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A cat state is formed as the steady-state solution for the signal mode of an ideal degenerate parametric
oscillator, in the limit of negligible single-photon signal loss. In the presence of signal loss, this is no longer
true over timescales much longer than the damping time. However, for sufficient parametric nonlinearity, a cat
state can still exist as a transient state. In this paper we study the dynamics of the creation and decoherence
of cat states in degenerate parametric oscillation, both with and without the Kerr nonlinearity found in recent
superconducting-circuit experiments that generate cat states in microwave cavities. We determine the time of
formation and the lifetime of a cat state of fixed amplitude in terms of three dimensionless parameters λ, g,
and χ . These relate to the driving strength, the parametric nonlinearity relative to signal damping, and the
Kerr nonlinearity, respectively. We find that the Kerr nonlinearity has little effect on the threshold parametric
nonlinearity (g > 1) required for the formation of cat states and does not significantly alter the decoherence
time of the cat state, but can reduce the time of formation. The quality of the cat state increases with the value
of g. To verify the existence of the cat state, we consider several signatures, including interference fringes and
negativity. We emphasize the importance of taking into account more than one of these signatures. We simulate
a superconducting-circuit experiment using published experimental parameters and find good agreement with
experimental results, indicating that a nonclassical catlike state with a small Wigner negativity is generated in
the experiment. Interference fringes, however, are absent, requiring higher g values. Finally, we explore the
feasibility of creating large cat states with a coherent amplitude of 20, corresponding to 400 photons, and study
finite-temperature reservoir effects.
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I. INTRODUCTION

After Schrödinger’s famous paradox, a cat state is a quan-
tum superposition of two macroscopically distinguishable
states, often taken to be coherent states [1]. The cat state plays
a fundamental role in motivating experiments probing the
validity of quantum mechanics for macroscopic systems [2].
More recently, it has been recognized that cat states are a use-
ful resource for quantum information processing and metrol-
ogy [3–11]. There has been success in creating mesoscopic
superposition states, including in optical cavities, in ion traps,
and for Rydberg atoms [12–25]. In microwave experiments
that utilize superconducting circuits to enhance nonlinearities,
cat states with up to 80 photons [10] and 100 photons [26]
have been reported.

Recently, a two-photon driven-dissipative process based
on superconducting circuits has been used to generate catlike
states in a microwave cavity [27,28]. Following the proposal
by Mirrahimi et al. [9], the experiment demonstrates confine-
ment of a state to a manifold mostly spanned by two coherent
states with opposite phases. The creation of a catlike state in
a superposition of the two coherent states π out of phase is
made possible by the strong nonlinearity due to a Josephson
junction and a comparatively low single-photon damping of
the signal [9,10,26,27,29–31]. This process is an example of

degenerate parametric oscillation (DPO). In an optical DPO,
current setups give a much smaller nonlinearity and cat states
are not generated. Rather, the system evolves to a bistable
situation, being in a classical mixture of the two coherent
amplitudes, with quantum tunneling possible between the two
states [32,33].

In this paper we study the generation, dynamics, and
eventual decoherence of a cat state in a degenerate parametric
oscillator. We extend previous quantum treatments of the
DPO to include the additional Kerr nonlinearities that arise in
the recent superconducting experiments. In both the standard
DPO (without Kerr nonlinearity) and the DPO with Kerr
nonlinearity, we demonstrate the possibility of the formation
of cat states in a transient regime if the two-photon effective
nonlinear driving is sufficiently strong. We fully characterize
the parameter regimes necessary for the formation of the cat
states, determining the threshold nonlinearity required and
the timescales over which the cat states are generated. In the
presence of signal-photon losses from the cavity, the cat states
eventually decohere. We determine the lifetime of the cat
states for the full parameter regime. To fully evaluate the dy-
namics of cat-state formation, we consider several signatures
of cat states, including the negativity of the Wigner function
and interference fringes.
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Understanding the dynamics of the formation of cat states
in degenerate parametric oscillation is motivated by applica-
tions in quantum information and by the development of the
coherent Ising machine (CIM), an optimization device capa-
ble of solving NP-hard problems [34–36]. Although current
realizations of the CIM use the equivalent of a network of
optical DPOs which do not operate in a cat-state regime,
the regime of cat states may be of interest in future devices.
There already exist proposals [37,38] and experiments [39]
generating itinerant cat states in a DPO, which will be useful
in a DPO network for adiabatic quantum computation [40–42]
to solve these NP-hard problems.

A DPO consists of pump and signal modes resonant in a
cavity at frequencies 2ω and ω, respectively, and resembles
a laser in exhibiting a threshold behavior for the intensity of
the signal mode [43–47]. The signal photons leave the cavity
with a fixed cavity decay rate γ1. Unlike the laser, however,
the steady-state solutions for the amplitude of the signal
field above threshold have a fixed phase relation. A quantum
analysis of the DPO was given by Drummond et al. [48],
who gave exact steady-state solutions in the limit of a fast-
decaying pump mode, which acts to generate photon pairs at
the signal frequency. The possibility of generating a cat state
as a superposition of the two coherent steady-state solutions π

out of phase was proposed by Wolinsky and Carmichael [49].
While it was realized that the steady-state solution forming
over times much longer than γ −1

1 would not be a cat state [50],
it became clear that in the limit of zero signal losses, a cat
state would form dynamically from a vacuum state as a result
of the two-photon driving process [51–53]. Cat states can be
generated as a transient over suitable timescales even in the
presence of signal losses (which give decoherence) provided
the nonlinearity is sufficiently dominant [53].

In this paper we provide a complete analysis of the dynam-
ics of the cat states in terms of three parameters that define
the system. The parameters are the driving strength λ, the
parametric nonlinearity g (scaled relative to cavity and pump
decay rates), and the time of evolution τ (scaled relative to the
signal cavity decay rate γ1). Our study assumes that the pump
field decays much more rapidly than the intracavity signal
field. Whether a cat state or a mixture is formed depends on
the competition between how fast one can generate a cat state
and how fast one loses it, due to decoherence from signal-
photon loss. A minimum g > 1 is required for the formation
of a catlike state. We find that the value of g also determines
the lifetime and quality of the cat state, in the presence of the
signal damping. We analyze the limit as g → ∞, showing that
the cat state becomes increasingly stable, consistent with the
analysis of Gilles et al. [51].

The Hamiltonian describing the superconducting cat sys-
tem is that of the DPO, but with an additional term due to a
Kerr nonlinearity. This introduces a fourth scaled parameter
χ . Recent works by Sun et al. [54,55] have revealed that
the cat states can form in the presence of the Kerr terms, in
the limit of zero signal loss, but that the final steady-state
solution where signal loss is present cannot be a cat state.
The analysis presented in this paper determines the threshold
condition for the formation of transient cat states including the
Kerr nonlinearity. The Kerr nonlinearity has little effect on the
threshold parametric nonlinearity required for the formation

of cat states. We also predict how fast a cat state can be gen-
erated for a given Kerr nonlinearity and how fast the cat state
decays. For cat states of a fixed size, the time of formation
can be reduced for a fixed parametric nonlinearity, provided
the driving field or Kerr nonlinearity can be increased and the
parametric nonlinearity satisfies g > 1.

The paper is organized as follows. In Sec. II we introduce
the Hamiltonian modeling the degenerate parametric oscil-
lator. In this work we solve the master equation expanded
in the number-state basis, which provides a set of partial
differential equations for all matrix elements of a density
operator (up to a cutoff number). The master equation and
the corresponding steady states in certain limits are described
in Sec. III. In the Appendix we consider cat-state signatures,
including both interference fringes in the quadrature probabil-
ity distribution [56,57] and the photon-number distribution.
The Q and Wigner functions [58–60] are also considered.
For cat states, the Wigner function becomes negative and the
corresponding Wigner negativity [61] can be computed from
the Wigner function, as a signature of the cat state. The zeros
of a Q function for a pure state [62] serve the same purpose.
Technical issues are also mentioned in this section as some of
the signatures are numerically hard to compute.

In Secs. IV–VII we present the results for different DPO
parameters. In Sec. IV we compute the dynamics of a de-
generate parametric oscillator at zero temperature without
detuning and Kerr nonlinearity and give a full study of the
corresponding time evolution and decoherence of the cat-state
signatures. The effects of detuning and Kerr nonlinearity are
examined in Secs. V and VI. In Sec. VII we simulate an exper-
iment using published superconducting circuit experimental
parameters and find that our numerical results agree well
with the experimental observations. Based on these realistic
parameters, we explore the feasibility of generating large
transient cat states and study the effects of finite temperatures.
We summarize in Sec. VIII.

II. HAMILTONIAN

A. Degenerate parametric oscillation

The Hamiltonian for a DPO is given by [48]

H1 = h̄ω1a†
1a1 + h̄ω2a†

2a2 + ih̄

2

(
ḡa2a†2

1 − ḡ∗a†
2a2

1

)

+ ih̄ε(a†
2e−iωpt − a2eiωpt ) +

2∑
i=1

(a†
i 	i + ai	

†
i ). (1)

Here ai are boson operators for the optical cavity modes at
frequencies ωi, with ω2 ≈ 2ω1. The modes with frequencies
ω2 and ω1 are the pump and signal modes, respectively. The
pump mode is driven by an external classical light field of
amplitude ε with frequency ωp, and ḡ is the coupling strength
between the pump and signal modes. The last term represents
the couplings of the cavity modes to the external environment
and hence describes the single-photon losses of pump and
signal from the cavity to the environment [63–66]. We ignore
thermal noise in the pump, but will include the thermal noise
in the signal, if necessary.
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In this work we set the driving laser frequency ωp to be on
resonance with the pump-mode frequency ω2 and transform
the system into the rotating frame of the driving frequency.
The resulting Hamiltonian is then given by

H2 = h̄
̄a†
1a1 + ih̄

2

(
ḡa2a†2

1 − ḡ∗a†
2a2

1

)

+ ih̄ε(a†
2 − a2) +

2∑
i=1

(a†
i 	i + ai	

†
i ), (2)

where 
̄ = ω1 − ωp/2. A nonzero 
̄ implies that the signal-
mode frequency ω1 is not exactly half the pump-mode fre-
quency ω2.

