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Predicting large-Chern-number phases in a shaken optical dice lattice
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With respect to the quantum anomalous Hall effect (QAHE), the detection of topological nontrivial large-
Chern-number phases is an intriguing subject. Motivated by recent research on Floquet topological phases, this
study proposes a periodic driving protocol to engineer large-Chern-number phases using the QAHE. Herein,
spinless ultracold fermionic atoms are studied in a two-dimensional optical dice lattice with nearest-neighbor
hopping and a �- or V-type sublattice potential subjected to a circular driving force. Results suggest that large-
Chern-number phases exist with Chern numbers C = −3, which is consistent with the edge-state quasienergy
spectra.
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I. INTRODUCTION

In recent decades, since the discovery of the quantum
Hall effect at low temperatures with strong magnetic fields
[1], many studies have been conducted on the topological
features of condensed matter [2–10]. The quantum anomalous
Hall effect (QAHE) is a branch in this sustained field [8],
and Chern insulators are one of the many insulators used in
QAHE. Different from other topological insulators with time
inversion symmetry [6], Chern insulators have topological
features characterized by the Chern number (C), also known
as the topological invariant, which was first proposed by
Thouless-Kohmoto-Nightingale-den Nijs [2]. Moreover, C �=
0 (C = 0) corresponds to the topological nontrivial (trivial)
phase.

A paradigmatic Chern insulator system is the Haldane
model [3]. Motivated by this model, some other lattice sys-
tems [11–23] are also predicted to contain topological nontriv-
ial phases. Of these, large-Chern-number phases with QAHE
have attracted widespread attention. In particular, some stud-
ies have considered long-range tunneling [11,12] or complex
magnetic flux [21–23] to obtain topological phases with large
Chern numbers. Further, large-Chern-number phases are theo-
retically predicted to appear in multilayered crystal structures
[24–26]. In the field of interface transport, such intriguing
phases are expected to enhance the performance of certain
devices by reducing the channel resistance [27,28]. However,
owing to the limitations of lattice structure, observing large-
Chern-number phases in reality remains impossible. Even
in topological nontrivial materials, the Chern numbers are
mostly detected for C = ±1 [29–31]. Rarely, in the context
of the photonic crystals [32], Chern numbers are measured up
to C = 4 by introducing an external magnetic field.

Recently, the periodic driving protocol has been developed
to generate the Floquet topological nontrivial phases with
the QAHE. Its flexibility and versatility realize the possible
designing of Floquet topological bands on demand; the sce-
nario of Floquet topological states has been studied in many

systems [33–51]. Moreover, the Floquet engineering is also
recognized as an effective approach to realize the topological
phases with large topological invariants [46–48,52,53]. This
study aims to exploit a periodic driving protocol applied to
a two-dimensional (2D) dice lattice [21–23,54–61] to realize
large-Chern-number phases with the QAHE. To this end, spin-
less ultracold fermionic atoms were studied in a 2D optical
dice lattice with nearest-neighbor hopping and a �- or V-
type sublattice potential subjected to a circular driving force,
F(t ) = F [cos(ωt )ex − sin(ωt )ey] [33]. Here, F and ω are the
amplitude and frequency of the driving force, respectively.
The proposed protocol is based on two considerations: lattice
geometry, which can be created using laser beams [62], and
shaking [33], like the Haldane model [3]. We hope this system
can be realized using similar experimental settings. After
calculating the effective Hamiltonian, large-Chern-number
phases are identified that contain Chern numbers C = −3;
these results are consistent with the edge-state quasienergy
spectra.

The remaining portions of this article are organized as fol-
lows. Section II describes the periodically driven dice model,
which can be realized using the ultracold atoms trapped in
a circularly shaken 2D dice optical lattice, presenting the
effective Hamiltonian derived from the Floquet theorem in
the process. Section III maps the effective Hamiltonian into
the SU(3) system and numerically obtains the Chern-number
phases; the bulk-edge correspondence is also analyzed. Fi-
nally, a brief summary is presented in Sec. IV.

