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We introduce a classical phasor model for the description of multimode photon condensates that thermalize
through repeated absorptions and reemissions by dye molecules. Thermal equilibrium is expressed through the
fluctuation-dissipation relation that connects the energy damping to spontaneous emission fluctuations. We apply
our model to a photonic Josephson junction (two coupled wells) and to one- and two-dimensional arrays of
photon condensates. In the limit of zero pumping and cavity losses, we recover the thermal equilibrium result, but
in the weakly driven-dissipative case in the canonical regime, we find suppressed density and phase fluctuations
with respect to the ideal Bose gas.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) of photons can be real-
ized by embedding dye molecules in a high-quality optical
cavity [1]. When the rate of absorption and reemission of
photons by the dye molecules is much higher than the photon
losses, the photons are brought to thermal equilibrium with
the molecular rovibrational states [2–5]. These are in turn
thermalized by collisions with solvent molecules. The photon
gas then assumes the solvent temperature and features Bose-
Einstein condensation above the saturation density [1].

Since the ideal Bose gas is one of the simplest systems
from the theoretical point of view [6], one may wonder
whether this system presents any theoretical challenges or
is just a nice platform to perform some demonstration ex-
periments of elementary textbook physics. When the photon
losses are fully absent, the latter is the case [7,8], since
then the system is guaranteed to relax to the thermal state.
When on the other hand losses cannot be fully neglected,
as is the case in current experiments [1,9–12], the physics
becomes richer and our understanding of the interplay be-
tween pumping, losses, external potentials, and thermalization
is still not complete. Most experiments are performed with
harmonically trapped photons, but more recently there has
been experimental progress in the creation of double well and
periodic potentials [12].

The simplest theoretical description of out-of-equilibrium
photon condensation consists of rate equations for the occu-
pation of the single-particle energy levels [13]. The ingredient
that is missing here is the coherence between the single-
particle states, which is necessary to form localized photon
wave packets [14]. Such a state is for example formed when
the photon condensate is pumped with a finite size pumping
spot [15]. An extension of the rate equation model to take
the spatial distribution of the molecules into account was
developed by Hesten et al. [16].

On the other size of the complexity spectrum are the
quantum optics based approaches where the master equation
for the open quantum system [17] consisting of the coupled
molecular and photonic system is solved [14,18,19]. Apart

from the needed computational resources, a disadvantage of
this master equation approach is that it is hard to include
correlation between photons and molecules. It has been shown
that the correlation between photons and molecules can affect
the density fluctuations [20,21]. The underlying physics is
elementary: when a large number of molecules is present, they
form a bath for particle exchange as in the grand-canonical
statistical ensemble. In this so-called grand-canonical regime,
the number fluctuations are large, due to the unrestricted
exchange of particles between system and bath. When on
the other hand the number of molecules is small, it becomes
unlikely that all photons are simultaneously absorbed; hence
number fluctuations are reduced. In order to describe this
physics correctly, it is essential to include the correlations
between the number of photons and the number of excited
molecules. From the quantum optics side, these classical
molecule-photon correlations can be included most easily
in a quantum trajectory approach. For single mode photon
condensates, this was implemented in Ref. [22]. It was also
shown in this work that the quantum optical description is well
reproduced by a classical field model.

For the description of close to ideal Bose gases, classical
field theory has proved to be an indispensable tool [23]. Most
experiments with weakly interacting ultracold Bose gases are
excellently described by the Gross-Pitaevskii equation (GPE)
[24]. For exciton-polariton condensates, a system closely re-
lated to photon condensates, many experiments are modeled
with a generalized Gross-Pitaevskii equation that includes
pumping and losses [25]. Exciton polaritons are hybrid light-
matter quasiparticles that interact with each other thanks to
their excitonic component, setting them apart from noninter-
acting photons. In practice however, the interaction energy in
experimentally realized polariton condensates is quite small
due the relatively small value of the interaction constant
[26]. In parallel to photon condensates, cavity losses make it
necessary to pump the system in order to reach a steady state.
When cavity losses are small, thermal equilibrium is closely
approached [27].

Classical field theories exist at various levels of complexity.
The most elementary version is the standard GPE, containing
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only kinetic and interaction energy, that is suitable for the
description of zero temperature weakly interacting bosons
[24]. Particle exchange with a reservoir can be added by
including an imaginary term [25]. Energy exchange between
the bosons and their environment can be modeled by making
the prefactor of the time derivative complex. It was originally
introduced to model the friction between the superfluid and
normal components of liquid helium [28], but has also been
employed in the description of ultracold atoms [23,29] and po-
lariton condensates [30]. The standard Gross-Pitaevskii equa-
tion assumes perfect coherence of the bosons. Decoherence
can be incorporated by including some stochasticity. This can
for example be derived in the truncated Wigner approximation
[23,31–33].

