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Theory of four-wave mixing for bound and leaky modes
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We present a comprehensive theory of four-wave mixing in waveguide geometries, providing a rigorous
description of the dynamics of both bound as well as leaky modes within a single theoretical framework. Our
approach is based on the resonant-state expansion including analytical mode normalization. For bound modes,
our approach agrees with the previous theory, while it results in modified nonlinear pulse propagation for leaky
modes. For instance, it predicts a more efficient generation of Stokes and anti-Stokes bands with an earlier onset
than expected from the previous theory for bound modes. These effects have been demonstrated numerically
for a gas-filled hollow-core annulus fiber that supports leaky modes, rendering conventional bound-mode theory
inappropriate for such systems. Moreover, we find that leaky modes provide modulation instability, not only in
the anomalous but also in the normal dispersion regime. The modulation instability can occur for all frequencies,
which is a fundamental difference to bound modes.

DOI: 10.1103/PhysRevA.101.043806

I. INTRODUCTION

One important nonlinear phenomenon that occurs in opti-
cal fibers due to the third-order nonlinear polarization is four-
wave mixing [1], which has been studied extensively over the
last several decades [2–7]. Traditionally, four-wave mixing
is used to generate waves at certain frequencies or amplify
a pre-existing weak signal [8,9]. At the same time, four-
wave mixing is one of the main nonlinear mechanisms for
supercontinuum generation in optical fibers in combination
with self-phase and cross-phase modulations [1].

From the quantum physics point of view, the process of
four-wave mixing relates to the annihilation of two incident
(pump) photons at different frequencies and the simultaneous
creation of two photons at new frequencies, while the laws
of conservation of energy and momentum have to be fulfilled
[see Fig. 1(a)]. Historically, the photons at new frequencies
are either called Stokes (at lower frequency) or anti-Stokes
(at higher frequency) photons. In this context, the process
of annihilation of two photons at the same frequency is
known as degenerate four-wave mixing. In optical fibers,
four-wave mixing originates from the Kerr-type nonlinear-
ity. Efficient four-wave mixing can only occur if there is
no phase mismatch between pump, Stokes, and anti-Stokes
waves. Therefore, observation and realization of four-wave
mixing at desired frequencies requires dispersion-engineered
waveguides with specific parameters.

Currently, hollow-core photonic crystal fibers represent a
novel class of widely used fibers in the context of nonlinear
photonics. They offer a plethora of additional degrees of
freedom to control the optical properties compared to con-
ventional fibers. For instance, the linear dispersion properties
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of gas-filled hollow-core fibers can be controlled through
changing the gas temperature and the pressure, in addition to
modifying its geometrical parameters, which, in fact, allows
octave spanning supercontinua to be achieved [12,13]. On the
other hand, geometric resonances of hollow-core fibers can
be used for light generation [14]. Furthermore, using gases
as a nonlinear medium allows for applying high-power laser
sources without damaging the waveguide [15,16]. Addition-
ally, nonlinear effects in such fibers can be enhanced by using
liquids such as CS2 or CCl4 [17–20]. Within the context of this
work, as a generic example of a hollow-core fiber geometry,
we consider the annulus fiber geometry consisting of a single
glass ring embedded in an otherwise low index medium
[geometry depicted in Fig. 1(a)]. As shown in Ref. [21],
this fiber geometry allows an accurate resemblance of the
dispersion parameter of various kinds of hollow-core fibers
and in particular, antiresonant fibers, making it a useful model
system to study nonlinear pulse propagation in dissipative
waveguide geometries.

Unlike conventional silica fibers that carry bound modes
due to total internal reflection, hollow-core fibers support
so-called leaky modes. As we can see from the example
of the fundamental leaky mode of an annulus fiber [exam-
ple in Fig. 1(b)], the electromagnetic fields of that mode
grow with distance from the fiber center and transversely
radiate with respect to the direction of propagation. Such
a dissipative nature of the modes makes the application
of standard theoretical formulations for the nonlinear pulse
propagation in hollow-core fibers questionable, because the
standard nonlinearity parameters are not defined uniquely for
leaky modes due to the lack of rigorous mode normalization
(e.g., the commonly used form of the normalization constant
does not converge) [22–25]. Recently, we have solved the
normalization issue by developing an analytical expression
for the normalization, which can be readily applied to leaky
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FIG. 1. (a) Cross section and schematics of an annulus fiber
made from silica (SiO2) and filled by xenon (Xe) in nitrogen (N)
surrounding. The lower left inset shows energy-level diagram for
four-wave mixing occurring due to the annihilation of two photons
at frequencies ω1 and ω2 with creation of two new photons at
frequencies ω3 and ω4. (b) Spatial distribution of the axial component
of the real-valued Poynting vector of the fundamental leaky mode
of the annulus waveguide geometry shown in (a). Outside the core
region, a logarithmic scale is used for the distance to the fiber core.
The white dashed line in (c) indicates the inner radius of the fiber. The
refractive indices of silica and gases are taken from Refs. [10,11].
The inner and outer radii of the annulus waveguide are R1 = 30 μm
and R2 = 30.476 μm, respectively (wavelength λ = 470 nm).

waveguide modes [26]. By combining the so-called resonant-
state expansion [27–30] with this normalization scheme, we
have derived a general master equation for the nonlinear pulse
propagation inside optical fibers that is capable of treating
both bound as well as leaky modes [31]. Here, we would
like to emphasize that our approach is fully vectorial and
follows ab initio from Maxwell’s equations and does not
require any slowly varying amplitude approximation. In the
limit of single-mode propagation, our master equation trans-
forms into the well-known standard nonlinear Schrödinger
equation with a more general and accurate definition of
the Kerr nonlinearity parameter. Interestingly, in the case
of leaky modes, the Kerr nonlinearity parameter can either
have a positive imaginary part corresponding to nonlinear
loss [32–34] or exhibit a negative imaginary part that acts as
nonlinear gain for overall attenuating fields. We have shown
that the latter can have a significant impact on supercontinuum
generation [31].

