
PHYSICAL REVIEW A 101, 043802 (2020)

Coherent control of Fano resonances in a macroscopic four-mirror cavity
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We demonstrate coherent control of optomechanically induced transparency and Fano resonances in a four-
mirror macroscopic optomechanical cavity, with two movable mirrors, each driven by an external mechanical
pump. The variable control of the amplitude and phase of the coherent mechanical pumps provides a means
of tuning the shape and nature of the Fano profiles. Further, our scheme shows the occurrence of tunable
optomechanical features, even at very low mechanical driving field amplitudes, in macroscopic optomechanical
cavities.
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I. INTRODUCTION

Quantum interference between different transition path-
ways gives rise to several interesting physical phenomena,
such as Fano resonances [1,2], that have been observed in
a variety of physical systems. For instance, in plasmonics,
photons are allowed to travel through multiple transition
pathways which interfere, thus making the occurrence of Fano
line shapes quite common in such materials. Fano resonances
have been observed in a wide variety of systems which include
the phonon interactions in solids [3,4]; electron transport in
quantum wells, quantum dots [5,6], and three-dimensional
waveguides [7]; coupled photonic microcavities [8,9]; plas-
monic metamaterials [10,11] and nanostructures [12–15]; and
photonic materials [16–20].

Fano line shapes have also been used in obtaining infor-
mation on the interaction between a wide variety of nanos-
tructures with light [21], for local refractive index sensing
applications [22], efficient confinement of light [23], surface-
enhanced Raman scattering [24], generation of slow light
in metamaterials [25], enhanced light transmission [26], and
sensitive biosensors [27]. Fano interference is seen to play
an important role in producing a strong cooling effect in a
Michelson-Sagnac interferometer [28], in lasing without pop-
ulation inversion [29–32], and as a tool to probe decoherence
[33,34] in the field of quantum optics and quantum infor-
mation. More recently, Fano resonances have been widely
studied theoretically in hybrid optomechanical systems with
distinct configurations involving double cavities [35], whis-
pering gallery modes [36], BEC [37,38], and two-level atoms
and qubits [39,40], to name a few. The regulation of Fano
line shapes in an optomechanical (OM) cavity is observed by
applying an external magnetic field [41]. Piao et al. [42–44]
proposed a new mechanism focused on the spin-dependent
separation of Fano resonance spectra for the nonmagnetic

*palsp@uohyd.ernet.in

achievement of optical spin angular momentum. A detailed
analysis of Fano resonances and the generation of slow light
was carried out in Refs. [37,39,45].

Fano interference leading to destructive interference of
quantum noise can be used to cool the mechanical oscillator
close to its ground state [46]. Plasmonic-metal–dielectric-
metal stub structures show the presence of Fano-type spectral
asymmetry in its transmittance spectra which is used in a
plasmonic waveguide modulator [42,43,47]. Spin-dependent
Fano resonances lead to spectral separation of optical spin
angular momentum [44]. In mesoscopic scales efficient Fano
resonance control has been shown in a quantum dot in an
Aharonov-Bohm interferometer [48].

In conventional optomechanical systems, the OM effects
can be detected for sufficiently strong coupling strengths,
with the coupling parameter defined as G, which requires
extremely small sizes of mirrors and cavity arm lengths. In
macroscopic cavities, due to their dimensions, the OM cou-
pling G is very weak and hence the ensuing OM effects are not
detectable. In this work we propose a scheme to observe the
OM effects even in macroscopic cavities by introducing co-
herent mechanical drive on the mirrors. More specifically, we
study the occurrence of Fano resonances and the related phe-
nomenon of optomechanically induced transparency (OMIT)
[49], from a study of the generated anti-Stokes signals in a
macroscopic cavity. The cavity here is operating in the dark-
mode configuration that is commonly used in LIGO interfer-
ometers [50]. A basic four-mirror nanomechanical system was
studied by Farman and Bahrampour [51], in which they re-
ported the existence of Fano resonances. In the present work,
we have modified their system by adding hybrid elements, and
more importantly, we have looked at the performance of the
system at the macroscopic level, which gives an entirely new
perspective of the system behavior. For instance, the current
study reveals that the introduction of mechanical pumping
enhances the optomechanical interaction significantly, result-
ing in the appearance of Fano resonances and OMIT in the
generated anti-Stokes signals. Further, externally pumping
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FIG. 1. Schematic diagram of a four-mirror cavity with two
movable mirrors.

