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Detecting a logarithmic nonlinearity in the Schrödinger equation using Bose-Einstein condensates
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We study the effect of a logarithmic nonlinearity in the Schrödinger equation (SE) on the dynamics of a freely
expanding Bose-Einstein condensate (BEC). The logarithmic nonlinearity was one of the first proposed nonlinear
extensions to the SE which emphasized the conservation of important physical properties of the linear theory,
e.g., the separability of noninteracting states. Using this separability, we incorporate it into the description of
a BEC obeying a logarithmic Gross-Pitaevskii equation. We investigate the dynamics of such BECs by using
variational and numerical methods and find that, by using experimental techniques like δ-kick collimation,
experiments with extended free-fall times as available on microgravity platforms could be able to lower the
bound on the strength of the logarithmic nonlinearity by at least one order of magnitude.
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I. INTRODUCTION

Quantum theory is the most fundamental theory in physics
and on the elementary level, all types of matter, as well as
radiation, have to be described by it. To this day, the time
evolution of quantum systems as predicted by the Schrödinger
equation (SE) has been confirmed in many experiments [1,2].
Nonetheless, whether the SE can be regarded as a complete
description or rather a linearized approximation of a more
general theory is still an open question since, despite its great
success, quantum theory has a few unresolved problems, e.g.,
its missing connection to general relativity and the measure-
ment problem.

However, it is not obvious how to modify the SE in
order to tackle these problems. Employed modifications are
for example the generalization of the uncertainty relation
[3–5], the addition of nonlinear [6] and stochastic [7] terms
or higher derivatives [8] to the Schrödinger equation. Such
modifications can be the result of a theory of quantum gravity
in its low-energy limit (see, e.g., Ref. [9]), or may result
from attempts to find a solution to the measurement problem
[10]. Current research focuses more on stochastic nonlinear
terms that describe the wave-function collapse or decoher-
ence, which can be either induced spontaneously or by gravity
[11,12]. A deterministic nonlinear time evolution of the wave
function is nowadays rarely considered, and then usually by
the inclusion of a semiclassical description of gravity as in
the Schrödinger-Newton equation [13]. This can be mainly
contributed to the fact that the most prominent generalization
of a nonlinear SE, as described by Weinberg [6], leads to
problems of locality if extended to the case of multiple entan-
gled particles [14–16]. Even though it is conjectured that this
can be concluded for all nonlinear deterministic extensions
[17,18], there have also been subsequent attempts to extend
existing deterministic nonlinear SEs to the case of multiple
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particles that do not violate locality [19,20] or have disputed
the apparent violation of relativity by nonlinear quantum
mechanics at all [16,21].

Two special cases of nonlinearity have received wider
attention. One is the first formulation of a fundamentally
nonlinear SE which emphasized the necessary separability of
noninteracting states: the logarithmic Schrödinger equation
(LogSE) proposed by Bialynicki-Birula and Mycielski [22].
The nonlinear time evolution is described by

ih̄
∂

∂t
� =

(
− h̄2

2m
∇2 + V − b ln α|�|2

)
�. (1)

The LogSE comprises terms of the ordinary SE and the
nonlinear term −b ln α|�|2, where α is a physically irrele-
vant real constant (as it only leads to a global energy shift)
of dimension L3 and b is the strength of the logarithmic
nonlinearity in units of energy. It keeps important properties
of the linear SE, e.g., conservation of probability and norm,
invariance under permutations, Galileo transforms, and more.
Most importantly, it guarantees that the time evolution of
product states can be separated for all times.

The second case is the Gross-Pitaevskii equation

ih̄
∂

∂t
� =

(
− h̄2

2m
∇2 + V + g|�|2

)
�, (2)

which describes the dynamics of a Bose-Einstein condensate
(BEC). Its nonlinearity is just an effective description of scat-
tering processes taking place in the degenerate quantum gas.
As macroscopically sized quantum objects, BECs have proven
to be suitable candidates for testing fundamental physics,
whether it be the Schrödinger equation, general relativity, and
their possible intersections [23–25]. These dedicated tests are
important because they broaden the domain of application of
quantum theory or might give hints about what direction to
follow in search for deviations. This is especially true with
regard to recent developments in long-fall-time experiments
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of BECs in microgravity [26–28] on sounding rockets [29]
and in space [30–32].