II. PERIODICALLY DRIVEN DICE MODEL

Spinless ultracold fermionic atoms trapped in a shaken 2D
dice optical lattice were considered, as depicted in Fig. 1(a).
Three interpenetrating triangle sublattices were present: R, B,
and G. This lattice geometry is similar to the Haldane model
and can be formed using three retroreflected laser beams
[62]. Through tight-binding approximation, the single-particle
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FIG. 1. (a) Schematic of the dice lattice with sublattice R (red), B
(blue), and G (green). The Hamiltonian Ĥtun possesses real tunneling
matrix elements J between neighboring R and B sites and J1 between
neighboring G and R or B sites; the circular arrows show the tunnel-
ing between the same R and B sublattice sites with the tunneling
phase eiϕ (ϕ = π

2 ), which is contained in the effective Hamiltonian
Ĥeff . The vectors as (s = 1, 2, 3) connect the nearest-neighbor sites,
whereas vectors bs (s = 1, 2, 3) connect the next-nearest-neighbor R
and B sites. In this paper, we choose |a1| = |a2| = |a3| = a as units
of length, thus, |bs| = √

3a = √
3. (b) The first Brillouin zone of the

dice lattice. �, K, and M are high-symmetry points, connected by
three dashed red arrows.

Hamiltonian of this shaken lattice system can be expressed as

Ĥ = Ĥtun + Ĥpot + Ĥdri. (1)

The first term Ĥtun indicates the tunneling kinetics and can
be expressed as

Ĥtun =
∑

〈Rj ,Bj′ 〉
J (ĉ†Rj

ĉB j′ + H.c.)

+
∑

〈Gj ,Rj′ 〉
J1(ĉ†Gj

ĉR j′ + H.c.)

+
∑

〈Bj ,Gj′ 〉
J1(ĉ†Bj

ĉGj′ + H.c.), (2)

where the sum extending over the nearest-neighbor sites, Rj ,
Bj , and Gj , denotes the relevant sites of sublattice R, B, and
G, respectively, and j denotes the corresponding site index;
J denotes the tunneling parameter between one R site and
one B site; J1 denotes the tunneling parameter between one
R and B site and one G site; and ĉR j , ĉB j , and ĉGj denote the
corresponding fermionic annihilation operators.

The second term Ĥpot describes a special on-site potential
for atoms populating various sublattices:

Ĥpot = εR

∑
Rj

ĉ†Rj
ĉR j + εB

∑
Bj

ĉ†Bj
ĉB j + εG

∑
Gj

ĉ†Gj
ĉGj , (3)

where R and B sublattices have the same on-site potential
εR = εB ≡ γ1	 and the G sublattice has the on-site potential
of εG ≡ γ2	, where 	 denotes the strength of the potential
and γ1 and γ2 reflect how fast the tunable potential energy
changes. If γ1 and γ2 are both positive and γ1 < γ2, the
potential presents a �-type (V-type) structure when 	 >

0 (	 < 0). The �-type (V-type) structure also appears in
other cases where γ1 and γ2 are both completely or partially

negative. Such on-site potential is different from that pre-
sented in previous studies on dice models [21–23]; it can be
realized by tuning the single-beam lattice depths.

The third term Ĥdri denotes the contribution of the circular
periodic driving force in terms of the time-dependent on-site
potential. This third term can be expressed as

Ĥdri =
∑
α j

V (rα j , t )n̂α j , (4)

where the sum runs over all lattice sites, rα j denotes the lattice-
site coordinates, α ε {R, G, B} denotes the sublattice type,
n̂α j = ĉ†α j

ĉα j are the site number operators, and V (rα j , t ) =
−rα j · F(t ).

Herein, the case of strong driving is explored, wherein the
amplitude F is scaled according to the driving frequency;
i.e., Fa ∼ h̄ω. Therefore, performing a gauge transformation
before employing high-frequency approximation [49–51] is
necessary. The gauge-dependent time-periodic unitary oper-
ator can be expressed as

Û (t ) = exp

⎛
⎝− i

h̄

∑
α j

∫ t

0
V (rα j , t )dt · n̂α j

⎞
⎠. (5)

Next, the transformed time-periodic Hamiltonian is deter-
mined (see the details provided in Appendix A):

Ĥtra = Û †(t )ĤÛ (t ) − ih̄Û †(t )
d

dt
Û (t )

= Û †(t )ĤtunÛ (t ) + Ĥpot. (6)

The important features of the above time-dependent
Hamiltonian Ĥtra can be acquired from an effective time-
independent Hamiltonian [49–51]. Before deriving the effec-
tive Hamiltonian, we first expand the Hamiltonian Ĥtra as
follows:

Ĥtra =
∞∑

m=−∞
Ĥmeimωt + Ĥpot, (7)

where Ĥm denotes the Fourier components, modified by
the Bessel functions Jm(β ), with β = Fa/(h̄ω) being the
isotropic parameter (see the derivation in Appendix B). At
high frequency, we then truncate the exact Hamiltonian Ĥtra

into finite orders [49–51] and get the effective Hamiltonian as
follows

Ĥeff = Ĥ0 +
∞∑

m=1

1

mh̄ω
[Ĥm, Ĥ−m] + Ĥpot, (8)

where the higher-order terms involving 1/h̄ω are neglected in
high-frequency driving cases.

In the following theoretical and numerical analysis, β =
2.2 and high frequency ω = 6J/h̄ are considered as an exam-
ple; the terms in Ĥm containing Jm(β ) (m � 3) are negligible
(see Fig. 2). Finally, the effective Hamiltonian Ĥeff of Eq. (8)
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FIG. 2. Zero-order Bessel function (dashed red line), as well as
the squares of the first-, second-, and third-order Bessel functions
divided by the products of their order number and h̄ω (dashed green,
blue, and magenta lines, respectively) as a function of the isotropic
parameter β = Fa/(h̄ω).

is further expressed as

Ĥeff = Ĥ0 +
∑

m=1,2

1

mh̄ω
[Ĥm, Ĥ−m] + Ĥpot

=
⎡
⎣ ∑

〈Rj ,Bj′ 〉
Jrbĉ†Rj

ĉB j′ +
∑

〈Bj ,Gj′ 〉
Jbgĉ†Bj

ĉGj′

+
∑

〈Gj ,Rj′ 〉
Jgr ĉ†Gj

ĉR j′ +
∑


Rj ,Rj′�
Jrr ĉ†Rj

ĉR j′

+
∑


Bj ,Bj′ �
Jbbĉ†Bj

ĉB j′ + H.c.

⎤
⎦ + εR

∑
Rj

ĉ†Rj
ĉR j

+ εB

∑
Bj

ĉ†Bj
ĉB j + εG

∑
Gj

ĉ†Gj
ĉGj , (9)

where 
 · · · � denotes the next-nearest-neighbor relations,
and the tunneling parameters are

Jrb = JJ0(β ),

Jbg/gr = J1J0(β ),

Jrr/bb =
√

3

2
eiσ π

2

(
J2 − J2

1

h̄ω

)[
J 2

1 (β ) − 1

2
J 2

2 (β )

]
, (10)

with σ = 1 for clockwise tunneling and σ = −1 for counter-
clockwise tunneling.

III. CHERN NUMBER AND EDGE STATE

The infinite system is considered such that the translational
symmetry is preserved. The Ĥeff can be mapped into the
SU(3) system, and the effective Bloch Hamiltonian [63,64]
is expressed as

Ĥeff (k) = I (k) + d(k) · �λ, (11)

where k denotes a wave vector, I (k) denotes a scalar, d(k) de-
notes an eight-dimensional real vector, and �λ denotes a vector

of Gell-Mann matrices [65]. In practice, the scalar I (k) has no
effect on the wave function; hence, the Chern number can only
be determined by the coefficient vectors d(k). The discrete
Fourier transformation is performed in the three-component
basis (ĉk,R, ĉk,B, ĉk,G)T , where ĉk,α = 1√

N

∑
α j

e−ik·rα j ĉα j (N
is the unit-cell number), and the components of the vector
d(k) are given as

d1 = Jrb

∑
s

cos (k · as), d2 = Jrb

∑
s

sin (k · as),

d4 = d6 = Jgr/bg

∑
s

cos (k · as),

d7 = −d5 = Jgr/bg

∑
s

sin (k · as),

d3 = −2Jrr/bb

∑
s

sin(k · bs), d8 = γ1 − γ2√
3

	,

(12)

where we have set a = 1 for convenience and the six vectors
as and bs (s = 1, 2, 3), which are shown in Fig. 1(a), are
displayed as

a1 =
(

0

−1

)
, a2 = 1

2

(√
3

1

)
, a3 = 1

2

(−√
3

1

)
,

b1 =
(√

3

0

)
, b2 = 1

2

(−√
3

3

)
, b3 = −1

2

(√
3

3

)
. (13)