the two independently oscillating mirrors provides a handle,
in terms of the mechanical pump’s amplitude and phase, to
control the resonances, which has been explored in great
detail in the present study. For an appropriate choice of the
amplitude and the phase of the mechanical driving fields,
the system exhibits tunable double Fano resonances. This
work, involving a detailed study of the macroscopic hybrid
four-mirror system, assumes relevance from the experimental
point of view, viz., in the LIGO observatory.

The paper is organized as follows: In Sec. II a detailed
description of the system that is studied here is provided, to-
gether with necessary mathematical formulation and solutions
for the dynamical evolution of different quantities of interest.
In Sec. III numerical results pertaining to the OMIT and the
asymmetric Fano-like resonance induced by interference of
two transition pathways are presented. We further show the
generation of double Fano-like resonances for specific choices
of the drive amplitudes and phases. A summary of the results
and the conclusions are presented in Sec. IV.

II. MODEL AND THEORY

Figure 1 shows a schematic of the four-mirror cavity
considered in this work. Mirrors 1 and 2 are movable, each
of which are driven by a coherent mechanical pump, while
mirrors 3 and 4 are fixed. A pump laser of frequency ωpu and a
probe laser of frequency ωpr enter the cavity from the left. The
frequency of the cavity is taken to be ω0. In this study, we con-
sider the dark-mode configuration as is commonly employed
in LIGO studies [50], wherein destructive interference leads to
no field in arm 3, which is nonresonant with the field [52,53].
However any imperfections in destructive interference that
may result in photon loss, which may occur due to a slight
leakage of photons into arm 3, are incorporated through the
cavity decay rate κ .

The Hamiltonian, describing the various interactions that
are considered here, is written in a rotating frame with

frequency ω0 as follows:

H = h̄�ca†a +
∑
i=1,2

h̄ωmi

2

(
P2

i + Q2
i

) − h̄
∑
i=1,2

Gia
†aQi

+ ih̄εpu(a† − a) + ih̄εpr (a†e−iδt − aeiδt )

−
∑
i=1,2

S′
miQi cos(δt + φmi ). (1)

Here a and a† are the bosonic operators of the cavity field,
and Pi and Qi are the momentum and position operators of the
two movable mirrors, each of which are modeled as simple
harmonic oscillators, with frequency ωmi, effective mass mi,
and mechanical decay rate γi, with i taking the values 1 and
2. The pump (probe) amplitude εpu (εpr) is related to the
input pump (probe) power Ppu (Ppr) as εpu = √

2κPpu/h̄ωpu

(εpr = √
2κPpr/h̄ωpr). The optomechanical coupling rate is

given by Gi = ωc
Li

√
h̄/miωmi (i = 1 and 2) [52,53], where Li

is the length of the cavity. The first term describes the cavity
field energy with the cavity detuning given by �c = ω0 − ωpu,
and the second term is the energy of the two mechanical
oscillators. The third term describes the optomechanical inter-
action arising due to the coupling between the two mechanical
oscillators and the cavity field. The fourth and fifth terms
describe the interaction between the cavity field and the input
pump and probe fields, respectively, with δ = ωpr − ωpu, the
pump-probe detuning. The last term describes the mechanical
pumping energy applied to each movable mirror, with the
driving parameter S′

mi defined by S′
mi = smi

√
h̄/miωmi (i =

1 and 2), where the quantities smi and φmi (i = 1 and 2)
are the amplitude and the phase of the coherent mechanical
drive.