Here, we extend our theory for the nonlinear pulse prop-
agation to four-wave mixing, requiring consideration of the
coupling of excitations of several frequencies inside a single
fiber. Owing to our mode normalization, the theory of four-
wave mixing can be straightforwardly applied to complex
waveguide geometries, including different types of hollow-
core fibers. Most importantly, our theory allows for a rigorous
description of not only bound modes but also leaky modes, in
contrast to the scalar theory reported in literature [1]. Note
that, in principle, one can extend the vectorial formulation
developed in Ref. [35] to four-wave mixing and obtain similar
coupled equations as in [1]. However, this approach is valid
only for bound modes due to the absence of a rigorous
normalization. We will consider this vectorial formulation,
hereinafter referred to as bound-mode theory, as a reference
for our theory of four-wave mixing.

Similar to the complex nonlinearity parameter with a neg-
ative imaginary part acting as nonlinear gain, we find that our
four-wave mixing theory yields a regime with nonlinear gain
and linear loss for leaky modes. In contrast to bound modes,
our theory reveals that modulation instability can occur for
leaky modes independently of the sign of the group velocity
dispersion in the case of nonlinear gain. This means that small
perturbations (e.g., given by phase noise) can be amplified
even in the normal dispersion regime.

The paper is organized as follows: In Sec. II, we derive
the coupled amplitude equations for four-wave mixing starting
from our general master equation. Section III is devoted to the
derivation of criterions for modulation instability. In Sec. IV,
we provide details of our numerical simulations. Finally, we
apply our theory to the example of a gas-filled annulus fiber
and discuss the results in Sec. V.

II. COUPLED AMPLITUDE EQUATIONS

In order to derive the general form of coupled non-
linear propagation equations (in Gaussian units) for four-
wave mixing in optical waveguides, let us first consider the
transformation of the electric field E(r; t ) to the frequency
domain as

E(r; ω) =
∫ +∞

−∞
E(r; t )eiωt dt . (1)

Next, we decompose E(r; ω) into the fiber modes
Em(r||; ω) as

E(r; ω) =
∑

m

am(z; ω)
Em(r||; ω)

Nm(ω)
, (2)

where am(z; ω) is the modal amplitude (z is the axial di-
rection), and r|| denotes the transverse coordinate in the
xy plane [22]. The field distributions Em(r||; ω) are eigen-
solutions of Maxwell’s equations in the linear regime that
can propagate with a phase factor exp[iβm(ω)z] along the
fiber axis. Their normalization coefficient Nm(ω) has been
derived in Ref. [26] and can be split into a line and a
surface term:

Nm = Lm + Sm. (3)
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The line term yields

Lm = εμk2 + β2
m

2
(
εμk2 − β2

m

)2
∫ 2π

0

(
Em,z

∂Hm,z

∂φ
− Hm,z

∂Em,z

∂φ

)
dφ

+ kβmρ2

2
(
εμk2 − β2

m

)2
∫ 2π

0

{
μ

[(
∂Hm,z

∂ρ

)2

− ρHm,z
∂

∂ρ

(
1

ρ

∂Hm,z

∂ρ

)]
+ ε

[(
∂Em,z

∂ρ

)2

− ρEm,z
∂

∂ρ

(
1

ρ

∂Em,z

∂ρ

)]}
dφ, (4)

while the surface term is given by

Sm =
∫ 2π

0

∫ R

0
ρ(Em,ρHm,φ − Em,φHm,ρ )dρdφ. (5)

Here, ε and μ are the permittivity and the permeability,
respectively, and k = ω/c is the vacuum wave number. The
electric and the magnetic fields of the mode, Em(r; ω) and
Hm(r; ω), respectively, are given in a cylindrical coordinate
system, which is more convenient due to the cylindrical
symmetry of the fiber geometry. Additionally, note that both
the line term Lm and the surface term Sm are evaluated at
a radius of normalization R that is typically finite, with the
surface including all regions of spatial inhomogeneities in the
transverse direction.

Based on these prerequisites, it has been shown that the
evolution of the modal amplitude a(z; ω) can be described by
the following general master equation [31]:

∂zam(z; ω) = iβm(ω)am(z; ω)

+ 2π ik
∫

eR
m(r||; ω) · PNL(r||, z; ω)dr||, (6)

where βm(ω) is the frequency-dependent propagation con-
stant, eR

m(r||; ω) ≡ ER
m(r||; ω)/

√
Nm(ω) is the normalized “re-

ciprocal conjugate” transverse spatial distribution of the elec-
tric field of the fiber mode with propagation constant −βm(ω),
and ∂z is the derivative along the z direction.