For photon condensates, a classical field description has
been used to model their phase coherence [34]. The “phasor
model” version of the classical field description was devel-
oped in the context of laser physics [35,36] and compares
favorably with a quantum trajectory description for single-
mode photon condensates [22]. It is the purpose of this paper
to extend the phasor model to multimode photon condensates.

We show in Sec. II that the thermalization of the pho-
ton gas by the molecules is described by adding the same
term that models the friction between superfluid and normal
components in atomic condensates. The fluctuations in the
phasor model are shown to be related to this friction through
a fluctuation-dissipation relation. In Sec. III, we recapitulate
the physics of single-mode photon condensates, with specific
attention to the regimes of small and large density fluctuations,
the “canonical” and “grand-canonical” regimes respectively.
We then analyze in detail the case of two coupled photon
traps in Sec. IV, a photonic Josephson junction (PJJ). For
this system, we analytically compute the density and phase
fluctuations in the linearized Bogoliubov approximation. In
the limit of zero losses, we recover the equilibrium correlators
in the classical regime, justifying our model as an adequate
description of photon condensates. Finally, in Sec. V, we
extend our analysis to one-dimensional (1D) and 2D lattices
of photon condensates. We find that the spatial coherence of
photon condensates is much better in the canonical regime as
compared to the grand-canonical regime.

II. MODEL

A. Kennard-Stepanov relation and energy relaxation

For dye molecules that interact sufficiently strongly with
their solvent, the emission and absorption coefficients are
related by the detailed balance Kennard-Stepanov (KS) law,
which reads at the inverse temperature β = 1/(kBT ) [2–4]

B12

B21
= eβ(ω−ω0 ). (1)

Here B12 (B21) is the Einstein coefficient for absorption (emis-
sion) of a photon, ω0 is the molecular transition frequency, and
ω is the photon frequency. Here we absorbed possible degen-
eracy factors in a renormalization of the molecular transition
frequency. A sketch of an absorption-emission spectrum that
satisfies the KS relation is shown in Fig. 1.

The KS law brings the photon gas to thermal equilibrium,
as can be seen from the steady state of the kinetic equation for

Energy

absorptionemission

B12 B12

J

FIG. 1. We consider an array of cavities coupled by photon
tunneling. Photons are emitted and reabsorbed by the dye molecules.
The molecules undergo scattering with the solvent molecules, which
thermalizes the occupations of the rovibrational states. The emission
and absorption coefficients satisfy the Kennard-Stepanov relation.

the photon number in a single-mode cavity:

dn

dt
= −B12n + B21(n + 1). (2)

Setting dn/dt = 0, one finds n = (B12/B21 − 1)−1, which
reduces to the Bose-Einstein distribution when the KS relation
(1) is used.

For a single mode of noninteracting photons, the KS re-
lation can be straightforwardly implemented in a theoretical
model, but for multimode systems, the photonic frequency ω

is not a priori known. When the photonic frequency is still
close to a certain cavity frequency ωc, one can proceed by
writing the KS relation as

B12(ω)

B21(ω)
= eβ�eβ(ω−ωc ), (3)

where � = ωc − ω0 is the cavity-molecule detuning. To be
specific, we will assume that all the energy dependence is in
the absorption coefficient. This is valid close to the maximum
of the emission. However, we do not expect that our results
will be significantly altered when the energy dependence is
moved to the emission or distributed between absorption and
emission. Choosing ωc as the zero of energy and replacing
ω → i∂t , one obtains

B12 = B21eβ�

(
1 + i

∂

∂t

)
. (4)

In a classical field description, the photon dynamics is
described by a generalized Gross-Pitaevskii equation (gGPE),
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setting h̄ = 1,

i
∂ψ

∂t
= T̂ ψ + i

2
(B21M2 − B12M1 − γ )ψ. (5)

Here, T̂ formally represents the kinetic energy and M1(2) are
the number of ground-state (excited) molecules. The cavity
loss rate is denoted by γ . The wave function is position
dependent [explicitly: ψ = ψ (j), where j labels a lattice cite,
as well as the number of ground state and excited molecules,
that satisfy at all times M1(j) + M2(j) = M, where M is the
number of dye molecules at each lattice site. Equation (5)
does not contain interaction energy, which is quite negligible
in current experiments [37], except for a slow thermo-optical
nonlinearity [38], inclusion of which would be a straightfor-
ward extension of our model.

With Eq. (4), the gGPE becomes

i(1 + iκ )
∂ψ

∂t
= T̂ ψ + i

2
B21(M2 − eβ�M1 − γ )ψ, (6)

where

κ = 1
2βB21eβ�M1 (7)

is the energy relaxation rate. For typical photon conden-
sates the relative fluctuations in the number of ground-state
molecules is small, such that κ can be approximated by a
constant.

The above derivation made use of the formal substitution
ω → i ∂

∂t in the KS relation, whose validity may be ques-
tioned. In order to further justify this approach, we show in
Appendix A that the same equation can be rigorously derived
for the case where the energy dependent absorption is due to
coupling with a lossy bosonic mode.