When the pump-mode single-photon decay rate is much
larger than the signal-mode decay rate, i.e., γ2 � γ1, the
pump mode can be adiabatically eliminated [48]. In this
case, the pump-mode amplitude has a steady state α0

2 = (ε −
ḡα2

1/2)/γ2, which is determined by the signal-mode amplitude
expectation value α1 [48]. The signal-mode amplitude evolves
in time according to a simpler Hamiltonian involving only the
signal mode [55]:

H = h̄
̄a†
1a1 + ih̄

(
ḡε

γ2
a†2

1 − ḡ∗ε∗

γ2
a2

1

)

+ a†
1	1 + a1	

†
1 + |ḡ|2

4γ2

(
a2

1	
†
2 + a†2

1 	2
)
. (3)

A simple semiclassical analysis (in which noise terms
are ignored) indicates that this system undergoes a threshold
when ε = εc = γ1γ2

ḡ [48,67], i.e., when

λ = |ḡε|/γ1γ2 = 1. (4)

Below this threshold (λ < 1), the semiclassical mean signal
amplitude is zero. Above threshold (λ > 1), the intensity of
the signal field increases with increasing driving field.

In certain regimes of parameters above threshold, the two-
photon driven-dissipative process (3) generates cat states of
the type [49,51–53,68]

|ψeven〉 = N+(|α0〉 + | − α0〉),
(5)

|ψodd〉 = N−(|α0〉 − | − α0〉),

where N± = [2(1 ± e−2|α0|2 )]−1/2 and |±α0〉 are coherent
states with amplitudes α0 = ±√

2ε/ḡ, respectively. Here ther-
mal noise is ignored. The |ψeven〉 and |ψodd〉 are cat states with
even and odd photon numbers, respectively [52,69,70]. In
particular, Hach and Gerry [52] and Gilles et al. [51] showed
that cat states survive in this two-photon driven-dissipative
process provided the single-photon losses for the signal a1

are neglected. Reid and Yurke showed that the single-photon
signal losses eventually destroy the cat state [50]. They calcu-
lated the Wigner function of the steady state formed including
signal losses, showing that this function was positive and
therefore could not be a cat state. For sufficiently strong
coupling ḡ, a cat state can form in a transient regime [53].
In Secs. IV and V we extend this earlier work by examining
the full dynamics of the formation and decoherence of the cat
states over the complete parameter range.

B. Degenerate parametric oscillation with a Kerr medium

A promising system where single-photon signal damping
can be small relative to the nonlinearity is the superconducting
circuit involving a Josephson junction [10,23,26]. However,
the implementation of the two-photon driven-dissipative pro-
cess in Eq. (3) in a superconducting circuit leads to an addi-
tional Kerr-type nonlinear interaction. The resulting Hamilto-
nian for this system (after the adiabatic elimination process)
is given by [54,55]

H = h̄
̄a†
1a1 + ih̄

(
ḡε

γ2
a†2

1 − ḡ∗ε∗

γ2
a2

1

)
+ h̄χ̄

2
a†2

1 a2
1

+ a†
1	1 + a1	

†
1 + |ḡ|2

4γ2

(
a2

1	
†
2 + a†2

1 	2
)
. (6)

It has been shown that the two-photon driven-dissipative
process (6) including χ̄ also gives the threshold (4) [55].
Here thermal noise is ignored. Above threshold, the process
in the absence of single-photon loss generates cat states of
the type (5) [9,55] but where |±α0〉 are coherent states with
amplitude α0 given by [55]

α0 =
√

ε
ḡ
2

(
1 + i 2γ2

ḡ2 χ̄
) . (7)

As with the DPO, Sun et al. have shown that the cat states
are destroyed in the limit of the steady state if signal loss is
nonzero [55]. In Secs. VI and VII we examine the dynamics of
the signal mode as it evolves from the vacuum, identifying the
parameter regimes which show the feasibility of the formation
of transient cat states.

III. MASTER EQUATION AND STEADY-STATE
SOLUTIONS

A. Master equation

A master equation takes into account the damping and
quantum noise fluctuations as well as the dynamics due to
the system Hamiltonian in the Markovian approximation. The
Hamiltonian in the preceding section has a corresponding
master equation that describes the time evolution of the sig-
nal mode a ≡ a1. The full master equation corresponding to
Eq. (6) including the effect of thermal reservoirs is given by

∂

∂t
ρ = −i
̄[a†a, ρ] + |ḡε|

2γ2
[a†2 − a2, ρ] − i

χ̄

2
[a†2a2, ρ]

+ 1

2

(
ḡ2

2γ2

)
(2a2ρa†2 − a†2a2ρ − ρa†2a2)

+ (N + 1)γ1[2aρa† − a†aρ − ρa†a]

+ Nγ1[2a†ρa − aa†ρ − ρaa†]. (8)

Without loss of generality, we can choose the phase of ḡ
such that ḡε = ḡ∗ε∗ [33,71]. Here ρ is the density operator
of the signal mode. The first term on the right-hand side of
Eq. (8) is due to the detuning between the driving field and
signal-mode frequency. The second term describes the driving
of the signal mode by the pump. The third term arises from the
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Kerr-type interaction and the fourth term describes the two-
photon loss process where two signal-mode photons convert
back to a pump-mode photon, which then subsequently leaks
out of the system. The remaining terms describe single-photon
damping due to the interaction between the system and its
environment, where the parameter N is the mean thermal
occupation number of the reservoir.

B. Steady-state solutions

The steady-state solution ρ(∞) that satisfies ∂ρ/∂t =
0 is typically hard to obtain for driven quantum systems
out of thermal equilibrium. Using the generalized P distri-
bution [72], the steady-state solution in the quantum case
where damping and parametric nonlinearity are present can
be obtained using the method of potentials [48,49,73]. This
was recently extended to the general quantum case where
damping and both Kerr and parametric nonlinearities are
present [54,55].

1. Two-photon dissipation and driving with no single-photon
signal damping

First, the steady-state solution in the absence of thermal
noise where the single-photon losses are neglected (γ1 = 0)
and where the Kerr term (χ̄ = 0) is zero has been shown to be
of the form [51,52]

ρ(∞) = p++|ψeven〉〈ψeven| + p−−|ψodd〉〈ψodd|
+ p+−|ψeven〉〈ψodd| + p−+|ψodd〉〈ψeven|. (9)

This is a classical mixture of the even and odd cat states
|ψeven〉 = N+(|α0〉 + |−α0〉) and |ψodd〉 = N−(|α0〉 − |−α0〉)
given by Eq. (5). Here we assume no detuning 
̄ = 0. The
coherent amplitude is found to be α0 = ±√

2ε/ḡ, which can
be given in terms of the pump parameter λ [defined in Eq. (4)
for the parametric oscillator with signal damping],

λ ≡ |ḡε|/γ1γ2, (10)

and a dimensionless two-photon dissipative rate

g ≡
√

ḡ2/2γ1γ2 (11)

via

α0 =
√

λ/g. (12)

This is consistent with the work of Wolinsky and Carmichael,
who had earlier pointed to the possibility of cat states with
amplitude α0 = √

λ/g in the limit of negligible signal damp-
ing [49]. The amplitudes α0 = ±√

λ/g correspond to the
steady-state solutions derived in a semiclassical approach
where quantum noise is ignored. The coefficients p++ and
p−− can be interpreted as probabilities (p++ + p−− = 1) and
are obtained from the initial state of the system where these
coefficients are the constants of motion. Following this, if the
system has an initial vacuum state, the steady state is an even
cat state |ψeven〉.

The steady-state solution of Eq. (8) for the system with an
additional Kerr-type interaction χ̄ has recently been analyzed

by Sun et al. [55]. The steady state is of the form (9), except
that the coherent amplitude becomes

α0 =
√

λ/(g2 + iχ ′) =
√

λ/g2(1 + iχ ), (13)

which is rotated in phase space due to the nonlinear Kerr term
χ̄ . Here χ ′ = χ̄/γ1 is the scaled Kerr interaction strength and
χ ≡ χ ′/g2 is the ratio of the Kerr strength to the parametric
gain, which will be used throughout Sec. VI.

2. Steady-state solution in the presence of single-photon damping

The steady-state solution for the general case where the
single-photon damping is taken into account is calculated
using the complex P representation [48,54,55,72]. Here we
ignore thermal noise. After adiabatic elimination of the pump
mode, a corresponding Fokker-Planck equation allows the
analytical steady-state potential solution to be obtained [48].
A steady-state solution in the positive-P representation was
derived by Wolinsky and Carmichael [49], who pointed out
the potential to create cat states in the large-g limit. How-
ever, this approach is not valid for strong coupling and Kerr
nonlinearities.

From the complex P solutions, a Wigner function can be
derived which, being positive, demonstrates that the steady-
state solution itself cannot be a cat state [50]. Beginning
with an even cat state, for example, it is well known that
the loss of a signal photon converts the system into an odd
cat state [74]. The presence of single-photon signal loss
therefore leads to a mixture of the odd and even cat states
being created. A 50:50 mixture of the even and odd cat
states is equivalent to a 50:50 mixture of the two coherent
states |±α0〉. This gives the mechanism by which ultimately
the mesoscopic quantum coherence that gives the cat state
is destroyed.

