION MATRIX

The elements of the characteristic absorption matrix Aσ are
expressed as follows:

A11,x =
√

κξcx+t12,x ϑe−iωl/2c(1 + eineff ωl/cr23,x ), (D1a)

A12,x =
√

κξcx−t12,xϑe−iωl/2c(1 − eineff ωl/cr23,x ), (D1b)

A21,x =
√

κξcx+t32,xϑe−iωl/2c(1 + eineff ωl/cr21,x ), (D1c)

A22,x =
√

κξcx−t32,xϑe−iωl/2c(eineff ωl/cr21,x − 1), (D1d)

A11,y = √
κξ ′cy+t12,yϑ

′e−iωl/2c(1 + eineff ωl/cr23,y), (D1e)

A12,y = √
κξ ′cy−t12,yϑ

′e−iωl/2c(1 − eineff ωl/cr23,y), (D1f)

A21,y = √
κξ ′cy+t32,yϑ

′e−iωl/2c(1 + eineff ωl/cr21,y), (D1g)

A22,y = √
κξ ′cy−t32,yϑ

′e−iωl/2c(eineff ωl/cr21,y − 1), (D1h)

where

ϑ ′ = [
1 − r2

21,ye2ineff ωl/c
]−1

, (D2a)

ϑ = [
1 − r2

21,xe2ineff ωl/c
]−1

, (D2b)

and in which

r12,x = r32,x = −r21,x = −r23,x = μeff,yy − neff

μeff,yy + neff
, (D3a)

t21,x = t23,x = 2neff

μeff,yy + neff
, (D3b)

r12,y = r32,y = −r21,y = −r23,y = μeff,xx − neff

μeff,xx + neff
, (D3c)

t12,y = t32,y = 2μeff,xx

μeff,xx + neff
, (D3d)

t21,y = t23,y = 2neff

μeff,xx + neff
, (D3e)

t12,x = t32,x = 2μeff,yy

μeff,yy + neff
. (D3f)
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