For κ � 1, which is satisfied if the absorption of pho-
tons is slow on the thermal time scale β, the gGPE can be
approximated by

i
∂ψ

∂t
= (1 − iκ )T̂ ψ + i

2
B21(M2 − eβ�M1 − γ )ψ, (8)

where iκT̂ ψ forms an imaginary tunneling term, while correc-
tions due to κ in the emission-absorption term were neglected.

B. Fluctuations

A classical field model without fluctuations only captures
absorption and stimulated emission. In order to describe spon-
taneous emissions, fluctuations have to be introduced. One
possibility is the heuristic phasor model, where spontaneous
emissions are modeled by adding a unit length phasor with
random angle to the photonic field [35]:

ψ (j) → ψ (j) + eiθ , (9)

with θ a random phase. This noise should be added at random
times, with probability p = dt B21M↑2(j) in a time interval
dt . For the single-mode case, this model was demonstrated
to show excellent agreement with a full quantum trajectory
description [22], motivating its use to describe fluctuations in
the multimode regime.

C. Molecule dynamics

The equation of motion (8) has to be coupled to the
dynamics of the number of excited molecules. The absorption
and stimulated emission dynamics are local and lead to a local
change in the number of excited molecules of the form

∂M2(j)
∂t

∣∣∣∣
abs + st. em.

= B21[eβ�M1(j) − M2(j)]|ψ |2. (10)

From the energy relaxation term (proportional to κ), we have
the contribution

∂M2(j)
∂t

∣∣∣∣
relax

= 2κ Re[ψ∗(j)(T̂ ψ )(j)], (11)

where we have neglected relaxation of the molecules in other
modes than the cavity mode. Finally, the spontaneous emis-
sion (9) is accompanied by a change

dM2(j)|sp. em. = −[|ψ (j) + eiθ |2 − |ψ (j)|2]. (12)

Note that this change can be positive or negative and is in a
given realization not equal to one (this is only true on average).
The terminology “spontaneous emission” may therefore be a
bit confusing for this term. The crucial physics that it does
capture are the phase diffusion and density fluctuations in the
photon condensate [22].

In order to compensate for the excitations, which are lost
through the cavity mirrors, and reach a steady state, the
system has to be continuously pumped. This is modeled by
the following term in the equation of motion for the excited
molecules:

dM2(j)|pump = γ n̄ + √
γ n̄ξp, (13)

where n̄ is the targeted steady-state number of photons.
The Gaussian white term with autocorrelation 〈ξp(t )ξp(t ′)〉 =
δ(t − t ′) comes from the shot noise in the excitation of the
molecules. We include it here for completeness, but it will turn
out that its effect is much smaller than that of the spontaneous
emission noise (12).

III. SINGLE-MODE PHYSICS: CANONICAL AND
GRAND-CANONICAL REGIMES

The noninteracting Bose gas in the grand-canonical en-
semble has large number fluctuations. When the photons
of a photon condensate are coupled to a large number of
molecules, the molecules form a reservoir and photon number
fluctuations are large. With less molecules in the cavity, the
photon number fluctuations are reduced.

The dynamical analysis of the density fluctuations for a
single-mode photon condensate as a function of reservoir size
and detuning was performed in Ref. [22]. The deviations of
the number of photons n and total number of excitations
X = M2 + n from their equilibrium values n̄ and X̄ evolve in
linear approximation as

d

dt
δX = −γ δn + √

γ n̄ξp, (14)

d

dt
δn = −� δn + σ 2

n

Meff
� δX +

√
2B12M1n̄ξn. (15)
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Here, the number fluctuation decay rate is given by [39]

� =
(

1 + n2

Meff

)
B21M2

n̄
, (16)

where the effective reservoir size equals

Meff = M + γ e−β�/B21

2[1 + cosh(β�)]
. (17)

This reduces to the form from Ref. [21] when γ = 0.
The Gaussian white noises ξp,n have zero mean and vari-

ance equal to 〈ξi(t )ξ j (t ′)〉 = δ(t − t ′)δi, j . The stochastic term
ξn originates from the fluctuations due to spontaneous emis-
sion and can be derived in the diffusion approximation to the
phasor model by considering the effect of the spontaneous
emission on the variance of the density. In a spontaneous
emission ψ = ψ + eiθ , the density variance increases by

�Var[n] = 〈(2|ψ | cos θ )2〉 = 2n. (18)

With the spontaneous emission rate being B21M2, one arrives
at the noise term in Eq. (15). Analogously, the noise term
in Eq. (14) originates from the shot-noise deviations of the
pumping, which is needed to compensate for the photon
losses, from its average rate γ n̄.