An analysis of the steady-state solution given by Sun
et al. [55] yields that, for the system where the signal mode is
initially in a vacuum state, the steady-state solution for g > 1
is given by a density operator of the form [55]

ρSS = PSS|ψeven〉〈ψeven| + (1 − PSS)ρmix, (14)

where

ρmix = 1
2 |α0〉〈α0| + 1

2 | − α0〉〈−α0|
and

PSS = [1 + exp(−2|α0|2)]/[exp(2|α0|2) + exp(−2|α0|2)],

and α0 is given by Eq. (13). The steady-state solution in
Eq. (9) is a good approximation when the single-photon
loss is low [53]. There are proposals using higher-order
nonlinear interactions that involve a four-photon driven-
dissipation process which can reduce the effect of single-
photon losses [9]. These nonlinear interactions can be easily
incorporated into our formalism, but are not dealt with in
this work.

C. Number-state expansion

In the presence of damping and noise, a transient cat state
is nevertheless possible for large g [53,68]. In order to fully
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capture the dynamics of the system, we give a numerical solu-
tion of the master equation (8), by expanding in the number-

state basis {|n〉}. This leads to time evolution equations for
each density operator matrix element ρnm ≡ 〈n|ρ|m〉,

∂ρnm

∂τ
= −i
(n − m)ρn,m + λ

2
[
√

n(n − 1)ρn−2,m +
√

m(m − 1)ρn,m−2 −
√

(n + 1)(n + 2)ρn+2,m −
√

(m + 1)(m + 2)ρn,m+2]

− i
χ ′

2
[n(n − 1) − m(m − 1)]ρn,m + g2

√
(n + 1)(n + 2)(m + 1)(m + 2)ρn+1,m+2 − g2

2
[n(n − 1) + m(m − 1)]ρn,m

+ 2(N + 1)
√

(n + 1)(m + 1)ρn+1,m+1 − (N + 1)nρn,m − (N + 1)mρn,m

+ 2N
√

nmρn−1,m−1 − N (n + 1)ρn,m − N (m + 1)ρn,m, (15)

where we introduce dimensionless parameters that are scaled by γ1: τ = γ1t , 
 = 
̄/γ1, λ = |ḡε|/γ1γ2, χ ′ = χ̄/γ1, and g =√
ḡ2/2γ1γ2. For a given n and m, the right-hand side of Eq. (15) has contributions from indices other than n and m. In other

words, we can express Eq. (15) as

∂

∂τ
ρn,m =

∑
i

∑
j

Li j
nmρi, j, (16)

where

Li j
nm = λ

2

√
n(n − 1)δi

n−2δ
j
m + λ

2

√
m(m − 1)δi

nδ
j
m−2 − λ

2

√
(n + 1)(n + 2)δi

n+2δ
j
m − λ

2

√
(m + 1)(m + 2)δi

nδ
j
m+2

− i
χ ′

2
[n(n − 1) − m(m − 1)]δi

nδ
j
m + g2

√
(n + 1)(n + 2)(m + 1)(m + 2)δi

n+2δ
j
m+2 − g2

2
[n(n − 1) + m(m − 1)]δi

nδ
j
m

+ 2(N + 1)
√

(n + 1)(m + 1)δi
n+1δ

j
m+1 − (N + 1)nδi

nδ
j
m − (N + 1)mδi

nδ
j
m

+ 2N
√

nmδi
n−1δ

j
m−1 − N (n + 1)δi

nδ
j
m − N (m + 1)δi

nδ
j
m − i
nδi

nδ
j
m + i
mδi

nδ
j
m.

Here δi
n is a Kronecker delta function with δi

n = 1 if i = n and
δi

n = 0 otherwise.
Equation (16) is solved numerically using the fourth-order

Runge-Kutta algorithm. Depending on the coherent ampli-
tude, a suitable photon-number cutoff is chosen. The validity
of this choice is checked by ensuring the diagonal matrix
elements with large photon number are not populated and also
by computing the trace of the density operator to ensure Trρ =
1. Furthermore, the convergence of the results is checked by
increasing the cutoff number. The time step is chosen such
that the time-step error is negligible.

IV. TRANSIENT CAT STATES WITH NO KERR
NONLINEARITY

In this section we analyze the dynamics of transient cat
states, assuming zero detuning (
̄ = 0) and zero Kerr nonlin-
earity (χ̄ = 0). We ignore thermal noise. We solve the mas-
ter equation above numerically in the number-state basis as
explained in Sec. III and compute the quadrature probability
distributions and their Wigner negativities. These different cat
signatures are summarized in the Appendix and allow us to
determine the onset of a cat state.

We perform an analysis for a complete range of parameters.
In fact, three parameters specify the transient behavior. These
are λ and g, given by Eqs. (10) and (11) and defined earlier by
Wolinsky and Carmichael [49], and the time τ = γ1t , scaled
relative to the signal cavity decay time 1/γ1. In fact, to analyze
the strong-coupling limit of large g, we find it convenient
to introduce a different set of parameters which completely

defines the dynamics. These are the pump strength scaled
relative to the oscillation threshold [as given in Eq. (4)]

� = |ḡε|/γ2 = γ1λ, (17)

the scaled coupling strength

G =
√

ḡ2/2γ2 = √
γ1g, (18)

and the scaled time T = G2t . Using the parameters, the master
equation (8) becomes

∂

∂T
ρ = �

2G2
[a†2 − a2, ρ] + 1

2
(2a2ρa†2 − a†2a2ρ − ρa†2a2)

+ γ1

G2
(2aρa† − a†aρ − ρa†a). (19)

To make clear the relation to the case of signal damping γ1 �=
0, we express � and G in terms of λ and g,

∂

∂T
ρ = λ

2g2
[a†2 − a2, ρ] + 1

2
(2a2ρa†2 − a†2a2ρ − ρa†2a2)

+ 1

g2
(2aρa† − a†aρ − ρa†a). (20)

The first term is proportional to α2
0 , which gives the am-

plitudes ±α0 = ±√
�/G = ±√

λ/g of the cat state (which
might be formed in the steady state), as predicted by Eq. (12).
The last term in Eq. (20) is zero in the case without single-
photon damping (γ1 = 0 and g → ∞).
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FIG. 1. The x-quadrature probability distributions and p-
quadrature probability distributions as a function of scaled time
T = G2t for α0 = 2.5 [(a) and (b)] and α0 = 10 [(c) and (d)]. Here
γ1 = 0.

A. Two-photon driving and dissipation with no single-photon
signal damping

We would first like to understand the dynamics without
single-photon signal damping and at zero temperature. This
corresponds to γ1 = 0, implying g → ∞. Apart from the
scaled time T of evolution, the master equation (19) has
only one free parameter which corresponds to the steady-
state coherent amplitude α0 = √

�/G. Here we present a
determination of the interaction time T required for the onset
of a cat state, as a function of α0 = √

�/G, for the full range
of parameters, thus extending earlier work [51,52].

In Figs. 1 and 2 we fix α0 and determine the dimensionless
time T for a transient cat state of amplitude α0 to appear,
as measured by the emergence of the fringes in P(p) and
the Wigner negativity δ. We evaluate the formation time by
comparing the numerical value of the Wigner negativity with
that given by a pure even cat state of amplitude α0 [Eq. (A19)].
The dimensionless cat-formation time Tcat is defined as the
time at which the Wigner negativity agrees with the analytical
result of the pure cat state (refer to the Appendix) to within
four significant figures.

These results demonstrate that larger cat-state amplitudes
α0 have shorter-scale cat-state onset times Tcat. We next dis-
cuss the cat-formation time tcat = Tcat/G2 for different cat
sizes α0 assuming γ1 = 0. Recall that a cat state in the lossless
case has an absolute coherent amplitude |α0| = |√�/G|. In
order to obtain |α0| of a certain amplitude, one can either fix
G and change � accordingly or fix � and change G, or change
both. If G is fixed while � is changed to obtain |α0| of a certain
amplitude, then tcat can indeed be shorter for a larger cat state
(Table I). However, � scales as α2

0G2 and this may quickly
become impractical for large α0.

To get a sense of the timescale in real times, we con-
sider the parameters from the experiment reported in [27].
The nonlinear coupling strength is ḡ/2π = 225 kHz and the

0 0.5 1 1.5
T

0

0.1

0.2

0.3

0
 = 2.5

0
 = 5

0
 = 10

pure cat, 
0
 = 2.5

pure cat, 
0
 = 10

FIG. 2. Time evolution of the Wigner negativity δ for α0 = 2.5,
5, and 10, in terms of the scaled time T = G2t . The blue dashed,
black solid, and red dash-dotted lines correspond to α0 = 2.5, 5, and
10, respectively. The blue dashed horizontal line shows the Wigner
negativity of a pure, even cat state for α0 = 2.5 as calculated from
the analytical Wigner function in Eq. (A19). The red dash-dotted
horizontal line corresponds to the same quantity but for α0 = 5 and
10, which have the same Wigner negativity. The cat-formation time
is calculated as the time taken for the Wigner negativity to reach the
analytical value associated with the pure cat state.