We denote the expectation values of each of the operators
â, Q̂, and P̂ with 〈a〉, 〈Q〉, and 〈P〉, respectively. Using the
Hamiltonian given in Eq. (1), we derive the equations that
describe the dynamical behavior of these operator expectation
values in the Heisenberg picture as follows:

d 〈a〉
dt

= − i�c 〈a〉 + εpu + εpre
−iδt + iG1 〈a〉 〈Q1〉

+ iG2 〈a〉 〈Q2〉 − κ 〈a〉 ,

d 〈Qi〉
dt

= ωmi 〈Pi〉 (i = 1, 2),

d 〈Pi〉
dt

= − ωm1 〈Qi〉 + Gi 〈a†〉 〈a〉 − γi 〈Pi〉

+ S′
mi

h̄
cos(δt + φmi ) (i = 1, 2). (2)

In the above equations, κ is the cavity decay rate. In obtaining
the above equations of motion, the mean-field assumption
〈MN〉 = 〈M〉 〈N〉 for the relevant operators has been used.
Next, each of the variables is separated into a steady-state
solution and a small fluctuation around its steady-state value,
i.e., x̂ = xs + δx̂. By substituting the same in each of the above
equations, we can obtain the steady-state solutions [Eq. (A1)]
as well as the equations of motion for the fluctuations in each
of these operators. A detailed derivation of these is given in
the Appendix.
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FIG. 2. Schematic illustration of frequencies used in obtaining
Fano line shapes.

To study the absorption characteristics of the OM system
we have to obtain an expression for the following anti-Stokes
component of the output field from the cavity:

Re(ηas) = Re(2κa−
1 /εpr ). (3)

The resulting equations for the fluctuations in relevant
variables are obtained, details of which are provided in the
Appendix. These equations are solved analytically to obtain
the final form of the component a−

1 given by

a−
1 = εpr + iG1asQ

−
1 + iG2asQ

−
2

κ + i(� − δ)
, (4)

where the expressions for Q−
1 and Q−

2 are given in the
Appendix. Here a−

1 is the transition amplitude, which contains
the interfering contributions arising from the anti-Stokes com-
ponent of the scattered light and the incident probe field. The
anti-Stokes component arises due to absorption of a phonon
from the mirror, thus leading to cooling of the mirror [35].
As shown in Fig. 2, when the pump field of the frequency
ωpu interacts with the mechanical mirror of frequency, say,

, absorption and emission of phonons create the anti-Stokes
field (ωpu + 
) and the Stokes field (ωpu − 
), respectively
[54]. If the frequency of the pump laser is red-detuned (tuned
below the resonance frequency of the cavity exactly by an
amount 
), then the anti-Stokes field becomes resonant with
the cavity field and therefore gets enhanced, at the cost of
suppression of the Stokes field, as now the Stokes field is far
removed from resonance.

Fano, in a seminal paper [1], first described the asymmetric
profile resulting in Rydberg spectral atomic lines and provided
a detailed explanation of this feature arising due to resonant
destructive interference between two transition pathways. In
particular, one observes a minimum with an accompanying
maximum very close to it, which is known by the name Fano
resonance. Inside the four-mirror cavity, when the frequency
of the probe beam is tuned to that of the generated anti-Stokes
field, destructive interference between these two fields gives
rise to a Fano-like resonance. As shown in Fig. 2, interference
takes place between the two transition pathways |a〉 → |E〉
and |a〉 → |b〉 → |E〉, where |E〉 represents a continuum of
states. Thus, when ωpr = ωpu + ωm1, destructive interference
between the two fields (anti-Stokes and the probe) leads to
a Fano-like resonance. The availability of two oscillating
mirrors, which can be tuned independently of each other, at

frequencies ωm1 and ωm2, respectively, provides two transition
pathways from state |b〉 to the continuum |E〉. A suitable
choice of these parameters gives rise to a double Fano-like
resonance. For instance, choosing the mechanical oscillation
frequency of both the mirrors to be equal (ωm1 = ωm2) results
in superposition of the two resonances. Under this condition,
the resulting Fano-like profile can be modified, giving rise to
interesting features, by tuning the amplitude and the phase of
the coherent mechanical pump. These features are illustrated
in the figures presented in the next section.

In the next section we present numerical simulations of the
results for the real part of the generated anti-Stokes field as a
function of the normalized probe detuning δpr/
, where δpr =
ωpr − ω0, for a wide range of parameters, and we present a
discussion of the results.