According to Eq. (15), the density fluctuations in the
absence of losses are given by [22]

σ 2
n = Meffn̄2

Meff + n̄2
. (19)

Typical experimental photon losses do not significantly alter
the density fluctuations [21]. In the limit of a large reser-
voir (grand-canonical regime) (n̄2 � Meff), one obtains large
number fluctuations σ 2

n = n̄2, where in the opposite limit of a
small reservoir (canonical regime), one obtains small number
fluctuations σ 2

n = Meff � n̄2. In the grand-canonical limit,
phase jumps occur when the density goes to zero [34], but the
overall phase coherence time is still of the Schawlow-Townes
form from laser physics: τc ∝ n̄/(B21M2) [36,40].

IV. PHOTONIC JOSEPHSON JUNCTION

The simplest system to illustrate our model for a lattice
of photon condensates is a photonic Josephson juntion (PJJ),
which consists of two coupled sites (L and R) [12]. For this
example, we will write explicitly the gGPE and relaxation
contribution to the molecular dynamics for the left site; the
equations for the right site can be obtained by the replacement
L ↔ R.

A. Equations of motion

The deterministic part of the equations of motion for
the field amplitude on the left-hand site reads from Eq. (5)
explicitly,

i
∂

∂t
ψL = −J (1 − iκ )ψR + i

2
B21(M2L − eβ�M1L − γ )ψL.

(20)
The relaxation coefficient κ leads to a larger linewidth for
the antisymmetric state as compared to the symmetric state.
It leads to the following change in the number of excited

molecules; cf. Eq. (11):

dM2L,R

dt

∣∣∣∣
relax

= −2κJRe(ψ∗
LψR). (21)

For the remaining equations of motion, we refer to Eqs. (9),
(10), and (12).

B. Fluctuations

As in the single-mode case, further analytical insight can
be obtained by linearizing the equations of motion for small
phase and density difference, writing ψ j = √

n̄ + δn jeiθ j . For
the phase difference �θ = θR − θL, one then obtains

∂

∂t
�θ = −2κJ�θ − J

n̄
�n +

√
2D�θξθ , (22)

where the phase diffusion originates from spontaneous emis-
sion. The phase diffusion constant is

D�θ = M2B21

2n̄
. (23)

Equation (22) shows that the energy relaxation parameter κ

drives the system to zero relative phase. With Eq. (7), the
phase damping and noise are seen to obey the fluctuation-
dissipation relation

D�θ = kBT
κ

n̄
. (24)

For the photon and excitation number density difference
�n = δnR − δnL and �X = δXR − δXL, one obtains

d

dt
�X = 4Jn̄�θ − (γ + 2κJ ) �n +

√
2γ n̄ ξp, (25)

d

dt
�n = 4Jn̄�θ − (� + 2κJ ) �n + σ 2

n

Meff
� �X

+
√

4B12M1n̄ ξn, (26)

where � and σ 2
n are still given by Eqs. (16) and (19).

With Ito calculus, equations of motion for the correlation
functions can be constructed and the correlators can be eval-
uated analytically. The full expressions are cumbersome, but
both in the limit for large and for small tunneling, the variance
of the phase difference takes the simple expression

〈(�θ )2〉 = η
D�θ

4n̄κJ
, (27)

where η � 1 is a noise enhancement factor that describes the
increase of fluctuations due to losses:

η = 1 + γ e−β�

B21M
. (28)

In practice, this factor becomes appreciably larger than one
only for large negative detuning.

Inserting in Eq. (27) the fluctuation-dissipation relation
(24), one finds

〈(�θ )2〉 = η
kBT

2n̄J
. (29)
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For the relative density fluctuations, one obtains in the limit of
large J

〈(�n)2〉
n̄2

= η
2kBT

n̄J
. (30)

In the absence of losses (γ = 0), the results (29) and (30)
agree with those for noninteracting bosons in the weak fluc-
tuation regime at thermal equilibrium (see Appendix B).
Note that this limiting equilibrium expression is ensured by
the fluctuation-dissipation relation, which originates from the
Kennard-Stepanov relation.

From the density and phase fluctuations, also the first-order
coherence can be computed in linearized approximation:

〈ψ†
LψR〉
n̄

= 1 − 〈(�θ )2〉
2

− 〈(�n)2〉
8n̄2

. (31)

In the limit of large J one obtains

〈ψ†
LψR〉
n̄

= 1 − η
kBT

2n̄J
, (32)

which also reduces to the equilibrium expression when η = 1.
The dependence of density fluctuations on the tunnel-

ing rate in the presence of losses is shown in Fig. 2(a)
for photon condensates both in the grand-canonical (black
squares), canonical (green triangles), and intermediate (red
dots) regimes. These points were obtained from direct numer-
ical simulations of the equations of motion.

At sufficiently large tunneling rate, the density fluctua-
tions in Bogoliubov approximation (30) are recovered for all
photon and molecule numbers. The Bogoliubov approxima-
tion breaks down when density fluctuations are too large (at
small J), but in equilibrium, the density fluctuations can be
computed analytically at any T/J (see Appendix B). This
expression is shown in Fig. 2(a) with the black dashed line
and corresponds very well to the numerical simulations in the
deep grand-canonical regime for all tunneling rates.