Several assumptions are introduced in the following to sim-
plify Eq. (6). First, we restrict the analysis to the fundamental
leaky core mode, which allows us to omit the mode index
m in Eq. (6). Furthermore, the electric field E(r; ω) is solely
approximated by the electric field of the fundamental mode:

E(r; ω) ≈ a(z; ω) e(r||; ω). (7)

Next, we assume that optical pulses propagating in a fiber
are narrow band and centered around carrier frequencies
ω j ( j = 1, 2, 3, . . . ). Thus, the electric field E(r; ω) can be
approximated as a superposition of the electric fields at these
dominant carrier frequencies:

E(r; ω) ≈
∑

j

a j (z; ω) e(r||; ω j ). (8)

Note that in Eq. (8) and following, the frequency dependence
of the transverse spatial distribution of the electric field is
assumed to be negligible (i.e., all fields are the same), i.e.,
e(r||; ω) ≈ e(r||; ω j ), and a j (z; ω) is spectrally separated for
the different dominant frequencies.

Furthermore, we make the typical approximation by ex-
panding β(ω) into a Taylor series around ω j :

β(ω) ≡ β̄(ω) + iᾱ(ω) ≈
∑
n�0

(
β̄

(n)
j

n!
+ i

ᾱ
(n)
j

n!

)
(ω − ω j )

n,

(9)
where β̄

(n)
j = ∂nβ̄/∂ωn|ω j

and ᾱ
(n)
j = ∂nᾱ/∂ωn|ω j

are the nth-
order dispersion and loss coefficients, respectively.

Additionally, we use that for narrow-band pulses with a
carrier frequency ω j , the modal amplitude a j (z; ω) can be
represented as

a j (z; ω) ≡ Aj (z; �ω) eiβ̄ (0)
j z, (10)

where �ω ≡ ω − ω j . Thus, taking into account Eqs. (9)
and (10), we obtain the following equation for Aj (z; �ω):

∂zA j (z; �ω) = D̂ j (�ω)Aj (z; �ω)

− 2π ik e−iβ̄ (0)
j z
∫

eR(r||; ω) · PNL(r||, z; ω)dr||,

(11)

where the dispersion operator D̂ j (�ω) is defined as

D̂ j (�ω) =
∑
n�0

[
i

β̄
(n+1)
j

(n + 1)!
�ωn+1 − ᾱ

(n)
j

n!
�ωn

]
. (12)

Let us now address the nonlinear part of Eq. (11). As be-
fore, we assume that eR(r||; ω) ≈ eR(r||; ω j ) ≡ eR

j (r||), which
allows us to avoid convolutions when transforming to the
time domain. Furthermore, as in the case of the linear part
of Eq. (11), we consider only the dominant frequencies. Thus,
by carrying out the Fourier transform of Eq. (11) according to

Aj (z; t ) = 1

2π

∫ +∞

−∞
Aj (z; ω − ω j )e

−i(ω−ω j )t dω, (13)

we obtain

∂zA j (z; t ) = D̂ j (i∂t )Aj (z; t ) − 2π ik j eiω j t−iβ̄ (0)
j z

×
(

1 − 1

iω j
∂t

)∫
eR

j (r||) · PNL(r; t )dr||. (14)

Now, we have to specify the expression under the integral
of Eq. (14). In general, the nonlinear polarization PNL can be
expressed as a power series in the electric field E ≡ E(r; t ) as

PNL = χ (2)(t ) ∗ EE + χ (3)(t ) ∗ EEE + · · · , (15)

where χ (n) is the nth-order susceptibility, and ∗ denotes
convolution in the time domain. In Eq. (15), the first term
vanishes in most cases, since the second-order susceptibility
χ (2) equals zero for an isotropic medium such as liquids,
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gases, and glasses [36]. Hence, we solely consider the third-
order nonlinear term with χ (3) as the dominating contribution
in PNL. While the higher-order contributions can become
relevant in specific nonlinear polymers [e.g., polydiacetylene
para-toluene sulfonate (PTS) [37]] and semiconductor-doped
glasses at relatively high pulse intensity [38,39], their impact
can be neglected in our case.

For relatively long pulses (>1 ps), which are considered
here, we can furthermore neglect the contributions of molec-
ular vibrations (Raman effect) to χ (3) [40–43]. This allows
us to consider an instantaneous nonlinear response, which is
denoted as [1]

PNL ≈ χ (3)...EEE. (16)

In general, due to the vectorial nature of the fields, χ (3) is
a fourth-rank tensor. The spatial symmetry of an isotropic
medium restricts the form of χ (3) to 21 nonzero elements, of
which only two are independent. Additionally, by using intrin-
sic permutation symmetry of χ (3) and taking into account the
nonresonant electronic nature of the nonlinearity, the resulting
nonlinear polarization becomes [36]

PNL = χ (3)
xxxx

4
[2E(E · E∗) + E∗(E · E)]. (17)

Since four-wave mixing involves the interaction between four
waves at different frequencies ω j ( j = 1 − 4), the total elec-
tric field E(r; t ) can be written as

E(r; t ) ≈
4∑

j=1

Aj (z; t ) e j (r||) eiβ̄ (0)
j z−iω j t + c.c. (18)

Taking into account Eqs. (17) and (18), the integral in Eq. (14)
with prefactor 2π ik j yields