Kerr-type interaction strength is χ̄/2π = 4 kHz. The single-
signal-photon damping rate γ1/2π = 3.98 kHz and single-
pump-photon damping rate γ2/2π = 3.18 MHz. In this sec-
tion we choose the pump field amplitude to be ε/2π =
703 kHz such that |α0| = 2.5, without the Kerr term (χ̄ =
0), according to Eq. (7). These correspond to parameter
values G =

√
ḡ2/2γ2 = 2.24 × 102 Hz1/2 and � = |ḡε|/γ2 =

3.13 × 105 Hz. In practice, it is better to modify both the
parameters G and � for different α0. For the sake of our
discussion, however, we consider the case where � = 3.13 ×
105 Hz is fixed and we change G accordingly, where G scales
as

√
�/α0. Hence, tcat = Tcat/G2 = Tcatα

2
0/�. The tcat for

different cat sizes are shown in Table I.

B. Single-photon signal damping

Next we include the effect of the signal damping (γ1 �= 0).
Apart from the time of evolution, the master equation (20)
has two free parameters α0 and g, which are the effective
ratio of the two-photon nonlinearity to the signal decay rate.
For sufficiently small g, cat states cannot form. As mentioned

TABLE I. Cat-formation times for fixed G and fixed �. Here
T = G2t is the scaled time and tcat is the real time in seconds. In the
third column, we use the estimated value of G = 2.24 × 102 Hz1/2

for the experiment [27]. In the last column, we set � = 3.13 ×
105 Hz.

tcat = Tcat/G2 (μs) tcat = Tcatα
2
0/�(μs)

α0 Tcat (fixed G) (fixed �)

2.5 1.75 ± 0.05 35.0 ± 1.0 35.0 ± 1.0
5.0 0.45 ± 0.035 9.0 ± 0.7 36.0 ± 2.8
10.0 0.14 ± 0.01 2.80 ± 0.20 44.8 ± 3.2
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FIG. 3. The x-quadrature probability distribution as a function
of scaled time T = G2t for g = 1: (a) α0 = 2.5, (b) α0 = 5, and
(c) α0 = 10. The distribution is unchanged for g = 1.5, 2.0, and 2.5.
We note that g = G/

√
γ1.

previously, the cat size is given by the amplitude α0 = √
λ/g,

and we fix this value for each of the Figs. 3–5 discussed below.
The parameter g is changed in order to find the threshold value
of g where interference fringes, and hence a cat state, emerge.
We consider α0 = 2.5 to be the minimum value of α0 that can
correspond to a true cat state.

Figures 3–5 indicate that g > 1 is the threshold for the
emergence of fringes (and hence of a cat state), regardless
of the amplitude α0 of the cat state. For g > 1, the figures
show the interference fringes to become more pronounced as g
increases. For long enough T , the fringes vanish, as the system
approaches a steady state. The steady state is not a cat state,
as it has a positive Wigner function [50].
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FIG. 4. The p-quadrature probability distribution as a function of
scaled time T = G2t for different values of g = G/

√
γ1: (a) g = 1.0,

(b) g = 1.5, (c) g = 2.5, and (d) g = 5.0. Here α0 = 2.5. The time
range for T is: (a)–(c), 0–1.6; and (d), 0–2.5.
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√
γ1: (a) g = 1.0,

(b) g = 1.5, (c) g = 2.5, and (d) g = 5.0. Here α0 = 10.

It is interesting to know the experimental runtime needed
to obtain a catlike state with the maximal nonclassicality. This
is quantified by the Wigner negativity. We computed the time
evolution of the Wigner negativity. This allows us to estimate
the time of formation of a transient state with the largest
Wigner negativity, given α0 and g. In Fig. 6 we present the
Wigner negativity results with different g, for α0 = 2.5, 5, and
10, respectively. The results are presented with respect to the
time τ = γ1t = T/g2 relative to the signal-cavity lifetime. We
see first the formation of the cat state, followed by its decay.
Assuming the cavity lifetime is unchanged, for fixed |α0| a
larger g implies a quicker formation, but also a quicker decay.
Larger cat sizes α0 imply quicker timescales.

0 0.05 0.1 0.15
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0.3
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FIG. 6. Evolution of Wigner negativity in time τ (in units of
the cavity lifetime γ −1

1 ): (a) α0 = 2.5, (b) α0 = 5, and (c) α0 = 10.
The blue, orange, and black lines correspond to g = 2.5, 5, and 10,
respectively.
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TABLE II. Cat-state lifetimes τ for different g and α0 values as
given in units of the signal cavity decay time: τ = γ1t . Here T =
G2t . The cat-state lifetime is defined as the time taken for the Wigner
negativity to reach δ � 0.05.

T τ

g α0 = 2.5 α0 = 5 α0 = 10 α0 = 2.5 α0 = 5 α0 = 10

2.5 0.8206 0.2344 0.0625 0.1313 0.0375 0.0100
5 2.250 0.5950 0.1625 0.0900 0.0238 0.0065
10 7.880 2.000 0.50 0.0788 0.0200 0.0050

We define the cat-state lifetime as the time τ taken for the
Wigner negativity to decrease from the maximum value to
δ � 0.05. We note that this choice is rather arbitrary and is
mainly motivated by the practical consideration that a state
with δ = 0.05 is too small to be treated as a cat state or
any useful nonclassical state while at the same time not too
small that the numerical simulations remain tractable. A much
longer simulation time is needed to reach a state with δ = 0,
which would be a more natural choice as the cat-state lifetime.
The cat-state lifetimes for different values of g and α0 are
tabulated in Table II. From the table and Fig. 6 we see that for
a fixed α0, the cat states with larger g have a shorter lifetime,
even though a larger Wigner negativity can be reached. Also,
for fixed g, the smaller cat states have a longer lifetime.

Figure 7 shows the photon-number probability distribution
at different times, evolving from the vacuum state. Without
signal loss, the system evolves from a vacuum state into
an even cat state (5). The single-photon loss, however, will
cause decoherence and the system then evolves into a classical

0 20 40 60 80
n

0

0.1

0.2

P
(n

)  = 0.0038

0 50 100
n

0

0.02

0.04

P
(n

)  = 0.0075

FIG. 7. Photon number probability distribution at different times,
starting from the vacuum state, without thermal noise. The system
eventually settles into state that has a Poissonian distribution. At τ =
0.0038, only even photon numbers are allowed as can be seen from
the absence of odd photon numbers. The probability of obtaining odd
photon numbers increases with time, the system eventually reaching
a Poissonian distribution. This can be seen in the plot at time τ =
0.015, where a Poissonian distribution with a mean photon number
of 100 is fitted in red.

FIG. 8. Wigner function at different times. The parameters are
g = 2.5 and α0 = 10.

mixture of even and odd cat states. The time-step errors for
the results in Fig. 7 are negligible. The photon-number proba-
bility distribution at dimensionless time τ = 0.0150 centered
around n = 100, which agrees well with the steady-state
prediction |α|2 = λ/g2 = 100. This distribution resembles a
Poissonian distribution, as expected for a coherent state.

The Wigner functions at different times are computed
according to Eq. (A15) and the results are presented in Fig. 8.
The function around the origin admits negative values, which
demonstrates the nonclassical nature of the cat state.

V. DETUNING

We now briefly consider the effect of a detuning (ω1 −
ωp/2) between the signal mode and the external field fre-
quency. Under conditions of detuning, the system can display
bistability in the intensity of the signal mode as a function of
the external driving intensity, which is manifested as a hys-
teresis cycle [75,76]. The system can also display self-pulsing
where the outputs give oscillations in their intensities [75,76].
These behaviors can in turn affect other quantum properties
such as the squeezing amplitudes. A full semiclassical analy-
sis is given by Sun et al. [54].

Here we investigate the effect of detuning on the transient
cat state. In this work we consider only the detuning 
 =
(ω1 − ωp/2)/γ1 of the signal mode and only the regime where

 � λ, in which case the steady-state semiclassical solution
has two stable values [54]. We ignore thermal noise and select
χ = 0.

The Wigner negativity and purity calculations given in
Fig. 9 reveal no observable differences in the physical states
in the cases with and without detuning. To this end, we plot a
Wigner function at an instant in time in Fig. 10. This shows
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(a) (b)

FIG. 9. Evolution of (a) the Wigner negativity and (b) the purity
for 
 = 0 and 
 = 50. The parameters are g = 2.5 and λ/g2 = 100.
Here χ = 0. The results show no difference between the two cases
with different detunings.

that the two mean values of the Gaussian peaks are no longer
situated along the real axis, but are rotated and have acquired
complex values. The effect of detuning is to rotate the physical
state in phase space, which is consistent with the steady-state
analysis given by Sun et al. [54]. This explains the apparent
reduction in the visibility of the interference fringes as shown
in Fig. 11; the p quadrature is not at an optimal angle to
observe the interference fringes.

VI. DEGENERATE PARAMETRIC OSCILLATION WITH
THE ANHARMONIC KERR INTERACTION

A proposal to generate cat states with a Kerr interaction
was put forward by Yurke and Stoler [56,57]. They showed
that a coherent state can evolve into a multicomponent cat
state. Depending on the interaction time, a two-component cat
state can also be created. The mechanism of cat-state creation
in a Kerr interaction originates from the fact that the phase
acquired by the state is photon-number dependent. This means
that this method of creating a cat state is hard to achieve
in the presence of single-photon losses. However, the Yurke-
Stoler proposal has been realized in a superconducting circuit
experiment [23], where the Kerr nonlinearity is larger than 30
times the single-photon decay rate. Drummond and Walls [77]
provided an exact steady-state solution to a driven-dissipative
system with a Kerr interaction at zero temperature, which
gives quantum predictions that are different from those of a
semiclassical analysis.

The combined Kerr and parametric case was studied re-
cently [54,55]. Those works gave a derivation of the adiabatic
master equation and both semiclassical and exact steady-state

FIG. 10. Wigner function at dimensionless time τ = 0.0075. The
parameters are g = 2.5 and α0 = 10. Here χ = 0. The detuning is

 = 50. In the presence of detuning 
, the physical state is rotated
in phase space.