In the canonical regime, losses affect the density fluctua-
tions significantly. This is seen both in the numerics (red and
green symbols) and in the nonequilibrium Bogoliubov (NEB)
expression (red and green lines). The density fluctuations in
the canonical regime can be understood from the interplay
between tunneling and losses. By coupling the two wells, the
relative density can fluctuate because of particle exchange.
When the tunneling becomes large, the condensate is almost
entirely in the symmetric state, such that the relative density
fluctuations become small. On the other hand, when the effect
of tunneling is much smaller than that of losses, particle
exchange is barely possible and relative density fluctuations
are suppressed. Consequently, there is a nonmonotonous de-
pendence of the relative density fluctuations on the tunneling
rate. By combining the small and large J expansions of
the density fluctuations, the position of the maximal density
fluctuations can be estimated to be at the tunneling rate J =
1
2 (T γ B21n2/M2)1/3.

The complement to the first-order coherence, i.e., the in-
coherence, of the PJJ is shown in Fig. 2(b). At large tunnel-
ing, it shows the same behavior as the density fluctuations.
Also in analogy with density fluctuations, the coherence for
grand-canonical condensates (black dashed line) is almost
unaffected by experimentally relevant losses. In the canonical

FIG. 2. (a) Relative density fluctuations and (b) complement to
the first-order coherence in a photonic Josephson junction as a func-
tion of the tunneling amplitude J for several values of the effective
reservoir size (black dashed and dotted lines and squares: deep
grand-canonical; red dash-dotted line and circles: intermediate; green
dash-dot-dot line and triangles: deep canonical). The symbols were
obtained with a direct numerical simulation of the phasor model.
The red dotted, green dash-dot-dotted, and black dotted lines were
obtained with the linearized Bogoliubov theory. The black dashed
line was obtained with the equilibrium theory of noninteracting
bosons in the grand-canonical ensemble.

regime (green dash-dotted line), on the other hand, we find
again a nonmonotonous behavior. At the tunneling strength
where density fluctuations become suppressed, also the in-
coherence decreases (the coherence improves). Upon further
decreasing the tunneling strength, the incoherence becomes
minimal and then increases again. The increase at small J is
entirely due to phase fluctuations. Indeed, in the limit of zero
tunneling, the phases between the two condensates become
uncorrelated. From the small J expansion of the incoherence,
the minimum of the dashed-dotted curve is found to be at the
tunneling rate J = [B21nγ /(4

√
2)]1/2.

In some numerical simulations (not shown here), we have
also observed a long-lived antisymmetric state with π phase
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FIG. 3. (a) Density fluctuations as a function of the energy offset
between the two wells in the canonical regime. (b) The behavior of
the coherence between the two wells as a function of the energy offset
between the two wells in the canonical regime.

difference between the two wells. This is not the lowest energy
state, but for small tunneling rate the energy relaxation is
too weak in order to cause a dynamical instability of the
antisymmetric state. The metastability of the antibonding state
is relevant for the potential use of photonic Bose-Einstein
condensates as analog simulators for (classical) minimization
problems [41]: already for the simple two-site problem, there
appears the possibility for the system to be stuck in an excited
state. A more detailed analysis of metastable states of photon
condensates is beyond the scope of this paper and will be
deferred to another study.

The previous discussion assumed perfect symmetry of the
system. In Fig. 3, we show the sensitivity of the density
fluctuations and coherence to the detuning of the wells in
the canonical regime. Where the spatial coherence is very
good for small energy offset between the wells, it quickly
deteriorates when the detuning is increased [see Fig. 3(b)]. For
larger losses, the coherence is lost for smaller values of the de-
tuning. The reason is that the system goes to a desynchronized
state, where the condensates in the two wells have different

frequencies and hence no phase coherence. When losses are
larger, fewer particles can be transferred between the two
wells and synchronization is lost for smaller detuning. Also
the density fluctuations are sensitive to a detuning between the
wells [see Fig. 3(a)]. When the system loses synchronization,
the density fluctuations increase, but for larger detuning, the
density fluctuations again decrease, the exchange of photons
being suppressed when the detuning is much larger than the
hopping.

V. LATTICES OF PHOTON CONDENSATES

With the physics of the two-site PJJ understood, we now
turn to the study of one- and two-dimensional arrays. From the
analytical side, we will again study the dynamics in Bogoli-
ubov approximation, which allows us to compute the spatial
coherence. We complete these calculations with numerical
studies of one- and two-dimensional systems.

The linear analysis for larger lattices can be performed
along the same lines as for the PJJ. The density and phase
variables are again introduced as ψ (j) = √

n̄ + δn(j)eiδθ (j).
The Fourier components of the phase fluctuations are
defined by

δθ (j) = 1√
L

∑
k

δθk eik·j, (33)

where L is the number of lattice sites, and analogous for δn(j)
and δX (j).