I jl pq ≡ 2π ik j

∫
eR

j (r||) · PNL(r||, z; t )eiω j t−iβ̄ (0)
j zdr||

= in̄2k j

∑
l,p,q

∫ (
eR

j · e∗
l

)
(ep · eq )A∗

l ApAqeiφpq,l j dr||

︸ ︷︷ ︸
≡I(1)

jl pq

+ in̄2k j

∑
l,p,q

∫
2
(
eR

j · el
)
(ep · e∗

q )AlApA∗
qeiφl p,q j dr||

︸ ︷︷ ︸
≡I(2)

jl pq

,

(19)

where n̄2 = 2πχ (3)
xxxx/4 is the nonlinear refractive index, and

the general phase difference φ jl,pq is defined as

φ jl,pq = �β̄
(0)
jl,pqz − �ω jl,pqt =[(β̄ (0)

j + β̄
(0)
l

)(
β̄ (0)

p + β̄ (0)
q

)]
z

− [(ω j + ωl ) − (ωp + ωq)]t . (20)

The complete expression for Eq. (19) includes a large
number of terms involving the products of three amplitudes.
Nevertheless, we can distinguish the terms responsible for
self-phase modulation, cross-phase modulation, and four-
wave mixing. For instance, in the case that q = p = l = j,

we obtain the following term for self-phase modulation:

ISPM = i

[
n̄2k j

∫ [
2
(
eR

j · e j
)|e j |2 + (eR

j · e∗
j

)
e2

j

]
dr||

]
|Aj |2Aj

≡ iγ j |Aj |2Aj, (21)

with γ j being the Kerr nonlinearity parameter [31]. Simi-
larly, the sum over the index pairs (p = j, q = l ), (p = l, q =
j), and (p = q = l, l = j) provides terms for cross-phase
modulation:

IXPM = I jl jl + I(1)
jll j + I(2)

j jll

= i

⎡
⎣2n̄2k j

∑
l �= j

∫ [(
eR

j · el
)
(e j · e∗

l ) + (eR
j · e∗

l

)
(e j · el )

+ (
eR

j · e j
)|el |2

]
dr||

⎤
⎦|Al |2Aj ≡ i

∑
l �= j

γ jl |Al |2Aj .

(22)

By collecting the terms for which q �= p �= l �= j, we obtain
the four-wave mixing contribution to Eq. (19):

IFWM = I(1)
jl pq + I(1)

jlqp + I(2)
jl pq + I(2)

j plq

= i

[
2n̄2k j

∫ [(
eR

j · eq
)
(ep · e∗

l ) + (eR
j · ep

)
(eq · e∗

l )

+ (
eR

j · e∗
l

)
(ep · eq )

]
dr||

]
A∗

l ApAqei�β̄
(0)
pq,l j z

= iγ jl pqA∗
l ApAqei�β̄

(0)
pq,l j z. (23)

In the particular case of q �= p �= l = j (or q = p �= l �= j),
Eq. (23) corresponds to degenerate four-wave mixing.

In general, Eq. (19) contains many other phase terms
responsible for phenomena such as frequency tripling (ωq =
ω j + ωl + ωp) or other frequency conversion processes (e.g.,
ωq = 2ω j + ωp). Here, we neglect such contributions, since
from the quantum-mechanical point of view, the probability
of these processes is rather low [1]. Additionally, we neglect
the time derivative term on the right-hand side of Eq. (14)
that accounts for the dispersion of the nonlinearity, leading
to nonlinear effects such as self-steepening and optical shock
formation, which become important only for femtosecond
pulses [1]. Therefore, we keep only all dominant terms that
are responsible for processes such as self-phase modulation,
cross-phase modulation, and four-wave mixing. Under these
assumptions, Eq. (14) applied to each field at frequencies
ω j ( j = 1 − 4) leads to the following set of four coupled
amplitude equations:

∂zA1 = (D̂1 + N̂1)A1 + iγ1234A∗
2A3A4ei�β̄ (0)z, (24a)

∂zA2 = (D̂2 + N̂2)A2 + iγ2134A∗
1A3A4ei�β̄ (0)z, (24b)

∂zA3 = (D̂3 + N̂3)A3 + iγ3412A∗
4A1A2e−i�β̄ (0)z, (24c)

∂zA4 = (D̂4 + N̂4)A4 + iγ4312A∗
3A1A2e−i�β̄ (0)z, (24d)
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with the nonlinear operator

N̂j ≡ i

⎛
⎝γ j |Aj |2 +

∑
l �= j

γ jl |Al |2
⎞
⎠, (25)

and the wave-vector mismatch between the input and output
waves

�β̄ (0) ≡ �β̄
(0)
34,21 = �β̄

(0)
34,12 = −�β̄

(0)
12,43 = −�β̄

(0)
12,34

= β̄
(0)
3 + β̄

(0)
4 − β̄

(0)
1 − β̄

(0)
2 . (26)

This system of Eqs. (24a)–(24d) describes four-wave mix-
ing for bound and leaky modes. As we can see, the contri-
bution of the last coupling term (i.e., efficiency of four-wave
mixing) becomes significant if this wave-vector mismatch
vanishes, i.e., �β̄ (0) = 0.

It should be noted that a similar form of Eq. (19) can be also
derived by using the standard theory of bound modes [1,35].
In that case, however, reciprocal conjugation would be re-
placed by complex conjugation. While reciprocal conjugation
and complex conjugation of modes are identical operations
for bound modes, they yield different results for leaky modes.
Moreover, leaky modes require a correct normalization, which
is provided by Eqs. (3)–(5). Therefore, all nonlinearity coef-
ficients in Eqs. (24a)–(24d) deviate from those of the con-
ventional bound-mode theory when considering leaky modes.
Particularly, they exhibit a nonvanishing imaginary part that
is either positive, corresponding to nonlinear loss [32–34],
or negative acting as nonlinear gain for overall attenuating
fields [31]. In the next sections, we numerically analyze the
impact of our new formulation on four-wave mixing of leaky
modes by comparing it with results that are based on applying
the bound-mode theory to leaky modes. In order to do that, we
basically ignore any issues with the normalization of bound
modes using the conventional theory and assume that the
real part of the nonlinearity coefficients has been calculated
correctly, while we neglect its imaginary part.