-2 0 2
p

0

0.2

0.4

0.6

P
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)

 = 0
 = 50

FIG. 11. The p-quadrature probability distribution at dimension-
less time τ = 0.0067. The parameters are g = 2.5 and α0 = 10. Here
χ = 0. The blue dashed line corresponds to zero detuning and the
orange solid line corresponds to 
 = 50. Since the detuning rotates
the physical state in phase space, the p quadrature is not at an optimal
angle to observe the interference fringes. This leads to a reduction in
fringe visibility. The Wigner negativity and purity are unaltered from
the zero-detuning case.

solutions. The semiclassical solutions have bistable regimes.
There are also tristable regimes, with detunings included.
Here we assume there are no detunings and ignore thermal
noise. In this case, the main effect of the additional Kerr
nonlinearities is to change the nature of the Schrödinger cat
solutions.

Below we will give more detail by solving the master
equation using a particular choice of scaled variables. The
master equation including the Kerr nonlinearity is given by
∂

∂t
ρ = �

2
[a†2 − a2, ρ] + γ1(2aρa† − a†aρ − ρa†a)

− i
χ̄

2
[a†2a2, ρ] + 1

2
G2(2a2ρa†2 − a†2a2ρ − ρa†2a2),

(21)
where G =

√
ḡ2/2γ2 and � = |ḡε|/γ2 as defined previously.

We consider
√

G4 + χ̄2 = G2
√

1 + χ̄2/G4, which defines a
dimensionless time T =

√
G4 + χ̄2t . The master equation is

then
∂

∂T ρ = �

2
√

G4 + χ̄2
[a†2 − a2, ρ] − iχ̄

2G2
√

1 + χ̄2

G4

[a†2a2, ρ]

+ γ1

G2
√

1 + χ̄2

G4

(2aρa† − a†aρ − ρa†a)

+ 1

2

1√
1 + χ̄2

G4

(2a2ρa†2 − a†2a2ρ − ρa†2a2). (22)

The steady state in the presence of Kerr nonlinear-
ity has a coherent amplitude α0 given by (13), with an

absolute value |α0| =
√

λ/
√

g4 + χ ′2 ≡
√

�/G2
√

(1 + χ2),

where χ ≡ χ̄/G2 = χ ′/g2. With this choice of scaling factor,
the master equation above can be expressed in terms of α0, g,
and χ as follows:

∂

∂T ρ = 1

2
|α0|2[a†2 − a2, ρ] − i

2

χ√
1 + χ2

[a†2a2, ρ]

+ 1

g2
√

1 + χ2
(2aρa† − a†aρ − ρa†a)

+ 1

2

1√
1 + χ2

(2a2ρa†2 − a†2a2ρ − ρa†2a2). (23)
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FIG. 12. Evolution of the Wigner function [(a), (c) and (e)], and
of the Q function [(b), (d) and (f)], with no single-photon damping.
Plots (a) and (b) are for T = 0.1, (c) and (d) are for T = 0.2, and
(e) and (f) are for T = 0.6. In this lossless case, the free parameters
determining the dynamics (23) are χ and |α0|. Here χ = 5 and
|α0| = 5.

In the lossless case (γ1 = 0 and g → ∞), the third term does
not contribute.

A. No single-photon signal damping

To study the behavior, we first examine the case with no
signal damping, corresponding to γ1 = 0 (the third term in
the master equation is zero). From (23) we see that the free
parameters in this case are the coherent amplitude |α0|, g, and
χ ≡ χ̄/G2 = χ ′/g2. We fix |α0| while changing χ . To keep
α0 constant for large r, we assume a sufficiently large driving
field � or λ. Detunings are assumed to be zero.

In Fig. 12 we plot the evolution of the Wigner and Q
functions for |α0| = 5 with χ = 5. These phase-space distri-
butions show the dynamics of the system under the presence
of Kerr interaction. Starting with an initial vacuum state,
the state quickly turns into a squeezed state with a curved
distribution in the phase-space distributions due to the large
Kerr effect, as shown in Figs. 12(a) and 12(b). Some time later,
we observe the buildup of two Gaussian peaks that correspond
to the complex amplitudes with opposite phases as predicted
in Eq. (13). Finally, the system reaches a steady state, as
shown in Figs. 12(e) and 12(f), where the two Gaussian peaks
are fully separated. In particular, in the Wigner distribution

0 0.2 0.4 0.6
0

0.1

0.2

0.3

 = 0
 = 1
 = 2
 = 5

FIG. 13. Evolution of the Wigner negativity with different χ

ratios for |α0| = 5, in the lossless case γ1 = 0. The cat-formation
time is the time taken for the negativity to reach the analytical value
corresponding to the pure cat state (black dashed horizontal line, Eq.
(A19)).

of Fig. 12(e), negative values around the origin suggest the
presence of cat states, which is confirmed by computing the
corresponding Wigner negativities and comparing with the
analytical Wigner negativity value of a cat state as given in
Eq. (A19).

The evolution of the Wigner negativity for |α0| = 5 for
different values of χ is presented in Fig. 13. For χ = 1,
the Wigner negativity time evolution is similar to that of the
case without Kerr interaction. The Wigner negativity increases
until reaching a value corresponding to a cat state. For larger
χ , however, the dynamics is markedly different: the negativity
rises steadily initially, reaching a peak before decreasing and
increasing again until the value finally becomes that of the
negativity corresponding to the cat state.

An understanding of this dynamics for large χ can be
obtained from the corresponding Wigner function time evo-
lution in Fig. 12. In the earlier stage of the dynamics, the
Kerr term dominates the parametric gain term for large χ . The
large contribution from the Kerr effect produces a nonclassical
state; the larger the Kerr strength, the larger the peak Wigner
negativity. As the two Gaussian peaks with the same ampli-
tude but opposite phases are increasing, the Wigner negativity
value decreases, before increasing again due to the formation
of a cat state as the system approaches the steady state. We
note that a cat state corresponds to the case where the Wigner
function has two fully separated Gaussian peaks with the
presence of interference fringes around the origin.

We also plotted the evolution of the rotated quadrature
probability distributions P(xφ ) and P(xφ+π/2), where the angle
φ is determined by the complex amplitude α0 = |α0|eiφ as
given in Eq. (13). The results are plotted in Figs. 14 and 15
for |α0| = 5 and |α0| = 10, respectively. In each figure, the
rotated quadrature probability distributions for different χ

values are also presented. For larger χ , it takes a similar di-
mensionless time T for the quadrature probability distribution
to reach the one that corresponds to a cat state, which implies
a shorter real time.

The cat-formation times for different χ and |α0| values,
in both the dimensionless time Tcat and real time tcat =
Tcat/G2

√
1 + χ2, are presented in Table III using the value

of G = 2.24 × 102 Hz1/2 as taken from the parameters of the
experiment of Leghtas et al. [27] (refer to Sec. IV A). The
cat-formation time is determined by comparing the numerical
Wigner negativity with that of a pure cat-state Wigner function
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FIG. 14. Evolution of quadrature probability distributions x′ =
xφ and p′ = xφ+π/2 for χ = 5 [(a) and (b)] and χ = 10 [(c) and
(d)]. Here |α0| = 5 and the angle φ is determined from the complex
amplitude α0 = |α0|eiφ as given in Eq. (13).

in Eq. (A19). From the table we see that for a cat state of
fixed amplitude, a similar nonlinearity χ has a larger Tcat, in
agreement with the observations in Figs. 14 and 15. Also from
the table, a longer Tcat corresponds to a shorter tcat. Thus, a
larger Kerr interaction speeds up the cat-formation time.

B. Single-photon signal damping

Now we focus on the case where γ1 �= 0, i.e., g is finite. We
examine the transient behavior of the signal field, assuming
the initial state is the vacuum state. The free parameters in
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FIG. 15. Evolution of quadrature probability distributions x′ =
xφ and p′ = xφ+π/2, respectively, for (a) and (b) χ = 5 and (c) and
(d) χ = 10. Here |α0| = 10 and the angle φ is determined from the
predicted complex amplitude α0 = |α0|eiφ as given in Eq. (13). The
time range for all plots is 0–0.15.

TABLE III. Cat-formation times for different values of the non-
linear parameter χ and |α0|. The parameter G = 2.24 × 102 Hz1/2 is
used to convert the dimensionless time Tcat to the real time tcat.

Tcat tcat = Tcat/G2
√

1 + χ 2(μs)

χ |α0| = 5 |α0| = 10 |α0| = 5 |α0| = 10

0 0.40 ± 0.02 0.125 ± 0.005 8.00 ± 0.40 2.50 ± 0.10
1 0.44 ± 0.02 0.130 ± 0.005 6.22 ± 0.28 1.84 ± 0.07
2 0.52 ± 0.02 0.135 ± 0.005 4.65 ± 0.18 1.21 ± 0.04
5 0.74 ± 0.02 0.20 ± 0.005 2.90 ± 0.08 0.78 ± 0.02

this case are the coherent amplitude |α0|, g, and χ , as well as
the scaled time T = (g2

√
1 + χ2)t .

In the presence of single-photon damping, an ideal pure cat
state cannot be formed even as a transient state. This is true
without the Kerr interaction, but becomes more noticeable in
the solutions we give for nonzero χ . Rather, in an optimal
situation, a catlike state is formed where two peaks are fully
separated and interference fringes are present around the
origin. Here we define the cat lifetime as the time taken for the
Wigner negativity to reach δ � 0.05, provided the quadrature
distributions are initially consistent with a cat state, being two
peaked for x′ and with fringes for p′.