As observables, we will consider the momentum
distribution

Nk = 〈ψ†
kψk〉, (34)

where ψk is the Fourier transform of the field ψ (j). It is worth
stressing that the momentum distribution Nk is different from
the Fourier transform of the density δnk. We will also consider
the normalized static structure factor

Sk = 1

n̄2

∑
j

〈δn(j)δn(0)〉e−ij·k (35)

= 1

n̄2
〈|δnk|2〉. (36)

In the linear Bogoliubov approximation to Eqs. (8)–(12),
the fluctuations obey the equations of motion

∂

∂t
δθk = −κεkδθk − εk

2n
δnk +

√
2Dθ ξ

(θ )
k , (37)

∂

∂t
δnk = 2n̄εkδθk − (� + κεk )δnk +

√
2Dnξ

(n)
k , (38)

∂

∂t
δXk = 2n̄εkδθk − (γ + κεk )δnk +

√
2DX ξ

(p)
k . (39)

For a tight-binding Hamiltonian with hopping amplitude J ,
the single-particle dispersion equals εk = 2J[2 − cos(kx ) −
cos(ky)]. The white-noise terms have zero average and vari-
ance 〈ξ (α)

k (t )ξ (β )
k′ (t ′)〉 = δk,−k′δα,βδ(t − t ′). The diffusion con-

stants are Dθ = B21M2/4n̄, Dn = B21M2n̄, and DX = γ n̄. As
in the two-cavity case, the last one appears to play a negligible
role. These equations are identical to the ones in the case
of the PJJ with the replacement 2J → εk. The momentum
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FIG. 4. (a) Static structure factor and (b) momentum distribution
of a photon condensate in a lattice as a function of the energy.
Symbols and lines were obtained from numerics and analytical
calculations respectively. Blue squares and triangles were obtained
in the 1D grand-canonical regime. Red circles and stars refer to
simulations in the canonical regime in one and two dimensions,
respectively.

distribution can be computed analogously to Eq. (31) as

N (k) = n̄

2
〈|δθk|2〉 + 1

8n̄
〈|δnk|2〉. (40)

Numerically, we can check the validity of the linear ap-
proximation through the static structure factor, shown in
Fig. 4(a) and the momentum distribution, shown in Fig. 4(b).
In order to stress the similarity with the PJJ, we plot the
fluctuations Skx,0 and Nkx,0 against the dispersion εk. The
parameter values used in the figures correspond to a 1D grand-
canonical (blue squares and triangles), a 1D canonical (red
circles), and 2D canonical (red stars) regimes.

In order to span the five orders in magnitude in energy, sim-
ulations on systems with different tunneling were combined.
As can be seen from Eqs. (37)–(39), in the linear regime,
the fluctuations only depend on the energy εk and not on
the specific value of J . We verified that in the overlapping
energy regions, numerical simulations with different J gave

the same results. This universality breaks down in the regime
of strong fluctuations, where the momentum distribution and
static structure factor explicitly depend on J at small energy
(compare upright and inverted blue triangles).

In the grand-canonical regime at low energy, the fluctua-
tions become large and the linear approximation breaks down.
In analogy with the PJJ, one can use the grand-canonical
equilibrium ensemble in order to describe the condensate fluc-
tuations in the grand-canonical regime (see Appendix C). The
corresponding blue dashed and dotted lines closely reproduce
the numerical results at all energies.

In the large energy limit, we obtain from the nonequilib-
rium Bogoliubov approximation the limiting expressions

N (k) = η
kBT

εk
(k → ∞), (41)

S(k) = 2η
kBT

n̄εk
(k → ∞), (42)

where η is still given by Eq. (28).
In order to gain insight in the behavior of correlations

at very large distances, one can start from the low-energy
dependence in Bogoliubov approximation of the phase-phase
correlator:

〈|δθk|2〉 = η
kBT

2n̄εk
(k → 0). (43)

The divergence of the phase fluctuations at small energy is
reflected in the momentum distribution [Fig. 4(b)]. It appears
that at the lowest energies, there is a discrepancy between the
results of the numerical simulations and the NEB prediction.
Moreover, the numerical results appear to depend on the
dimensionality (see the discrepancy between the 1D and 2D
results), where the linear theory is dimension independent.
The 2D simulations appear to follow the analytical curve
somewhat longer, but in both cases, the fluctuations in the nu-
merical simulations are smaller than the analytical prediction.