As it has been mentioned at the beginning of this section,
all equations in this work are given in Gaussian units, con-
sistent with our previous works. However, one can straight-
forwardly reformulate the equations in SI units by using the
following changes: The permittivity ε and permeability μ

have to be replaced by the relative ones, and one needs to
substitute H with Z0HSI, where Z0 is the vacuum impedance,
while E simply becomes ESI. Next, for the conversion of the
third-order susceptibility from Gaussian to SI units we can use
χ (3) = 4π/(3 × 104)2 [χ (3)]SI [44]. In order to allow for an
easier comparison with experimental results, we present our
simulation results in the following sections in SI units.

III. MODULATION INSTABILITY OF PULSES IN
HOLLOW-CORE WAVEGUIDES

In general, the system of Eqs. (24a)–(24d) describes
narrow-band pulses that are spectrally separated. However,
for small frequency spacings (<1 THz), it is more convenient
to use a single nonlinear Schrödinger equation with a certain
initial condition [1]. In that case, an interaction between the
nonlinear and dispersive effects can lead to the generation of
new frequencies from noise, which is also known as modu-

lation instability [1]. Typically, the nonlinearity parameter γ

is assumed to be a real quantity in the stability analysis of
the modulations. However, as mentioned in the Introduction,
the nonlinearity parameter γ has a negative imaginary part
for hollow-core fibers supporting leaky modes that can act as
a nonlinear gain, partially diminishing the impact of modal
attenuation during propagation [31]. Hence, we observe here
an interplay between nonlinear gain and modal loss besides
self-phase modulation and group velocity dispersion. In this
section, we derive steady-state solutions in this regime and
analyze their stability against small perturbations.

For the sake of simplicity, we consider the standard nonlin-
ear Schrödinger equation with a complex nonlinearity param-
eter and linear loss:

i∂zA − β̄ (2)

2
∂2
τ A + (γr + iγi )

∣∣A∣∣2A + iᾱA = 0. (27)

Here, A is the field amplitude, β̄ (2) is the second-order dis-
persion coefficient, ᾱ>0 is the modal loss coefficient, and γr

(>0 self-focusing, <0 self-defocusing) and γi (>0 nonlinear
loss, <0 nonlinear gain) are the real and imaginary parts of the
nonlinearity parameter γ , respectively. Below, we consider the
self-focusing case. Additionally, we introduced the retarded
time coordinate of τ = t − β̄ (1)z along the propagation direc-
tion z.

Considering Eq. (27) as a dynamical system yields the
following steady-state solution [45,46]:

A = A0 eiγr |A0|2z, (28)

where A0 = √−ᾱ/γi. This basically means that we re-
quire a suitable balance between linear attenuation and
nonlinear gain.

In order to investigate modulation instability, we add a
small perturbation to the steady-state solution [1]:

Ã = [A0 + a(z, τ )] eiγr |A0|2z = A + a eiγr |A0|2z, (29)

where a(z, τ ) is the small perturbation. Substituting Eq. (29)
in Eq. (27) and linearizing a(z, τ ), after some algebra we
obtain the following:

i∂za − β̄ (2)

2
∂2
τ a + (γr + iγi)|A0|2(a + a∗) = 0. (30)

A general solution of Eq. (30) can be written as

a(z, τ ) = u(z) ei�τ + v∗(z) e−i�τ , (31)

where u(z) and v(z) are the coefficients determined by solving
Eq. (30), and � is the frequency of the modulation.

By introducing b = u + v and c = u − v and by inserting
Eq. (31) into Eq. (30), we obtain the following system of
homogeneous equations:

∂z

[
b

c

]
=
[ −2γi|A0|2 i β̄ (2)

2 �2

i β̄ (2)

2 �2 + 2iγr |A0|2 0

]
︸ ︷︷ ︸

M

[
b

c

]
. (32)

Searching for the eigenvalues Γ of the matrix M, we obtain
a characteristic equation of the form

Γ 2 + 2γi|A0|2Γ + β̄ (2)

2
�2

(
β̄ (2)

2
�2 + 2γr |A0|2

)
= 0, (33)
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FIG. 2. Gain spectra of modulation instability at a pump wave-
length of λ = 470 nm for the annulus fiber with γ = (8.47 ×
10−6 − 4.58 × 10−9i) m−1 W−1, α = 0.24 m−1, and |β̄ (2)| = 6.84 ×
10−2 ps2 km−1. The red dashed line indicates the gain spectrum of
modulation instability calculated in the anomalous dispersion regime
with sgn(β̄ (2) ) = −1, while the solid green line is obtained for
sgn(β̄ (2) ) = 1, corresponding to the normal dispersion regime. Note
that in both cases, there is a nonzero gain for all frequencies.

which has the solutions

Γ± = − γi|A0|2

±
√

(γi|A0|2)2 −
(

β̄ (2)