It is reported that a catlike state has been observed in
the experiment of Leghtas et al. [27]. In the following, we
carry out the numerical simulation of the experiment using
the published experimental parameters of g = 1.41 and χ ′ =
1.01. This corresponds to the values χ = 0.5 and an estimated
coherent amplitude |α0| = 2. The numerical results are shown
in Fig. 16, where the time evolution of the quadrature proba-
bility distributions and the Wigner negativity are plotted. We
see from Fig. 16(a) that the coherent peaks in x′ with opposite

0
0.5 0

5

x'

0

0.2P
(x

') 0.4

0.6

-5
0

0.5
0

2

p'

0

0.5

P
(p

')

1

-2

0 0.5 1
0

0.01

0.02

0.03

(a) (b)

(c) (d)

FIG. 16. The quadrature probability distributions as a function of
time [(a) and (b)], for the parameters of the experiment [27]. Plot (c)
gives the Wigner function at T = 0.5. Plot (d) shows the evolution
of Wigner negativity δ. Here the parameters [27] are g = 1.41 and
χ ′ = 1.01, giving χ = 0.5 and |α0| = 2.
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TABLE IV. Catlike-state lifetime for different χ and g values for
|α0| = 2. For comparison, the experimental parameters of Leghtas
et al. [27] are g = 1.41, χ = 0.5, and γ = 2π × 3.98 kHz.

Tlife tlife = Tlife/γ g2
√

1 + χ 2(μs)

χ g = 1 g = 1.5 g = 2.5 g = 2.5

0.5 0 0 1.225 7.01
1.0 0 0 1.375 6.22

phases are never fully separated for |α0| = 2. The largest
Wigner negativity value in the simulation, located around
dimensionless time T = 0.5, is small (∼0.025) and this is
reflected in the absence of observable interference fringes
in the quadrature probability distribution [refer Fig. 16(b)].
This supports that, while a nonclassical state is produced in
the experiment, the state is not a mesoscopic cat state: The
coherent peaks are not fully separated and the nonclassicality
of the state as quantified by the Wigner negativity is weak.

In Table IV we evaluate the cat lifetime. This is defined
in the preceding section as the time taken for a cat state
to decay to a Wigner negativity smaller than 0.05. For the
parameters of the experiment, we note again that for |α0| = 2,
the steady state corresponds to two peaks in x′ that are not
fully separated. From the table we see that, for g � 1.5, the
Wigner negativity does not exceed 0.05 and is too small [when
compared to a pure cat state with amplitude |α0| = 2, which
has a Wigner negativity of 0.2937 as predicted by Eq. (A19)]
to be considered a cat state at any point of the simulation.
True cat states are generated for higher g however. Next
we investigate the nonclassicality of transient cat states with
larger coherent amplitudes and Kerr strengths.

To study the effect of single-photon damping, we com-
pute the time evolution of the quadrature phase amplitude
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FIG. 17. Evolution of quadrature probability distributions x′ =
xφ and p′ = xφ+π/2, in the presence of single-photon damping. The
angle φ is determined from the amplitude α0 = |α0|eiφ as given in
Eq. (13). Here χ = 5 and |α0| = 5 with g = 1 [(a) and (b)] and g =
2.5 [(c) and (d)].
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FIG. 18. As in Fig. 17, but here χ = 10 and |α0| = 5.

distributions and Wigner negativity, varying g for different
values of χ and |α0|. Recall in Sec. VI A that with no signal
single-photon loss a large Kerr interaction speeds up the
cat-formation time. As a cat state is highly nonclassical, the
system parameters that lead to earlier cat formation might also
lead to a quicker decay or decrease in the Wigner negativity
and the corresponding cat-state lifetime. This is confirmed by
Table IV for the experimental parameters of [27].

Another question to be answered is whether the presence of
a Kerr effect changes the threshold of g required for a cat state.
We find the answer is no: g > 1 remains the threshold for the
generation of a cat state. The results for different χ and |α0|
are presented in Figs. 17–20. Figures 17 and 18 show the time
evolution of the quadrature probability distributions for |α0| =
5 with χ = 5 and χ = 10, respectively. The same quantities
are plotted in Figs. 19 and 20 for |α0| = 10. The emergence of
interference fringes corresponds to g � 1 even in the presence
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FIG. 19. As in Fig. 17, but here |α0| = 10. The time range for all
plots is 0–0.15.
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FIG. 20. As in Fig. 18, but here |α0| = 10. The time range for all
plots is 0–0.15.

of large Kerr strength. These results are confirmed by the time
evolution of the Wigner negativity as presented in Figs. 21
and 22. When g is large enough to produce catlike states, these
figures also show larger Wigner negativities with larger χ for
the same α0 and g values.

We emphasize the need to compute several cat-state sig-
natures and caution against the use of any single signature
alone to interpret the nonclassicality of the physical state. For
instance, the Wigner negativity is not sufficient to infer the
presence of a cat state. The peak values of Wigner negativity
observed in Figs. 21 and 22 for χ = 5 do not correspond
to cat states, despite the large negativity values. These large
negativities correspond to nonclassical states that arise due to
the large Kerr interaction term, before the formation of cat
states. As previously discussed, a cat state is formed when
two well-separated peaks in P(x′) are observed and when
interference fringes in the corresponding P(p′) distribution
exist. This can be inferred from the quadrature probability
distributions or the Wigner function itself, but not directly
from the Wigner negativity.
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FIG. 21. Evolution of the Wigner negativity with different χ

values for (a) g = 1 and (b) g = 2.5. In both cases, |α0| = 5. Note
that a peak in the Wigner negativity does not imply the formation
of a cat state (refer text). The verification of a cat state can only
be drawn in conjunction with other cat-state signatures such as
given in Fig. 17.

0 0.05 0.1
0

0.1

0.2

(a)

 = 0
 = 1
 = 2
 = 5

0 0.05 0.1
0

0.1

0.2

0.3
(b)

 = 0
 = 1
 = 2
 = 5

FIG. 22. Evolution of the Wigner negativity for different χ val-
ues: (a) g = 1 and (b) g = 2. Here |α0| = 10.

We also see that in the presence of signal losses (where g
is finite), as for the earlier case without nonlinearity, the cat
state eventually decoheres to a mixed state. More loss (lower
g) gives a faster decay for fixed nonlinearity χ and α0. This is
quantified in Table V, which evaluates the Wigner negativity.
Also from the table we see that for fixed g and α0, the cat state
decoheres faster for the larger χ value given here.

VII. LARGE TRANSIENT CAT

In this section we investigate the feasibility of observing a
transient cat state using physical parameters that are achiev-
able in an experiment similar to the superconducting-cavity
setup discussed in the preceding section. The effects of finite
temperatures leading to thermal noise are also included. We
choose g = 2 and |α0| = 20. We focus on the quadrature prob-
ability distribution as a cat-state signature. In order to achieve
g = 2 in an experiment, either the signal decay rate has to be
reduced or the nonlinear coupling strength has to be enhanced,
or both.

We computed the evolution of the quadrature probability
distributions both with and without the Kerr-type nonlinear in-
teraction at zero temperature. The results are shown in Figs. 23
and 24. For the nonzero Kerr case, it is the rotated quadrature
probability distributions P(xφ ) and P(xφ+π/2) that are plotted,
where the angle φ is determined from the amplitude α0 =
|α0|eiφ as given in Eq. (13). From these figures we see that
the interference fringes appear sooner in the presence of the
Kerr-type nonlinear interaction. This observation is confirmed
in Fig. 25, where snapshots of these interference fringes in the

TABLE V. Catlike-state lifetime for different χ and g values, for
(a) |α0| = 5 and (b) |α0| = 10. Here γ = 2π × 3.98 kHz. We com-
ment that for g = 1.5, the small value of negativity is not associated
with well-separated peaks in the distribution of x′ (Figs. 17–20).
Hence we do not claim these are cat states.

Tlife tlife = Tlife/γ g2
√

1 + χ 2(μs)

χ g = 1 g = 1.5 g = 2.5 g = 2.5

(a)
5 0 0 0.68 0.85
10 0 0 1.25 0.80

(b)
5 0 0 0.177 0.222
10 0 0 0.324 0.206
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FIG. 23. Evolution of the quadrature probability distributions, in
scaled time τ = γ t . Here the parameters are g = 2, |α0| = 20, and
χ = 0 at zero temperature. The time range for all plots is 0–0.005.

quadrature probability distributions are presented. We include
plots with the thermal noise of N thermal photons present in
the reservoir. Even though we assume an initial vacuum state,
as in previous calculations, the reservoir thermal noise causes
a decoherence that destroys the cat state.

The decoherence mechanism is known for this system. The
single-photon damping process switches the state between
even and odd cat states with probabilities that scale with the
single-photon damping rate and are further enhanced by the
thermal noise. Eventually, the system reaches a steady state
where it is a mixture of the even and odd cat states. A detailed
mathematical analysis of the decoherence process discussed
here can be found in Ref. [74].

It is appropriate to discuss a few points on the factors
that might limit the achievable cat-state amplitude. In the
case without detuning and Kerr nonlinearity, the coherent
state in the superposition has an amplitude of

√
λ/g. Assum-

ing that all other cat-state-destroying parameters (γ1 and N)
remain the same, for larger g, an even larger λ is needed
to obtain the same cat-state amplitude, which can be hard
to achieve.