When density fluctuations are small, the phase correlator
(43) results in an exponential decay of the first-order spa-
tial coherence at large distances, 〈ψ†(x)ψ (x′)〉 ∼ exp(−|x −
x′|/�c), with coherence length �c = 4n̄J/kBT . This expression
coincides with the correlation length of the 1D interacting
Bose gas [24]. In equilibrium systems, the condition of small
density fluctuations is satisfied thanks to interactions, in the
present case of noninteracting bosons out of equilibrium, the
density fluctuations can be suppressed by losses. This was
illustrated in Fig. 4 (red circles, stars, and dash-dotted line).
If the main contribution to the momentum distribution comes
from the large momentum tail (for not too large systems
and not too small J), the decay of the first-order spatial
correlation function is exponential. For a 1D lattice in the
limit where n̄J � kBT , the coherence length (in units of the
lattice spacing) equals �c = 2n̄J/(ηkBT ). In the equilibrium
limit η = 1, it reduces to the correlation length of the ideal
Bose gas [42] (see Appendix C). From the above analytical
considerations, one expects an increase by a factor of 2 in the
correlation length when going from the grand-canonical to the
canonical regime.

The spatial coherence in real space, obtained from numeri-
cal simulations in a 1D array, is shown in Fig. 5(a). From these
results obtained for various values of the detuning �, it is
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FIG. 5. (a) Real-space spatial coherence in a 1D lattice for
various values of the detuning. (b) Comparison between real-space
spatial coherence in a 1D (blue upward triangles) and 2D (pink down-
ward triangles) array with system parameters in the canonical regime.
The size of the simulation region is L = 128 for one dimension and
Lx = Ly = 64 for two dimensions.

seen that the spatial coherence improves when going from the
grand-canonical (red squares) to the canonical (blue triangles)
regime. It is also clear from this figure that the increase in
the spatial coherence length between grand-canonical (red
squares) and canonical (blue triangles) regimes is much larger
than the analytically predicted factor of 2. The larger than
expected coherence reflects the fact that the numerical mo-
mentum distribution in the canonical regime in Fig. 4(b) lies
below the analytical prediction. The theoretical understanding
of the coherence length in the canonical regime requires
further investigation.

Moreover, in our numerical simulations with small tunnel-
ing rates, we have observed that, in analogy with the two-well
case, the system can spend a long time in states with large
phase difference between neighboring wells. We also defer a
study of the occurrence of states with large phase difference
to a further study.

In one dimension the suppression of density fluctuations
only quantitatively affects the spatial coherence, where in
two dimensions the difference is qualitative. Where the ideal
2D Bose gas (which has large density fluctuations) does not
feature a phase transition to a phase-coherent state at finite
temperature (the decay of coherence is exponential at all
nonzero temperatures), the interacting Bose gas (with sup-
pressed density fluctuations) features a Berezinskii-Kosterlitz-
Thouless transition.

In the nonequilibrium case, we have shown that density
fluctuations can remain small for noninteracting photons in
the canonical regime when losses are present [see Fig. 4(a)].
The phase correlator (43) then leads to an algebraic decay of
the spatial coherence [24]

〈ψ†(x)ψ (x′)〉 ∝ |x − x′|−ν (44)

with the exponent

ν = η
kBT

4π n̄J
. (45)

This prediction for the long-distance spatial coherence re-
duces to the equilibrium one when η → 1.

Figure 5(b) shows a comparison of the spatial coherence
between a one- and a two-dimensional array. As predicted by
our theoretical analysis, the spatial coherence is better in the
two-dimensional case.

VI. CONCLUSIONS AND OUTLOOK

We have introduced a classical model to describe Bose-
Einstein condensates of photons in coupled cavities. The
model consists of a photon field that is coupled to the
molecular states by emission and absorption. The transfer of
photons between the cavities is described by the usual nearest-
neighbor tunneling term. The interplay between tunneling and
thermalization through the repeated absorption and emission
processes is modeled with an imaginary tunneling term. This
term was derived in the approximation that the temperature is
much larger than the tunneling energy. If this is not the case, a
higher-order expansion of the Kennard-Stepanov relation has
to be made.

We have studied numerically the full nonlinear equations
of motion and obtained analytical expressions from the lin-
earization of the model around a homogeneous steady state,
both for two coupled wells and for lattices. From our analyt-
ical solutions, we have recovered the equilibrium expressions
in the limit of zero cavity losses.

In the grand-canonical ensemble with large density fluc-
tuations, our numerical simulations coincide with the ther-
mal equilibrium results, even when losses are present. In
the canonical regime with small density fluctuations, on the
other hand, the cavities decouple from each other when the
tunneling rate is reduced. This results in a nonmonotonous
dependence of the relative density fluctuations on the
tunneling rate.