2
�

)2(
�2 + sgn(β̄ (2) ) �2

c

)
,

(34)

where sgn(β̄ (2) ) = ±1, depending on the sign of β̄ (2)

and �2
c = 4γr |A0|2/|β̄ (2)|. This yields b(z) = b+ exp(Γ+z) +

b− exp(Γ−z) and c(z) = c+ exp(Γ+z) + c− exp(Γ−z), where
b± and c± depend on the initial conditions for the perturba-
tion a. Note that Γ can be related to a wave number K of
the perturbation as Γ = iK . In fact, perturbations can grow
exponentially along the fiber in the regime with γi < 0, since
the first line on the right-hand side of Eq. (34) always yields a
nonvanishing positive real part for any real �. Interestingly,
this does not depend on the sign of β̄ (2)—in contrast to
the modulation instability described in the literature, which
occurs only in the anomalous dispersion regime (β̄ (2) < 0) at
certain frequencies [1].

Furthermore, we also note that the first line on the right-
hand side of Eq. (34) does not depend on frequency. This
already indicates that the modulation instability can occur
at any wavelength. For further analysis of the results, we
introduce the gain spectrum defined as g(�) = 2 Re(Γ ). As
we can deduce from Eq. (34), the gain is minimal if the
expression under the square root is negative. This minimal
or “background” gain is given by gmin = −2γi|A0|2 = 2α for
frequencies � with

�2 � �2
± ≡ 1

2
�c

2

⎡
⎣
√

1 +
(

γi

γr

)2

∓ 1

⎤
⎦, (35)

where �+ and �− correspond to the normal and the anoma-
lous dispersion, respectively.

As we can see in Fig. 2, inside the frequency window �2 <

�2
±, the gain spectrum can always exceed gmin. It has two

maxima at � = ±�c/
√

2 in the anomalous dispersion regime
(red dashed line), while in the case of normal dispersion
(green solid line) g(�) is maximum at � = 0.

Here, we note that the steady-state solution of Eq. (27) and,
accordingly, the dispersion relation Eq. (34), are determined
uniquely by the fiber parameters. Waves with such properties
are sometimes called autowaves [47]. Particularly, localized
waves in gain-loss-balanced nonlinear systems are referred to
as autosolitons or dissipative solitons [48]. Furthermore, sim-
ilar systems have been investigated in different frameworks,
such as the Benjamin-Feir instability of water waves [49],
nonequilibrium pattern forming within the Ginzburg-Landau
models [45], and vector modulation instability in birefringent
fibers [50].

IV. FIBER AND SIMULATION DETAILS

Here, we provide geometrical and optical parameters of the
fiber as well as details of the nonlinear pulse propagation. For
our numerical simulations, we consider an annulus fiber made
from silica (SiO2) and filled by xenon (Xe) with a nitrogen
(N) surrounding [see Fig. 1(a)]. The inner radius and thick-
ness of the annulus are R1 = 30 μm and �R = 0.476 μm,
respectively. The optical parameters of this waveguide, such
as the linear and nonlinear refractive indices, are taken from
Refs. [10,11,51,52]. Here, we assume that the pressure inside
(Xe) and outside (N) the fiber are 1 and 4 bar, respectively.
Thus, with these geometrical and optical parameters of the
annulus fiber we are able to design a dispersion curve such
that it yields a strong impact of our theory.

The modal properties of the fiber are found by solving
Maxwell’s equations. Following the procedures described in
the literature [22,53], we can derive an eigenvalue equation
for the propagation constant β. Panels (a) and (b) in Fig. 3
display the real and imaginary parts of the effective refractive
index neff = β/k of the fundamental leaky mode of the fiber
as a function of wavelength. Since the silica layer can be
considered as a Fabry-Perot–type resonator, it has resonances
at the wavelengths λ = 2�R/m [n2

SiO2
(λ) − n2

Xe(λ)]1/2, where
m = 1, 2, . . . [54] with the modal loss [Im(neff)] having its
maxima at these resonances. In the wavelength range consid-
ered in Fig. 3, we can see the second (m = 2) resonance at
λ = 507 nm.

Next, we use the solutions of the eigenvalue problem to
calculate the nonlinear parameters. For instance, panels (c)
and (d) in Fig. 3 display the real and imaginary parts of
the nonlinearity parameter γ of the fundamental leaky mode
of the fiber as a function of wavelength. In these panels,
the red solid line indicates the results obtained by using the
resonant-state expansion, while the blue dots are based on
the results of bound-mode theory. Details about the difference
between resonant-state expansion and bound-mode theory can
be found at the end of Sec. II. We note that in both cases
the contribution of the surrounding gas, i.e., nitrogen, to
the nonlinear parameters is neglected, since χ

(3)
SiO2

	 χ
(3)
Xe 	

χ
(3)
N [52]. Furthermore, we can consider the smallest region

with spatial inhomogeneities, i.e., R = R2 as the radius of
normalization in Eq. (3). In the case of bound-mode theory,
fiber modes are usually normalized with respect to the axial
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FIG. 3. Spectral distributions of the various relevant parameters.
(a) Real and (b) imaginary parts of the effective refractive index
for the fundamental leaky mode of the annulus fiber shown in
Fig. 1(a). Comparisons of results obtained by the resonant-state
expansion (RSE) and the bound-mode theory (BMT) are given in
panels (c) and (d), respectively, for the real and imaginary parts
of the nonlinearity parameter of that mode. (e) Phase mismatch
for degenerate four-wave mixing at a pump wavelength of 470 nm
and initial powers of 3.1 MW (green solid line) and 3.2 MW (red
dashed line), respectively. The central arrow indicates the position
of pump (P) wave, while the side arrows indicate the estimated
positions of the Stokes (S) and the anti-Stokes (AS) bands that occur
at the wavelength with vanishing phase mismatch. (f) Second-order
dispersion coefficient. All three waves are in the normal dispersion
region. The gray vertical dashed lines in all panels indicate the
spectral positions of the Stokes and the anti-Stokes waves.