III. RESULTS AND DISCUSSION

In this study, we have considered a truly macroscopic
four-mirror cavity, with the following parameters. The length
of each cavity is Li = 70 mm (i = 1,2), the effective pump
laser detuning is � = 
 = 2π × 107 Hz, the cavity decay
rate is κ = 2π × 106 Hz, the mechanical damping rate of
each movable mirror is γmi = 2π × 104 Hz (i = 1 and 2),
the mass of each mirror is mi = 145 mg, (i = 1 and 2), the
wavelength of the pump laser is λ = 1064 nm, and the pump
power Ppu = 10 μW. It is to be noted that the parameters
used in this study have been obtained from a careful survey
of existing literature on macroscopic hybrid optomechanical
systems [55–64]. Due to the macroscopic nature of the param-
eters of the four-mirror setup, the optomechanical coupling
is too weak to show any observable optomechanical effects
such as the optomechanically induced transparency and the
Fano resonances which were earlier reported in microscopic
cavities [35,51]. This problem can, however, be circumvented
by the application of a very nominal coherent driving field, re-
sulting in observable optomechanical effects. In the following,
we present numerical results for the real part of the anti-Stokes
field for a variety of parameters, the details of which are con-
tained in each of the figures, and demonstrate the significant
role played by the amplitude and the phase of the coherent
mechanical drive in observing the interesting features reported
here.

In the analytical expressions that were obtained in the
previous section, the optomechanical interaction terms appear
to several orders of the coupling parameter G. However,
because the present OM system has very weak optomechan-
ical coupling, owing to its macroscopic nature as determined
by the parameters that were considered, the quadratic and
higher-order terms result in negligible contributions to the
features that are observed. We therefore neglect the higher-
order optomechanical interaction terms and retain only the
linear terms in the interaction strength G. This gives rise to
considerable simplification in the expression for a−

1 , which is
obtained after neglecting all components containing second-
and higher-order terms of effective OM coupling strength Gi

(i = 1 and 2), as shown below. It is to be noted that the scheme
proposed here, involving the coherent mechanical driving of
the mirrors, enhances the optomechanical interaction giving
rise to observable effects, even at very nominal mechanical
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driving amplitudes smi (i = 1 and 2):

a−
1 = εpr + iG1asSm1χ1(δ)e−iφm1 + iG2asSm2χ2(δ)e−iφm2

κ + i(� − δ)
.

(5)

From the above expression it is clear that the effective cou-
pling strength of the ith cavity is the product of Gi and Smi,
which is inversely proportional to the length Li of the cavity
and the mass mi of the mirror and directly proportional to
the mechanical driving amplitude smi. Hence, as the mirror
mass and the cavity length are simultaneously increased, the
mechanical driving amplitude also has to be increased in order
to detect any discernible effects. The above result can be
simplified further for the symmetric cases G1 = G2 = G and
χ1(δ) = χ2(δ) = χ (δ), with the introduction of the parameter
A = iGasχ (δ), resulting in the expression

a−
1 = εpr + A(Sm1e−iφm1 + Sm2e−iφm2 )

κ + i(� − δ)
. (6)

We now examine the structure of the real part of the
anti-Stokes field under the conditions ωm1 = ωm, γ1 = γ , and
Sm2 = 0 (no mechanical pumping of mirror 2) and for a
particular value of phase φm1 = 3π/2. Further if we define
x = ωm − δ, then in the vicinity of the resonance where δ �
ωm and � � 
, the real part of the anti-Stokes field can be
obtained approximately as

Re(ηas) � a
(q + x̄)2 + b(

γ̄ 2

4

) + x̄2
, (7)

which has the general form of the Fano profile in lossy sys-
tems (see Eq. (7) of Ref. [65]). In the above equation, x̄ = x/κ ,
γ̄ = γ /κ , 
̄ = −
/κ , G̃ = 2GSm1(εpu/εpr ), q = G̃/4κ2, a =

2
1+
̄2 , and b = (−q2 + γ̄ 2

4 − G
2κ2

γ̄

�̄
).