Here, a slow-regulated �- or V-type potential with γ1 =
1
3 and γ2 = 1

2 is considered in the rest of the numerical
calculations [66]. There are three bands in our system. For
a given band, the corresponding Chern number is defined as
[23,67,68]

Cn = 1

2π

∮
∂BZ

An(k) · dk, (14)

where ∂BZ denotes the boundary of the first Brillouin zone,
n ∈ {1, 2, 3} refers to the band index and the ascending or-
der denotes the Floquet-band ranging from the lowest to
the highest, An denotes the Berry connection with An =
−i〈ψn(k)|∇k|ψn(k)〉, and |ψn(k)〉 denotes the correspond-
ing eigenvector of Ĥeff (k). In the following, we investigate
the topological properties of the system at 1/3 filling and
2/3 filling [69], described by the quantities C 1

3
and C 2

3
,

respectively. The relationship of the Chern number for the
topological property of the system at different fillings with
the corresponding Chern numbers of the bands is given by
C 1

3
= C1 and C 2

3
= C1 + C2, respectively.

Figures 3(a1) and 3(a2) are the phase diagrams that exhibit
variations of C 1

3
and C 2

3
as a function of the parameter 	. In

Fig. 3(a1), C 1
3

maintains a plateau within the interval of 	

(shown by the dotted red line). Therefore, the system is always
in the topological nontrivial phase with C 1

3
= 1. In Fig. 3(a2),

useful phases appear when the system is at 2/3 filling (shown
by the dotted blue lines). For small values of 	, the system
is in the topological nontrivial phase with C 2

3
= 1. When

	 increases, the system undergoes a phase transition, enter-
ing a nontrivial large-Chern-number phase with C 2

3
= −2.

With the continued growth of 	, the system becomes trivial
with C 2

3
= 0. To illustrate that these topological phases are
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FIG. 3. (a1) Phase diagram of C 1
3

for the gapped lowest band
(1/3 filling). The system always stays in the topological nontrivial
phase with C 1

3
= 1. (a2) The corresponding phase diagram of C 2

3
for

the gapped lower two bands (2/3 filling). The system remains in the
nontrivial phase with C 2

3
= −2. (b)–(d) Gapped dispersions along

the high-symmetry path �-K-M-� [see Fig. 1(b)] with parameters
	 = 0.4J , 	 = 0.65J , and 	 = 0.9J , respectively. The other param-
eter used is J1 = 0.5J . The insets are enlargements of the dispersions
near the high-symmetry points indicated by the arrows.

gapped, we plot the dispersion relations of the bands at three
chosen parameters (	 = 0.4J , 0.65J , and 0.9J) presented in
Figs. 3(b), 3(c), and 3(d), respectively. In each diagram, the
insets show the local amplification of the dispersion near
the high-symmetry points [70]. As can be observed in the
diagrams, no bands touch each other.

Here, the bulk-edge correspondence of the topological
systems is discussed [45]. The Chern numbers of the filled
bands are reflected by the chiral edge states observed in the
edge states of the quasienergy spectrum. The chiral edge states
are studied by considering a cylindrical geometry (shown in
Fig. 4) with a periodic boundary condition in the x direction
and an open boundary condition in the y direction (zig-zag
edge). The lattice structure enclosed by the dashed box rep-
resents the periodic repeating unit, which contains Ns lattice

FIG. 4. Schematic of the cylindrical geometry with a periodic
boundary condition in the x direction and an open boundary con-
dition in the y direction (zig-zag edge). The lattice structure enclosed
by the dashed box represents the periodic repeating unit, which
contains Ns lattice sites.