component of the time-averaged Poynting vector with a radius
of normalization of R = ∞. However, an infinite radius of
normalization applied to leaky modes yields a vanishing value
for the nonlinearity parameter γ , since the fields of leaky
modes diverge [see Fig. 1(b)]. Therefore, we choose the radius
of normalization such that the deviation of the real part of
γ between the resonant-state expansion and the bound-mode
theory is minimized. As we can see in Fig. 3(c), the real
part of the nonlinearity parameter γ is similar in both ap-
proaches. However, the bound-mode theory solely provides a
purely real γ .

The estimated positions of the Stokes and anti-Stokes
waves for particular pump wave parameters (wavelength and
power) are defined by the phase-matching condition. In order
to have the most efficient side-band generation, it is neces-
sary to compensate the linear wave-vector mismatch �β̄ (0)

between the pump and side bands with the nonlinear phase
shifts caused by self-phase and cross-phase modulations. For
the sake of simplicity we consider degenerate four-wave
mixing, for which ω1 = ω2. In this case, we can write the

phase-matching condition as follows [1]:

�β̄ =
[
β̄ (2)�2

s + β̄ (4)

12
�4

s

]
+ 2γrP1 ≈ 0. (36)

Here, �s = ω1 − ω3 = ω4 − ω1 is the frequency shift with
respect to the pump frequency ω1, β̄ (2) and β̄ (4) are the
dispersion parameters at ω1, and γr is the real part of the
nonlinearity parameter γ at the pump frequency.

In order to exclude a strong impact of modulation
instability and consider rather typical four-wave mixing,
we choose the pump wave parameters such that all (i.e.,
the pump and Stokes) waves are in the normal disper-
sion regime. In this case, the phase-matching condition
can be satisfied if β̄ (4) < 0. For example, as shown in
Fig. 3(d), for the pump wave with an initial power of P1 =
3.1 MW and a wavelength of λ1 = 470 nm, at which β̄ (2) =
6.84 × 10−2 ps2 km−1, β̄ (4) = −1.14 × 10−5 ps4 km−1, and
γr = 8.47 × 10−6 m−1 W−1, the phase mismatch vanishes at
wavelengths of λ3 = 540.6 nm (Stokes) and λ4 = 415.8 nm
(anti-Stokes). In Fig. 3(e), we see that all three (i.e., the pump,
Stokes, and anti-Stokes) waves are in the normal dispersion
region. The positions of the side bands can be easily tuned by
varying the pump wave parameters.

So far, we have drawn our attention to determine the
parameters of the fiber that enter Eqs. (24a)–(24d), while in
the following we discuss the details of the numerical simula-
tions. As an initial condition for the amplitude of the pump
pulse, we consider a hyperbolic secant profile A1(0, t ) =√

P1 sech(t/T0) with the initial width T0 = 100 ps. For such
a relatively long pulse, we can neglect higher-order dispersion
and loss terms, and nonlinear effects such as self-steepening
and Raman scattering [1]. Hence, the real and imaginary parts
of the propagation constant β(ω) = β̄(ω) + iᾱ(ω) are ap-
proximated by corresponding Taylor series expansions up to
β̄ (4) and ᾱ(2) as the fourth and second order, respectively. Fur-
thermore, we assume that the pump, Stokes, and anti-Stokes
wavelengths have the same group velocities νg ≡ 1/β̄ (1), since
the relative difference of νg between them is negligible, i.e.,
is less than �νg/νg < 10−5. The initial amplitudes for the
Stokes A3 and anti-Stokes A4 waves are given by A3,4(0, t ) =√

P3,4 sech(t/T0) exp(∓i�st ), where P3,4 
 P1 and the “-”
sign is for A3. We choose P3,4 such that a seed for the
Stokes and anti-Stokes waves at the corresponding frequen-
cies is at the level of the spectral background (noise) of the
pump field [55].

The numerical solution of Eqs. (24a)–(24d) is carried
out by using an improved version of the well-known
split-step-Fourier method [1]. Here, the linear part of the
equations is solved in the frequency domain, while for
the nonlinear part, a fourth-order Runge-Kutta method is
used [56,57]. In our numerical simulations, we use N = 222

points to discretize a time window of TSpan = 100 TFWHM.
These parameters provide a wavelength window of λSpan =
cN/TSpan ∼ 320–770 nm, according to the sampling theorem,
which entirely covers the spectral range of our interest.
The longitudinal step size used in numerical simulations is
�z = 40μm.
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FIG. 4. Spatial-spectral evolution of the total power-spectral-
density S(λ) obtained by using our theory based on the resonant-state
expansion and the bound-mode theory for an initial pump power
of 3.1 MW [panels (a) and (b)] and 3.2 MW [panels (c) and (d)],
respectively. Note that the total power spectral density S(λ) is nor-
malized to the initial power density. All other simulation parameters
can be found in Ref. [55].