We now study the behavior of output spectra for various
combinations of the amplitudes and phases of the two coher-
ent mechanical pumps. At first, we look at the case when
φm1 = φm2 = 3π/2. Taking � = δ = 
, it is observed that
a phase of 3π/2 gives rise to OMIT at the line center. It is
further seen that the strength of the OMIT feature (as quanti-
fied by how close the dip is to its zero value) is proportional
to the amplitude of the coherent mechanical pump; this is
illustrated in Fig. 3(a). The absence of mechanical driving,
i.e., sm1 = 0 (black curve), shows an absence of OMIT at the
line center. The introduction of a small driving amplitude of
sm1 = 2.6 mN (red curve) results in a dip at the line center,
which indicates transmission of the probe beam on resonance.
With further increase in the amplitude, sm1 = 5.6 mN (blue
curve), one observes a complete transmission of the probe
beam. The destructive interference between the probe beam
and the anti-Stokes field when ωpr = ωpu + ωm1 gives rise
to OMIT at the line center corresponding to ωm1 = 
. The
results of Fig. 3 show that an increase in the strength of
the mechanical pump gives rise to an enhancement in probe
transmission, leading to complete transmission (OMIT) for a
particular value of this parameter.

In Fig. 3(b), the absence of a dip at the line center in the
black curve shows clearly that OM effects are not present
when the mechanical driving field is not applied, i.e., sm1 =
sm2 = 0. The introduction of a small mechanical pump of

FIG. 3. The real part of the anti-Stokes field as a function of
normalized probe detuning for ωm1 = 
, φm1 = 3π/2, and the fol-
lowing parameters: (a) sm1 = 5.6 mN (blue curves), sm1 = 2.6 mN
(red curves), and sm1 = 0 and sm2 = 0 (black curves); (b) sm1 =
sm2 = 2.7 mN (blue curves), sm1 = 2.7 mN and sm2 = 0 (red curves),
and sm1 = sm2 = 0 (black curves); and (c) sm1 = 5.7 mN and sm2 = 0
(red curves), and sm1 = sm2 = 5.7 mN and φm2 = π/2 (black curves).

amplitude sm1 = 2.7 mN on mirror 1, with ωm1 = 
, gives
rise to a dip at the line center, as seen in the red curve,
showing clearly the generation of OMIT. Further inclusion of
a mechanical pump of the same amplitude (sm2 = 2.7 mN)
on mirror 2, with both the phases held at the same value,
i.e., φm1 = φm2 = 3π/2, gives rise to complete transparency
of the probe beam at the line center (blue curve). This feature
can be attributed as arising due to the coherent addition of the
OM contributions arising from each of the mechanical driving
fields, which are at the same phase.

This can further be substantiated by exploring whether the
effect will be canceled out by tuning one of the mechanical
driving fields completely out of phase with the second drive
field. This is indeed the case, as shown in Fig. 3(c), where the
red curve shows complete transparency of the probe beam at
the line center, generated solely due to sm1, at a phase of φm1 =
3π/2. Introducing the second mechanical drive sm2 at a phase
of φm2 = π/2 provides another channel which destructively
interferes to cancel out this OMIT effect, as can be seen from
the black curve. Thus, tuning the amplitude and the phase of
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FIG. 4. The real part of the anti-Stokes field as a function of normalized probe detuning for different values of phase φm1. (a) φm1 = 3π/2.
(b) φm1 = π/2. (c) φm1 = 0. (d) φm1 = π .

the coherent mechanical pumps gives a handle to control the
generation of OMIT in a macroscopic cavity.

In the results presented so far, it has been shown that
OMIT is observed at the line center, when the phases of
the mechanical driving fields are held at 3π/2. It would
be interesting to see the effect of varying the phase of the
mechanical pump on the OMIT features. For this purpose,
first, we switch off one of the mechanical pumps, say sm2 =
0, and keep the amplitude sm1 fixed at a particular value
of 5.6 mN. We vary its phase φm1 at intervals of π/2 and
record the changes in the output spectra, which are illustrated
in Fig. 4.

Figure 4(a) illustrates the case when only one of the
mechanical driving fields is turned on (sm1 = 5.6 mN and
sm2 = 0) at a phase of φm1 = 3π/2, with Re(ηas) reaching
its minimum value at the line center, identical to the red
curve in Fig. 3(c). Keeping all other parameters fixed, we now
change the phase φm1 of sm1 to π/2, which gives rise to a
sharp increase in Re(ηas) at the line center [see Fig. 4(b)],
showing remarkable absorptive behavior of the cavity at the
π/2 phase. Other possible interesting values of the phase φm1

are explored further. The phase φm1 = 0 results in a Fano-like
line shape as shown in Fig. 4(c), and a change in the value
of the phase to φm1 = π gives rise to the line shape shown
in Fig. 4(d), which is a mirror image of the previous case.
Similar features have been observed in other optomechanical
systems [66,67]. These results clearly show the importance of
the coherent mechanical pump and its phase in controlling the
spectral features of the generated fields. The sensitive changes
in the behavior of the system, which are detected as a function
of the phase of mechanical driving, suggest that this method
may be employed as a tool to detect the phase of an unknown
harmonic force with considerable precision.