For one- and two-dimensional lattices of photon conden-
sates in the grand-canonical regime, the spatial coherence
reduces to that of the ideal Bose gas at thermal equilib-
rium. In the canonical regime, the spatial coherence markedly
improves. In the one-dimensional case, the decay is still
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exponential, but with a longer coherence length. Where the
analytical Bogoliubov analysis predicts an enhancement of the
coherence length by a factor of 2, the numerical simulations
show a much larger coherence length. Further theoretical work
will be needed to understand the spatial coherence in the
canonical regime. In 2D lattices in the canonical regime, the
coherence decays much slower than in one dimension. From
our Bogoliubov analysis, we predict a power-law decay, but
the numerics is not conclusive on this point because of the
limited lattice sizes that were accessible in our simulations. If
the power-law coherence exists, this would open the way to
the observation of the Berezinksii-Kosterlitz-Thouless transi-
tion in (noninteracting) photon condensates, that is stabilized
by driving and dissipation [43–46].

For the PJJ, we have shown that a detuning between
the wells is detrimental for the spatial coherence. It will be
interesting to analyze the role of disorder in extended lattices
as well and study the interplay between Anderson localization
and driving and dissipation. A further outlook concerns the
study of photon BECs in lattices with complex tunneling
phases, where the engineering of artificial gauge fields [47]
could be possible.
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APPENDIX A: ENERGY RELAXATION FROM COUPLED
BOSONIC MODES

In order to motivate further the introduction of an energy
relaxation term for a system with energy-dependent losses,
we derive it also for the case of two coupled bosonic modes,
where one (ψ) is conserved and one (χ ) is dissipative. Due to
its Lorentzian spectrum, the losses in the dissipative mode in-
troduce losses in the conserved one that are energy dependent.
At the classical field level, this system is described by

i
∂

∂t
ψ = T̂ ψ + gχ, (A1)

i
∂

∂t
χ = εχ + gψ − i

2
�χ. (A2)

For a constant T̂ (no kinetic energy) and strong detuning (|ε −
T̂ | � g, �) it has an eigenvalue

ω ≈ T̂ − g2

(T̂ − ε)2

i�

2
, (A3)

showing an energy (T̂ )-dependent absorption rate. Expanding
around T̂ = 0, one has

ω ≈ T̂ − g2

ε2

i�

2
+ iT̂

g2�

ε3
, (A4)

from which one sees that the damping rate has the energy-
dependent form γ = γ0 + 2κT̂ with

γ0 = g2�

ε2
and κ = −g2�

ε3
. (A5)

Let us now show that this system can be well approximated
by a gGPE with energy relaxation parameter κ . The equation
of motion for χ can be formally solved as

χ = gψ

i∂t − ε + i�/2
. (A6)

Substituting in Eq. (A1), one obtains

i
∂

∂t
ψ = T̂ ψ + g2

i∂t − ε + i�/2
ψ. (A7)

After expansion to first order of the denominator in ∂t and
subsequently in �, the equation for ψ becomes

i
∂

∂t
ψ = T̂ ψ − i

2

g2

ε2
�ψ + i

g2�

ε3
i∂tψ (A8)

= T̂ ψ − iγ0ψ − iκ∂tψ, (A9)

where in the last line the definitions (A5) of γ0 and κ were
used. We recover here the same relation between the energy
dependence of the loss rate and the gGPE as in our derivation
based on the KS relation.

APPENDIX B: GRANDCANONICAL TREATMENT
OF THE PJJ

For two coupled wells, the total number of photons reads
in terms of the chemical potential and in the limit kBT � J

2n̄ = T

−μ
+ T

2J − μ
(B1)

(n̄ is the number of photons in one cavity).
For the first-order coherence, one finds

〈ψ†
LψR〉 = 1

2

(
T

−μ
− T

2J − μ

)
. (B2)

The relative density fluctuations can be computed by using
Wick’s theorem, yielding

〈(�n)2〉 = 2T 2

(2J − μ)(−μ)
. (B3)

In the limit where n̄J � kBT , the first-order coherence re-
duces to 〈ψ†

LψR〉 = n̄ − T
2J and the density fluctuations reduce

to 〈(�n)2〉/n̄2 = 2kBT/(n̄J ).

APPENDIX C: GRAND-CANONICAL TREATMENT OF A
1D LATTICE

The chemical potential of a noninteracting condensate in a
lattice can be determined from

n̄ =
∫ 2π

0

dk

2π

kBT

2J[1 − cos(k)] − μ
= kBT√

μ(μ − 4J )
, (C1)

where the classical approximation to the Bose-Einstein distri-
bution was made, which is valid when kBT � J . The momen-
tum distribution is given by the Bose-Einstein distribution

Nk = kBT

ε(k) − μ
. (C2)

From the Fourier transform of the momentum distribution,
one obtains the spatial coherence, which decays exponentially
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at large distances, with coherence length �c = 2nJ/(kBT ). The
static structure factor can be computed by substituting

δnk =
∑

q

ψ†(q)ψ (k + q) (C3)

in Eq. (36) and then using Wick’s theorem to obtain

Sk =
∫ 2π

0

dk

2π

(kBT )2

n̄2[ε(q) − μ][ε(q + k) − μ]
, (C4)

which was numerically evaluated to obtain the blue curves in
Fig. 4.
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