V. RESULTS AND DISCUSSION

The analysis of the pulse dynamics starts by investigating
the total power spectral density S(λ), which is normalized
to the initial power density. Panel (a) in Fig. 4 depicts S(λ)
dynamics based on our formulation for the initial pump power
of P1 = 3.1 MW, while the results in panel (b) are based on
the bound-mode theory. Note that the final equations become
similar for both cases. The main difference is in the definition
of the nonlinearity parameters. In the first case, the nonlinear-
ity parameter γ has a negative imaginary part in contrast to
the latter [see Fig. 3(d)]. In addition, reciprocal conjugation is
replaced by complex conjugation in the bound-mode theory.
More details about the difference between two models can be
found at the end of Sec. II. By comparing panels (a) and (b)
of Fig. 4, we clearly see that our formulation yields more pro-
nounced side bands. This is a substantial effect, considering
that Im(γ )/Re(γ ) is rather small. Due to the higher modal
loss at the Stokes position (λ3 = 540.6 nm) compared to the
anti-Stokes one (λ4 = 415.8 nm), the power spectral density
of the Stokes wave is comparably low [see Fig. 3(b)]. Please
note that we use a broken power axis to show the side bands
clearly.

Let us now repeat our simulations for a higher initial pump
power of P1 = 3.2 MW for the same pump wavelength. In
this case, the positions of the side bands are slightly shifted
according to the phase-matching condition [see Fig. 3(e)].
However, they are still in the normal dispersion regime, and
all other parameters are close to those of the previous case.
As we can see in panels (c) and (d) of Fig. 4, the Stokes and
anti-Stokes bands are generated with a higher power spectral

FIG. 5. Normalized pump [panels (a) and (b)], Stokes [panels (c)
and (d)], and anti-Stokes [panels (e) and (f)] power as a function of
propagation distance. The results have been obtained by using our
theory based on the resonant-state expansion (red solid line) and the
bound-mode theory (blue dashed line) for initial pump powers of
3.1 MW (left column) and 3.2 MW (right column).

density. Specifically, the gain is larger in the bound-mode
theory [compare panels (b) and (d)] than in our formulation
based on the resonant-state expansion [compare panels (a) and
(c)]. The reason for the latter is that the impact of the nonlinear
gain contribution [i.e., terms proportional to Im(γ )|A1|2] to
the side-band generation is decreasing due to the strong pump
power (P1 ∝ |A1|2) depletion when using the resonant-state
expansion. Moreover, the spectral broadening of the pump and
side bands and their interaction generates various new fre-
quencies, giving rise to supercontinuum generation at larger
propagation distances. Therefore, in Fig. 4 we have truncated
the nonlinear pulse dynamics at around z = 2.1 m.

Now, let us consider the efficiency of the side-band gen-
eration. For that, we calculate the total power of each wave
by integrating the corresponding total power spectral density
S(λ) over wavelength for each step of propagation. In Fig. 5,
we plot the total power of the pump (P1), Stokes (P3), and
anti-Stokes (P4) waves normalized to the initial total power
of the pump wave as a function of propagation distance z.
The red solid lines indicate the power calculated by using our
formulation, while the blue dashed lines express the results
based on the bound-mode theory. In the left column [panels
(a), (c), and (e)], we display the results for the initial pump
power of P1 = 3.1 MW. First, we clearly recognize that in our
formulation, the Stokes and anti-Stokes bands exhibit at least
two times more maximum power. Second, the most interesting
point is that in our case, the Stokes and anti-Stokes bands
occur roughly 50 cm earlier than in the bound-mode theory.
An efficient power transfer from the pump to the side bands is
observed at around z = 1.5 m, where the pump power sharply
starts to decrease. Furthermore, we can see an oscillatory
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behavior of their total power over distance, which is clearly
pronounced in the case of the Stokes band and relates an
exchange of power between the two excitations.

The situation for the initial pump power of P1 = 3.2 MW
(the right column) is very similar to the previous case. As
a main difference, we note the following: Increasing the
initial pump power leads to generation of Stokes and anti-
Stokes bands with higher power within the phase-matching
condition. Additionally, the onset of the side-band generation
arises earlier in both bound-mode theory and resonant-state
expansion. Compared to P1 = 3.1 MW, the onset is roughly
20 cm earlier. Common to both initial pump powers is that the
side bands decay at long distances, which might be due to the
pump depletion and modal losses.

VI. SUMMARY

In conclusion, we have presented here a general theoretical
formulation for a rigorous description of four-wave mixing in
waveguide geometries. The formulation is based on the so-
called resonant-state expansion with analytic mode normal-
ization, which allows consideration of both bound and leaky

modes within a single framework. For a proof-of-concept
analysis and as an example system, we have applied our
theory to a gas-filled hollow-core annulus fiber. The numerical
results reveal that our formulation predicts a more efficient
generation of the Stokes and anti-Stokes bands with an earlier
onset for the leaky mode system in comparison with the
bound-mode theory. Our findings originate from an accurate
description of the nonlinear properties and, in particular, of
the nonlinearity parameter of the considered waveguide.

While we do not have any experimental results yet, the
comparison of bound-mode theory and our theory reveals
that the conventional bound-mode theory is inappropriate for
capturing all phenomena that arise during the propagation
of leaky modes. Therefore, we believe that our theory for
four-wave mixing can help to perform numerical modeling
for reproducing experimentally observed features not only
qualitatively but also quantitatively.
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