In the above, we have assumed that the oscillation fre-
quencies of both the mirrors are equal to the effective cavity
detuning, i.e., ωm1 = ωm2 = 
, the combination of which
was giving rise to resonance at the line center. However, the
ability to tune the oscillation frequencies of movable mirrors

independently of one another can give rise to asymmetric line
shapes as shown in Figs. 5(a) and 5(b). Here we have tuned
the oscillation frequency to ωm1 = 1.2 
, due to which the
anti-Stokes field will destructively interfere with the probe
beam whenever ωpr = ωpu + 1.2 
, as shown in Fig. 5(a).
We observe the occurrence of a Fano-like resonance and a
mirror image of the same, at a corresponding value of 0.2
of the normalized probe detuning, for the phases φm1 = 3π/2
and φm1 = π/2, respectively. The results presented for various
combinations of the mechanical drive fields and their phases
show clearly the interference effects between two transition
pathways, in this case the fields generated at the probe

FIG. 5. Fano resonance in the real part of the anti-Stokes field
as a function of normalized probe detuning for sm1 = 4.6 mN and
(a) φm1 = 3π/2 and (b) φm1 = π/2.
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FIG. 6. The real part of the anti-Stokes field as a function of
normalized probe detuning (ωpr − ω0)/
 for sm1 = 5.2 mN, φm1 =
3π/2 and sm2 = 18 mN, φm2 = π (blue curve), sm1 = 2.6 mN, φm1 =
3π/2 and sm2 = 9 mN, φm2 = π (red curve); and sm1 = 0, φm1 =
3π/2 and sm2 = 0, φm2 = π (black curve).

frequency and at the anti-Stokes frequency. It is interesting
to note that these features have not been observed so far in
macroscopic cavities (due to the very weak optomechanical
effects in such systems) and are resulting purely due to the
introduction of a coherent mechanical driving field(s).

Next, we consider the case when both the mechanical
pumps (sm1 and sm2) are switched on and degeneracy between
oscillation frequencies of the mirrors is removed (ωm1 �=
ωm2). This condition provides two distinct transition pathways
[(ωpu + ωm1) and (ωpu + ωm2)] to interfere with ωpr, which
gives rise to two resonances as clearly illustrated in Fig. 6.
Here, in addition to the OMIT generated at the line center,
a sharp resonance peak at δpr/
 = 0.3 is observed. The
parameters considered here are ωm1 = 
 and φm1 = 3π/2,
and ωm2 = 
 + 0.3 
 and φm2 = π . Figure 6 clearly shows
that the strength (magnitude) of these OM features can be
controlled by tuning the amplitude of the mechanical driving
field. When sm1 = 5.2 mN, we see a minima in the generated
anti-Stokes field [Re(ηas)] at the line center and a maxima at
δpr/
 = 0.3 for sm2 = 18 mN, as shown by the blue curve in
Fig. 6. With a decrease in the amplitudes of both mechanical
pumps, sm1 = 2.6 mN and sm2 = 9 mN, we see a considerable
decrease in the strength of resonant curves, as can be seen
from the red curve. The black curve illustrates the absence of
any OM features as both the mechanical pumps are switched
off, i.e., sm1 = sm2 = 0.