FIG. 5. Two edge-state quasienergy spectra when the cylindrical
geometry which is shown in Fig. 4 is considered. Ekx denotes the
quasienergy, and higher and lower values of Ek are not shown
corresponding to the bulk states. (a1) 	 = 0.4J . For 2/3 filling, Ekx

is chosen as 0.238J (dashed green line). In this case, a pair of edge
modes exist, labeled P1 and P2. For 1/3 filling, Ekx is chosen as
0.045J (dashed magenta line). Another pair of edge modes, labeled
P3 and P4, also exist. (b1) 	 = 0.65J . For 2/3 filling, Ekx is chosen
as 0.334J (dashed green line). In this case, two pairs of edge modes,
labeled Q1 and Q4 and Q2 and Q3 exist. For 1/3 filling, Ekx is
chosen as 0.130J (dashed magenta line). Here, only one pair of edge
modes, labeled Q5 and Q6, exist. The spatial density distributions of
these paired edge modes are plotted in panels (a2) and (a3) and in
panels (b2)–(b4), respectively. The distribution of the edge modes
with positive group velocity are shown in red, whereas those of
the edge modes with negative group velocity are shown in black.
Results suggest that the edge states corresponding to the edge modes
with opposite velocity are localized on different system boundaries,
presenting the chiral symmetry. Ns = 146 has been considered in the
numerical calculations.

sites. The Hamiltonian can be acquired via partial Fourier
transformation and is parametrized by the good quantum
number kx.

By considering Ns = 146 and choosing 	 = 0.4J (	 =
0.65J), the edge-state quasienergy spectra are plotted as a
function of kx, as shown in Fig. 5(a1) [Fig. 5(b1)] where Ekx

denotes the quasienergy [45,51]. Intuitively, when 	 = 0.4J ,
the quasienergy spectrum intersects at kx = ± π√

3
both for 1/3

and 2/3 filling, implying a pair of chiral edge states regardless
of the filling. Conversely, when 	 = 0.65J , for 2/3 filling,
the quasienergy spectrum intersects in two different manners,
occurring at kx = ± π√

3
and kx = 0. This indicates two pairs

of chiral edge states. For 1/3 filling, only one pair of chiral
edge states are observed. In Figs. 5(a1) and 5(b1), the dashed
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FIG. 6. The spatial density distributions of the edge modes Q2
and Q3 with larger Ns. The corresponding kx stays the as same before.
(a) Ns = 299. (b) Ns = 899. (c) Ns = 1499.

green and magenta lines represent the chosen quasienergies.
P1–P4 and Q1–Q6 are the corresponding edge modes (labeled
in black). To characterize the edge-state localization, the
spatial density distributions of the corresponding edge modes
are plotted in Figs. 5(a2) and 5(a3) and Figs. 5(b2)–5(b4),
respectively. The distributions of the edge modes with positive
group velocity are shown in red, whereas those of the edge
modes with negative group velocity are shown in black. Label
j is the index of the sites contained in the periodic repeating
unit (see Fig. 4), and these sites are arranged in order of B-
R-G-· · · -B-R. Results suggest that edge states corresponding
to the edge modes with opposite velocity are localized on
different system boundaries, presenting the chiral symmetry.

Next, we will analyze the Chern numbers by the edge
modes localized on the j = Ns side. We have known that
C 1

3
= 1 for both 	 = 0.4J and 	 = 0.65J . According to the

bulk-edge correspondence principle [45], P4, P1, and Q6
with positive group velocity all correspond to C = 1, while
Q2 and Q4 with negative group velocity both correspond to
C = −1. Therefore, when 	 = 0.4J , we have C1 = 1 − 0 =
1 and C2 = 1 − 1 = 0; when 	 = 0.65J , C1 = 1 − 0 = 1 and
C2 = −1 + (−1) − 1 = −3. These results are self-consistent
with the phase diagrams in Figs. 3(a1) and 3(a2). We notice
that there exists a finite-size effect on the edge modes Q1 and
Q2. Then we test three spatial density distributions of the edge
modes Q2 and Q3 with larger Ns in Fig. 6. The corresponding
kx stays the same as before but with more localized edge states
when Ns is larger.

IV. SUMMARY

Herein, a periodic driving protocol was proposed to en-
gineer large-Chern-number phases with the QAHE in a 2D

periodically shaken optical dice model. Using the Floquet
method, phase diagrams with 1/3 filling and 2/3 filling were
obtained. We have analyzed the Chern numbers by the bulk-
edge correspondence principle. The analytical results suggest
that large-Chern-number phases exist with Chern numbers
C2 = −3, which is consistent with the edge-state quasienergy
spectra.
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APPENDIX A: DERIVATION OF EQ. (6)

The transformed Hamiltonian Ĥtra in Eq. (6) can be ex-
panded as

Ĥtra = Û †(t )ĤÛ (t ) − ih̄Û †(t )
d

dt
Û (t )

= Û †(t )ĤtunÛ (t ) + Û †(t )ĤpotÛ (t )

=
∑

〈Rj ,Bj′ 〉
J (Û †(t )ĉ†Rj

Û (t )Û †(t )ĉB j′Û (t ) + H.c.)