There are also difficulties in the large amplitude regime
from the point of view of calculation. This work uses the
number-state basis expansion of the density operator and the
cutoff number scales roughly with the coherent amplitude
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FIG. 24. Evolution, in scaled time τ = γ t , of the rotated quadra-
ture probability distributions for (a) x′ = xφ and (b) p′ = xφ+π/2. The
angle φ is determined from the amplitude α0 = |α0|eiφ as given in
Eq. (13). Here the parameters are g = 2, |α0| = 20, and χ = 5 at
zero temperature. The time range for all plots is 0–0.005.

as |α0|2 + |α0|, where α0 is the coherent amplitude of the
state. The superoperator that dictates the time evolution of
the density operator has a size of n2

c × n2
c , where nc is the

cutoff number, and this quickly becomes problematic even
if the superoperator is represented as a sparse matrix. Also,
the cat-state signatures such as the Wigner function and its
negativity become difficult to compute even with quadruple-
precision computation. Other methods such as the positive-P
phase-space representation are often useful for computation
in this regime. However, more sophisticated techniques [78]
in phase-space methods have to be employed when the
quantum noise is large (g > 1). Even though the Q function
is always positive and does not directly signify nonclassi-
cality when the state is a mixed state, it nevertheless has
the merit that its numerical computation is stable. Together
with other cat-state signatures, the Q function may serve as
a good nonclassicality indicator. In general, other cat-state
signatures such as the quadrature probability distributions can
be computed to a very large photon-number cutoff (much
larger than 500, which is needed for cat amplitude α0 > 20)
though efficient algorithms such as the Clenshaw algorithm
for evaluating sums involving orthogonal polynomials are
required.
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FIG. 25. Snapshots of the quadrature probability distribution
showing the interference fringes without [(a) and (b)] and with [(c)
and (d)] the Kerr-type interaction, including the effect of thermal
noise N . Parameters are: (a) N = χ = 0; (b) N = 2 and χ = 0; (c)
N = 0 and χ = 5; (d), N = 2 and χ = 5. Here, g = 2, |α0| = 20,
and p′ is defined as in Fig. 24. The thermal noise is characterized by
the mean thermal occupation number N .

VIII. CONCLUSION

It is known that a Schrödinger cat state is formed as the
steady state of a degenerate parametric oscillator, in the limit
where single-photon damping is zero and where the initial
condition is a vacuum state [51,52]. In the same limit, under
an additional nonlinear Kerr interaction, the corresponding
steady state is also a cat state [55]. It is illuminating to study
the dynamics in the lossless case, as the interplay between the
different nonlinear interactions affects the cat-formation time,
providing a better understanding of the physics involved in the
formation of a cat state. In Secs. IV A and VI A we examined
this limit, showing in Sec. VI A how the Kerr nonlinearity
can enhance the formation of the cat state. In particular, we
examined the effect of the Kerr nonlinearity on the threshold
value of g and illustrated how the formation time and lifetime
of the cat state are affected by the Kerr nonlinearity in the
zero-temperature limit.

In practice, the cavity single-photon damping is very im-
portant. This causes decoherence and eventually destroys the
cat state, as known from previous exact steady-state results.
In Sec. IV B we analyzed the effect of this using a parameter
g which gives the strength of parametric nonlinearity relative
to the single-photon signal decay rate. A threshold value of g
is necessary for a cat state to form. When g is large enough to
form a cat state, we found that a larger g will lead to a physical
state with a larger Wigner negativity, implying the formation
of a more nonclassical state. However, as the state becomes
more nonclassical, the lifetime becomes shorter.

We also examined the effects of detuning 
, in Sec. V.
With all other DPO parameters being equal, the presence
of detuning rotates the quantum state in phase space and
does not affect the Wigner negativity and purity of the state

throughout the dynamics. The Kerr nonlinearity also rotates
the state in phase space. Unlike detuning, however, the Kerr
interaction also changes the nonclassicality of the state. This
was examined in Sec. VI.

For large χ , where the Kerr interaction strength is larger
than the parametric gain g, the Kerr term dominates the
dynamics of the system in the early stage. The larger the Kerr
strength, the larger the value of the corresponding Wigner
negativity. As the two stable states with equal amplitudes but
opposite phases are gradually formed due to the parametric
term, the Wigner negativity decreases, before increasing again
as the cat state is finally formed. A cat state must have two
well-separated peaks along the phase-space axis where the
two amplitudes lie, and hence the dynamical picture of the
cat-state formation is only clear when different cat-state sig-
natures are computed and compared. The Wigner negativity
alone does not provide conclusive evidence of a cat state. Two
distinct probability peaks and the presence of interference
fringes in the orthogonal quadrature are also necessary. This
can be seen in the quadrature probability distributions and
Wigner function, which together confirm the macroscopic
coherence between the two peaks.

With this physical picture established, in Sec. VI B we
carried out a numerical simulation of a recent experiment of
Leghtas et al. [27]. While a nonclassical state is produced,
in agreement with experimental measurements of Wigner
negativity, it does not appear to be a fully developed cat state.
The coherent peaks are not fully separated and the nonclassi-
cality is relatively weak. This is indicated by the absence of
significant interference fringes in the quadrature probability
distributions and by relatively small Wigner negativities. We
nevertheless agree that the experiment is an important step
towards demonstrating a fully developed macroscopic super-
position of two well-separated coherent states.

By exploring the parameter space, we found in Sec. VI that
g > 1 is required for the cat-state generation, irrespective of
the Kerr interaction strength χ . When g is large enough for
cat formation, for a fixed coherent amplitude |α0|, a larger χ

implies a shorter time to form a cat state and also implies a
larger Wigner negativity. However, this also implies a shorter
lifetime.

The ability to compute the time evolution of the system
allowed us to estimate the lifetime of a cat state including ther-
mal noise. An example was given for large |α0| in Sec. VII.
To obtain a large cat amplitude in the presence of thermal
noise, which tends to destroy the coherence of the cat state,
a large value of g is necessary. Alternatively, a system that
has a lower temperature or lower cavity decay rate is required.
The engineering of the reservoir, for instance, with squeezed
states, is another avenue, but is beyond the scope of the present
paper.
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APPENDIX: CAT-STATE SIGNATURES

Here we summarize the cat-state signatures that verify the
presence of cat states in the system. We focus on the simplest
example, in which we use these signatures to distinguish the
difference between a cat state

|ψcat〉 = Nθ (|α0〉 + eiθ |−α0〉), (A1)

which is a superposition of two coherent states | ± α0〉 well
separated in phase space (Nθ is a normalization constant and
θ a phase), and an arbitrary mixture of the two coherent states
given by the density operator

ρmix = P+|α0〉〈α0| + P−|−α0〉〈−α0|, (A2)

where P± are probabilities and P+ + P− = 1.
The first objective is to confirm that the system is not in

the coherent state mixture (A2). Thus, if we consider systems
confined to be in a mixture of the two coherent states or in a
mixture of superpositions of the two coherent states, the ex-
clusion of the mixture (A2) implies some type of catlike state,
although not necessarily a pure cat state. For definiteness, we
also require that a cat state have clear operational signatures
of fringes or Wigner negativity, as we explain below.

Realizing it is possible that the system may be in a state of
reduced purity, the general confined density operator can be
written with off-diagonal terms as

ρ = P11|α0〉〈α0| + P22| − α0〉〈−α0|
+ P12|α0〉〈−α0| + P21| − α0〉〈α0|. (A3)

This state can also be written in terms of the odd and even cat
states as

ρ = p++|ψeven〉〈ψeven| + p−−|ψodd〉〈ψodd|
+ p+−|ψeven〉〈ψodd| + p−+|ψodd〉〈ψeven|. (A4)

We note that these “impure cat states” may or may not
give a result that, for example, has interference fringes.
Therefore, it is an open question whether such intermediate
states are identifiable by any of the criteria in common use.
It is also possible that the system cannot be represented
in terms of the two coherent states alone, in which case a
broader class of mixtures needs to be excluded. Alternative
approaches to detecting mesoscopic coherence are discussed
elsewhere [2,79–92] and include those based on uncertainty
relations [82,84,92,93].

In this paper we identify the cat state using both interfer-
ence fringes and negativity of the Wigner function. Where
the distribution for one quadrature phase amplitude (X ) shows
two well-separated Gaussian peaks corresponding to the two
coherent states, the observation of interference fringes in
the orthogonal quadrature (P) excludes all models of the
form of (A2). This gives evidence of a significant quantum
coherence, which is one type of signature for a Schrödinger
cat state.

However, if the associated Wigner function is observed to
be positive, then there exists a joint probability distribution
P(x, p) to correctly describe the marginal probability distri-
butions P(x) and P(p) for the results x and p of measurements
X and P. It is then possible to construct two “elements of
reality,” the variables x and p, that directly and simultaneously
predetermine the results for X and P. While these elements of
reality x and p do not describe quantum states (being simul-
taneously precisely defined [93]), the system can nonetheless,
with respect to these variables, be interpreted as being in one
or the other state corresponding to the Gaussian peaks in X .
This interpretation is not possible for the ideal cat state (A1),
which possesses a negative Wigner function. Thus, the ob-
servation of interference fringes associated with a negative
Wigner function [consistent with that of the state (A1)] gives
strong evidence of a cat state.

1. Interference fringes in the quadrature probability
distribution

One of the earliest proposed cat-state signatures is the
presence of interference fringes in the orthogonal quadrature
probability distribution [56,57]. In order to understand the
origin of the interference fringes, consider an even cat state

|ψeven〉 = N+(|α0〉 + |−α0〉). (A5)

Without loss of generality, we assume that α0 is real and that
|α0| is large. The x quadrature for this state has two contribu-
tions from two well-separated phase points. The correspond-
ing x-quadrature probability distribution has two significant
Gaussian distributions centered around these two phase points
along the x-axis. This gives us justification to assume that the
system is either a superposition or a mixture, as in (A3).