We now present our results on double Fano-like resonance
line shapes away from the line center, which can be tuned by
the introduction of mechanical driving fields and their phases.
Such features have been widely studied in a different context
in plasmonic structures [68,69]. Very recently, these double
Fano resonance line shapes have been studied also in cavity
optomechanical systems [35,39,70]. In Fig. 7 the resonant
peak and dip on the right of the line center appear due to the
introduction of sm2 and the peak on the left side results due to
the introduction of sm1. The parameters that were considered
here are ωm2 = 
 + 0.2 
 and ωm1 = 
 − 0.2 
, due to
which the resonance due to mirror 1 (sm1) occurs at δpr/
 =
−0.2 and that due to mirror 2 (sm2) occurs at δpr/
 = 0.2.
These resonances occur due to interference of the probe beam
and the anti-Stokes fields that are generated at ωpu + ωm1 and
ωpu + ωm2, respectively. The location of these peaks can be
suitably modified by tuning the mechanical frequency of the

FIG. 7. Double Fano resonance in the real part of the antiStokes
field as a function of normalized probe detuning for sm1 = 8 mN,
ωm1 = 0.8 
, sm2 = 12 mN, ωm2 = 1.2 
, and φm1 = φm2 = 0 (red
dashed curve); and φm1 = 0 and φm2 = π (black solid curve).

movable mirrors. Here, a mechanical pump of sm1 = 8 mN
(Fig. 7) is applied to generate a strong resonance peak on the
left, whereas a slightly larger value of sm2 (12 mN) is required
to generate a resonance peak of similar height on the right
side. This asymmetry arises from the fact that the resonance
due to sm2 occurs when ωpr = ωpu + 1.2 
, which is far away
from the pump laser frequency as compared to the resonance
that occurs due to application of sm1 at ωpr = ωpu + 0.8 
.
Therefore the closer we are to the pump laser frequency
ωpu, the smaller is the force that is needed to generate the
OM resonance features and vice versa. One observes that by
flipping the phase φm2 from a value of 0 (red dashed curve)
to π (black solid curve), the dip changes to a peak. The
negative peak (red dashed curve) at δpr/
 = 0.2 corresponds
to resonance amplification which can effectively be shifted to
resonance absorption (positive peak) by adjusting the phase
(φm2) of the coherent mechanical pump. These features clearly
show the important role played by the amplitude and the phase
of the coherent mechanical pump in tuning the absorption and
amplification features as well as their positions.

Next we consider the case when the mechanical frequency
of both oscillators are taken to be equal and tuned away
from the effective cavity detuning (�) where ωm1 = ωm2 =
1.3 
 where � = 
, this enables one to control the resonance
features by changing the phase of the mechanical pump.
When both sm1 and sm2 have the same phase, namely, φm1 =
φm2 = π , they constructively interfere giving rise to resonant
enhancement at δpr/
 = 0.3 as shown by the blue curve in
Fig. 8. Next, when the relative phase of the mechanical pumps,
with strengths sm1 = sm2 = 9 mN, is shifted from π to 2π

or 0, destructive interference takes place between the two
coherent processes which leads to total cancellation of the
Fano-like feature, resulting in the black curve. This situation
amounts to effectively turning both the mechanical pumps off.
We thus show that by tuning the relative phase between the
two mechanical pumps, which are of equal magnitude, we can
completely switch on and off the Fano-resonance. Taking their
amplitudes unequal will result in further features in the Fano-
resonance. For example, the red curve in Fig. 8 corresponds to
unequal values of the mechanical driving fields, sm1 = 14 mN
and sm2 = 6 mN with phases φm1 = π and φm2 = 0, unlike the
blue curve, in which both the mechanical drives were taken to
have the same amplitude and phase.
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FIG. 8. Real part of anti-Stokes field vs normalized probe detun-
ing for sm1 = sm2 = 9 mN, φm1 = φm2 = π (blue curve); sm1 = 14
mN, φm1 = π , sm2 = 6 mN, φm2 = 0 (red curve); sm1 = sm2 = 9 mN,
φm1 = π , φm2 = 0 (black curve).

IV. CONCLUSION

In this work we have shown how the OM features, viz., the
optomechanically induced transparency and asymmetric Fano

line shapes can arise in a four-mirror macroscopic optome-
chanical cavity, due to the inclusion of coherent mechanical
driving of the two movable mirrors. In the macroscopic four-
mirror optomechanical system considered here, we identify
interfering pathways leading to Fano resonances. We further
show that these features can be efficiently controlled by
changing the phase and the amplitude of mechanical driving.
The sensitive changes that are observed in the Fano line
shapes with slight modifications in the amplitude and phase
of the mechanical driving fields suggests the possibility of
exploiting this feature to detect unknown harmonic forces.
For the special case of the frequencies of both the mechanical
oscillators being equal, it is shown that the phase can be used
as a switch to generate interesting optomechanical effects. The
freedom of tuning the two mechanical oscillators indepen-
dently of each other leads to the generation of tunable double
Fano-like resonance. In conclusion, this work suggests the
possibility of observing interesting tunable quantum effects
at macroscopic scales, with the aid of coherent mechanical
driving fields.