+
∑

〈Gj ,Rj′ 〉
J1(Û †(t )ĉ†Gj

Û (t )Û †(t )ĉR j′Û (t ) + H.c.)

+
∑

〈Bj ,Gj′ 〉
J1(Û †(t )ĉ†Bj

Û (t )Û †(t )ĉGj′Û (t ) + H.c.)

+ εR

∑
Rj

Û †(t )n̂R jÛ (t ) + εB

∑
Bj

Û †(t )n̂B jÛ (t )

+ εG

∑
Gj

Û †(t )n̂GjÛ (t ), (A1)

where Û (t ) = exp (− i
h̄

∑
α j

χα j (t ) · n̂α j ) with χα j (t ) =∫ t
0 V (rα j , t )dt .

Using the expansions presented above [49–51],

eiX̂ Ŷ e−iX̂ = Ŷ + i[X̂ , Ŷ ] − 1

2
[X̂ , [X̂ , Ŷ ]]

− i

6
[X̂ , [X̂ , [X̂ , Ŷ ]]] . . . (A2)

and considering the relation [n̂α j , n̂α′
j′
] = 0, Ĥtra was finally

obtained, which can be expressed as

Ĥtra =
∑

〈Rj ,Bj′ 〉
J
(
e
−i Fa

h̄ω
sin

(
ωt+θ

R j
B j′

)
ĉ†Rj

ĉB j′ + H.c.
)

+
∑

〈Gj ,Rj′ 〉
J1

(
e
−i Fa

h̄ω
sin

(
ωt+θ

G j
R j′

)
ĉ†Gj

ĉR j′ + H.c.
)

+
∑

〈Bj ,Gj′ 〉
J1

(
e
−i Fa

h̄ω
sin

(
ωt+θ

B j
G j′

)
ĉ†Bj

ĉGj′ + H.c.
)

+ Ĥpot, (A3)
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where the angle θ
α j

α′
j′

is defined by the direction of the vector

pointing from site α′
j′ to its neighbor α j ,

rα j − rα′
j′

= a
[

cos
(
θ

α j

α′
j′

)
ex + sin

(
θ

α j

α′
j′

)
ey

]
. (A4)

APPENDIX B: DERIVATION OF Ĥm

In this Appendix, Eq. (7) is derived. For convenience, we
set

h = exp

[
−i

Fa

h̄ω
sin

(
ωt + θ

α j

α′
j′

)]

= exp

⎡
⎢⎣Fa

h̄ω

e
−i sin

(
ωt+θ

α j
α′

j′

)
− e

i sin
(
ωt+θ

α j
α′

j′

)

2

⎤
⎥⎦. (B1)

By defining the isotropic parameter β = Fa/(h̄ω) and
using the Bessel function

exp

[
ξ

x − x−1

2

]
=

∞∑
�=−∞

J�(ξ )x�, (B2)

we can obtain

h =
∞∑

�=−∞
J�(β )e

−i�
(
ωt+θ

α j
α′

j′

)
,

h∗ =
∞∑

�=−∞
J�(β )e

i�
(
ωt+θ

α j
α′

j′

)
. (B3)

Upon performing Fourier transformation on h and h∗, the
Fourier components of h and h∗ are obtained as follows:

hm = J−m(β )e
imθ

α j
α′

j′ ,

(h∗)m = Jm(β )e
imθ

α j
α′

j′ , (B4)

where J−m(β ) = (−1)mJm(β ). Therefore, Ĥm is obtained in
Eq. (7) as follows:

Ĥm =
∑

〈Rj ,Bj′ 〉
J

(
J−m(β )e

imθ
R j
B j′ ĉ†Rj

ĉB j′ + Jm(β )e
imθ

R j
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ĉR j

)
+
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J1
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imθ

G j
R j′ ĉ†Rj′

ĉGj

)

+
∑
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J1

(
J−m(β )e
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B j
G j′ ĉ†Bj

ĉGj′ + Jm(β )e
imθ

B j
G j′ ĉ†Gj′

ĉB j

)
. (B5)
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