To exclude the statistical mixture (A2), one measures the
orthogonal quadrature p. For a cat state (A1), the probability
amplitudes for these two possible contributions |±α0〉 have to
be summed, and hence there will be interference fringes in the
p-quadrature probability distribution for this cat state. These
fringes cannot arise for the system given by the classical mix-
ture (A2), which is therefore excluded if fringes are observed.
If we consider the coherent-state manifold, with α0 � 2.5 to
allow for distinct Gaussian distributions, the onset of fringes
implies failure of the mixture (A2), so P12 and P21 defined by
Eq. (A3) must be nonzero.

More generally, a cat state may be in a manifold of super-
position states spanned by two coherent states {|α0〉, | − α0〉},
where α0 is a complex number and these two coherent states
can have any phase relation between them. Therefore, we
define a general rotated quadrature operator xθ = (e−iθ a +
eiθ a†)/

√
2. The xθ -quadrature probability distribution can be

computed from a density operator ρ which is expanded in the
number-state basis. The probability distribution P(xθ ) is then

〈xθ |ρ|xθ 〉 = 〈xθ |
(∑

n,m

ρnm|n〉〈m|
)

|xθ 〉

=
∑
n,m

ρnm〈xθ |n〉〈m|xθ 〉, (A6)
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FIG. 26. The p-quadrature probability distribution for a pure,
even cat state with α0 = 5.

where

〈xθ |n〉 = e−iθn√
2nn!

√
π

e−x2
θ /2Hn(xθ ). (A7)

Here Hn(x) is the Hermite polynomial. In particular, for
θ = 0, xθ=0 = x, and for θ = π/2, xθ=π/2 = p, and the inner
products with a number state are

〈x|n〉 = 1√
2nn!

√
π

e−x2/2Hn(x), (A8)

〈p|n〉 = (−i)n√
2nn!

√
π

e−p2/2Hn(p), (A9)

respectively. For an even cat state with real-value coherent
amplitudes α0, the p-quadrature probability distribution is
given by [57,92]

P(p) = 1√
π
N 2

+{2 exp(−p2)[1 + cos(2
√

2pα0)]}. (A10)

For comparison purposes, we plot P(p) for α0 = 5 in Fig. 26
using Eq. (A10).

In this work a number-state cutoff of up to 500 is used.
There is a floating point number overflowing issue in the
numerical computation of Eqs. (A8) and (A9), which arises
from the evaluation of the Hermite polynomials. This issue
is overcome by using a MATLAB function [94] that employs
logarithmic manipulation. Moreover, this MATLAB function
is based on the Clenshaw algorithm [95,96] that computes
orthogonal polynomials more efficiently and accurately [97]
than either naively computing the summations involved or
other methods using the Hermite polynomials recurrence re-
lation such as the Forsythe method [98].

2. Photon-number probability distribution

Evidence for a cat state may also be obtained by measure-
ment of the photon-number probability distribution. The even
cat state (A5),

|ψeven〉 = N+(|α0〉 + |−α0〉)

= N+e−|α0|2/2
∞∑
n

1√
n!

[
αn

0 + (−α0)n
]|n〉, (A11)

has an even number of photons. Similarly, an odd cat state
|ψodd〉 = N−(|α0〉 − |−α0〉) has an odd number of photons.
For a classical mixture of |α0〉 and |−α0〉, the photon-number

probability distribution is nonzero for both even and odd
numbers of photons. Hence, assuming we are in the manifold
of the superpositions of the two coherent states (or their
mixtures), the photon-number probability distribution reveals
both the nonclassicality of a cat state and its phase relation.
It is possible that the system is in a superposition of both the
even and odd cat states, and the photon-number probability
distribution does not then distinguish between this state and a
classical mixture of the even and odd cat states. With that, to
eliminate the possibility of a mixture, it is useful to compute
the purity of the state given by

P = Tr(ρ2). (A12)

3. Phase-space distributions

It is also useful to consider phase-space distributions that
can determine the entire quantum state and display quantum
features. In particular, we compute the Husimi Q and Wigner
functions.

a. Wigner function and its negativity

The Wigner function gives us the joint probability distribu-
tion of the real and imaginary parts of the coherent amplitude
of the quantum state, which allows the deduction of the form
of a cat state. The Wigner function for a density operator in a
Fock state for a finite particle number is given by [59,99]

W (α, α∗) =
Nc∑
n

ρnnXnn + 2 Re

(
Nc∑

m=1

m−1∑
n=0

ρnmXnm

)
, (A13)

where n < m, ρnm is the matrix element of the density operator
ρ, and Xnm is [59,99]

Xnm = 2(−1)n

π

√
n!

m!
e−2|α|2 (2α)m−nLm−n

n (4|α|2). (A14)

Here La
b (x) is the associated Laguerre polynomial. For large

cutoff photon numbers Nc, the direct evaluation of the Wigner
function in Eq. (A13) leads to numerical instabilities. These
issues can be overcome by rewriting the expression (A13) as

W (α, α∗) =
Nc∑
n

ρnnXnn + 2 Re

(
e−2|α|2

Nc∑
l=1

cl (2α)l

)
, (A15)

where

cl =
Nc−l∑
n=0

ρn,l+n
2(−1)n

π

√
n!

(l + n)!
Ll

n(4|α|2). (A16)

The first term in Eq. (A15) involving the sum of Laguerre
polynomials is evaluated using the Clenshaw algorithm [95].
For the second term, the same algorithm is used to compute cl ,
which contains the sum of associated Laguerre polynomials.
Then the sum of polynomials 2α is computed using Horner’s
method for polynomial evaluation. We note that as α becomes
larger, significant numerical errors arise and these methods
cease to work.

In experiments, state tomography is required to measure
the Wigner function. However, it has been proposed by
Lutterbach and Davidovich [100] that measurement of the
photon-number parity amounts to the determination of a
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FIG. 27. Wigner negativity δ as a function of the coherent ampli-
tude α0, for both the ideal cat state and the mixture (A2).

Wigner function. This is based on the fact that a Wigner
function is the expectation value of the number parity operator
�̂ = exp(iπ n̂), where n̂ is the number operator, for a physical
state that is displaced by a coherent amplitude α. Explicitly, it
is given as [59]

W (α) = 2

π
Tr[D̂(−α)ρD̂(α)�̂], (A17)

where D̂(α) is a displacement operator. This method has
been used to determine the Wigner function in experi-
ments [10,26,101–104].

The negativity of the Wigner function can be quantified
as [61]

δ = 1

2

∫
[|W (α, α∗)| − W (α, α∗)]d2α. (A18)

A positive-valued Wigner function gives δ = 0, while δ is
nonzero in the presence of any negative values in the Wigner
function. The Wigner functions W+ and W− for the even cat
state and odd cat state, respectively, are given by [92]

W±(α, α∗) = 2

π
N 2

±{exp[−2(α∗ − α∗
0 )(α − α0)]

+ exp[−2(α∗ + α∗
0 )(α + α0)]

±〈α0| − α0〉 exp[−2(α∗ − α∗
0 )(α + α0)]

±〈−α0|α0〉 exp[−2(α∗ + α∗
0 )(α − α0)]},

(A19)

which give negative values. For a mixture ρ of Eq. (A2) which
has purity given by P = P2

+ + P2
− + P+P−e−2|α0|2 , the Wigner

function is

Wmix(α, α∗) = 1

π
{exp[−2(α∗ − α∗

0 )(α − α0)]

+ exp[−2(α∗ + α∗
0 )(α + α0)] (A20)

and does not admit any negative values. Figure 27 plots the
value of δ, using Eq. (A18), for the cat states |ψeven〉 and |ψodd〉
versus α0 and for the mixture ρ of Eq. (A2) with P+ = P− =
1/2, which has purity given by P = (2 + e−4|α0|2 )/4. Hence,
the magnitude of Wigner function negativity δ quantitatively
captures the nonclassicality of the quantum state, because the
mixture (A2) has a non-negative Wigner function. Hence, if
we assume that the system is constrained to the manifold of
superpositions of the two coherent state (or their mixtures),
the negativity is a signature of a cat state. We note, however,
that the negativity does not always imply a cat state, due to the
possible presence of microscopic superpositions.

Numerically, the computation of the Wigner negativity in
Eq. (A18) requires schemes of numerical integration that have
errors as a finite grid size is used. In this work a trape-
zoidal numerical integration and the Gauss-Lobatto numerical
integration are used. With the same grid size, the Gauss-
Lobatto method is known to be much more accurate than
the trapezoidal numerical integration. The Wigner negativities
computed using both of these methods agree up to four signifi-
cant figures, indicating that the grid size chosen is fine enough
and the Wigner negativities computed have small-grid-size
errors.

b. Husimi Q function

The Husimi Q function is defined by Q(α, α∗) =
〈α|ρ|α〉/π . The expression of a Q function for a density
operator in the number state basis is given by

Q(α, α∗) = 1

π
〈α|ρ|α〉

= 1

π
〈α|

(∑
n,m

ρnm|n〉〈m|
)

|α〉

=
∑
n,m

ρnm
(α∗)nαm

π
√

n!m!
exp(−|α|2). (A21)

Unlike the Wigner function, which admits negative values
and is used as an indicator of nonclassicality, the Husimi Q
function is always positive. However, it has been shown by
Lütkenhaus and Barnett [62] that a highly nonclassical state
will have zeros in the Q function, where the corresponding
Wigner function at these zero points has equal positive and
negative contributions. Also, in the case where the calculation
of the Wigner function is too numerically intensive to be com-
puted, the Q function can serve as a phase-space visualization
guide that complements other cat-state signatures.
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