APPENDIX

The steady-state solutions are given by

Pis = 0 (i = 1, 2), as = εpu

κ + i�
, Qis = Gi|as|2

ωmi
(i = 1, 2), (A1)

where � = �c − G1Q1 − G2Q2. The equations of motion for the fluctuations in each of the operators are obtained as
(

d

dt
+ (κ + i�c)

)
δa = εpre

−iδt + iG1(Q1sδa + asδQ1) + iG2(asδQ2 + Q2sδa), (A2)
(

d2

dt2
+ γ1

d

dt
+ ω2

m1

)
δQ1 = G1ωm1(a∗

s δa + asδa∗) + S′
m1ωm1

h̄
cos(δt + φm1), (A3)

(
d2

dt2
+ γ2

d

dt
+ ω2

m2

)
δQ2 = G2ωm2(a∗

s δa + asδa∗) + S′
m2ωm2

h̄
cos(δt + φm2). (A4)

We next use the ansatz

δXi = X −
i e−iδt + X +

i eiδt (i = 1, 2) (A5)

for each of the variables and substitute this into the equations of motion for the fluctuations and group the coefficients of like
terms to obtain the solutions for the relevant quantities of interest:

[κ + i(� − δ)]a−
1 = εpr + iG1asQ

−
1 + iG2asQ

−
2 , (A6)

[κ + i(� + δ)]a+
1 = iG1asQ

+
1 + iG2asQ

+
2 , (A7)

(
ω2

m1 − iγ1δ − δ2
)
Q−

1 = G1ωm1[a∗
s a−

1 + as(a
+
1 )∗] + S′

m1ωm1

2h̄
e−iφm1 , (A8)

(
ω2

m1 + iγ1δ − δ2)Q+
1 = G1ωm1[a∗

s a+
1 + as(a

−
1 )∗] + S′

m1ωm1

2h̄
e+iφm1 , (A9)

(
ω2

m2 − iγ2δ − δ2
)
Q−

2 = G2ωm2[a∗
s a−

1 + as(a
+
1 )∗] + S′

m2ωm2

2h̄
e−iφm2 , (A10)

(
ω2

m2 + iγ2δ − δ2
)
Q+

2 = G2ωm2[a∗
s a+

1 + as(a
−
1 )∗] + S′

m2ωm2

2h̄
e+iφm2 , (A11)
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the solutions of which are obtained as

Q−
2 = εprc∗

s G2χ2(δ)α + 2�χ2(δ)G1G2|cs|2Q−
1 + Sm2χ2(δ)αβe−iφm2

αβ − 2G2
2|cs|2χ2(δ)�

, (A12)

Q−
1 = αχ1(δ)

{
εprc∗

s G1
[
d2 + 2�G2

2|c2s|2χ2(δ)
] + βSm1e−iφm1 d2

} + αβχ1(δ)χ2(δ)2�G1G2|c2s|2Sm2e−iφm2

d1d2 − 4�2G2
1G2

2|cs|4χ1(δ)χ2(δ)
, (A13)

a−
1 = εpr + iG1asQ

−
1 + iG2asQ

−
2

κ + i(� − δ)
. (A14)

Each of the hitherto undefined quantities that appear in the above solutions are defined by

α = [κ − i(� + δ)], β = [κ + i(� − δ)], d1 = αβ − 2G2
1|cs|2χ1(δ)�, d2 = αβ − 2G2

2|cs|2χ2(δ)�,

� = �c − G1Q1 − G2Q2, Smi = S′
mi

2h̄
(i = 1, 2), χ1(δ) = ωm1

ω2
m1 − iγ1δ − δ2

, and χ2(δ) = ωm2

ω2
m2 − iγ2δ − δ2

. (A15)
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