In this article we study deviations due to a possible fun-
damental logarithmic nonlinearity in the time evolution of
Bose-Einstein Condensates (BECs).

The current upper bound on the strength of the logarithmic
nonlinearity stems from neutron optical diffraction experi-
ments [33] in which a neutron wave packet’s lateral evolution
of |�(�r, t )|2 diffracted on a straight edge was observed. They
found that b � 3.3e − 15 eV.

The article is structured as follows: In Sec. II we derive an
equation describing a BEC at zero temperature including the
logarithmic nonlinearity. In Sec. III we investigate the dynam-
ics of the proposed equations describing the BEC. For this, we
use numerical simulations of feasible experiments that could
be able to establish new upper bounds on the nonlinearity’s
strength. In Sec. IV we analyze possible shortcomings of our
investigation and propose experiments with their respective
error budgets.

II. LOGARITHMIC GROSS-PITAEVSKII EQUATION

The logarithmic nonlinearity can be incorporated into the
theoretical description of a BEC by starting with basic as-
sumptions as made in many textbook examples on Bose-
Einstein condensation.

We assume that the condensates contains a large number
N � 1 of bosons, so that we can approximate the field opera-
tor as a wave function ψ̂ ({�r}, t ) ≈ ψ ({�r}, t ), where the set of
position vectors �r1, �r2, . . ., �rN is written as {�r}. Furthermore,
we assume that all N bosons occupy the same ground state
ψ and are not correlated with each other. Thus, we can
write the wave function in a Hartree ansatz as �({�r}, t ) ≈⊗N

i=1 ψ (�ri, t ) with
∫ |�({�r}, t )|2d{�r} = N . In the low-energy

limit, the scatter process of particle i with particle j in
the dilute gas (ρ � a−3, where a is the s-scatter length) is
described by the approximated binary interaction potential
V (�ri, �r j ) = gδ(�ri − �r j ), with g = 4π h̄2a

m .
The Hartree ansatz enables us to take advantage of the

separability property of the logarithmic nonlinearity. Using
this, we obtain

b ln |�({�r}, t )|2 = b
N∑

i=1

ln |ψ (�ri, t )|2. (3)

This makes the logarithmic nonlinearity part of the single-
particle Hamiltonian. The Hamiltonian is then

H =
N∑

i=1

[
− h̄2∇2

�ri

2m
+ V (�ri, t ) − b ln |ψ (�ri, t )|2

]

+ g
N∑

i< j

δ(�ri − �r j ). (4)

Imposing the stationary condition

δ

∫
Ldt = 0

= δ

[ ∫
ih̄

2

(
�† ∂

∂t
� − �

∂

∂t
�†

)
d�rdt +

∫
Edt

]
,

(5)

where E = 〈�|H |�〉, one can derive the equation governing
the time evolution which is

ih̄
∂�(�r, t )

∂t
= δE

δ�† (6)

=
[

− h̄2

2m
∇2 + V (�r, t )

]
�(�r, t )

+[−b ln |�(�r, t )|2 + g|�(�r, t )|2]�(�r, t ). (7)

We absorbed N into the wave function, ψ −→ √
N�, and

approximate N2 ≈ N (N − 1) during calculation of the energy
functional E . The resulting equation (7) is constituent of
the usual linear kinetic- and potential-energy operators, the
nonlinear terms from the Gross-Pitaevskii interaction, and
logarithmic nonlinearity. We hence refer to it as the logarith-
mic Gross-Pitaevskii equation (LogGPE).

The LogGPE preserves all properties associated with
density-dependent nonlinearities such as conservation of
probability and invariance under permutation. The separabil-
ity is lost due to the interaction term. Note that any nonlinear-
ity, which is homogeneous (as required by Weinberg) or oth-
erwise obeys the separability condition, can be incorporated
in the same way as done here.

Variational solutions of the logarithmic
Gross-Pitaevskii equation

Finding analytical solutions to nonlinear problems is rather
difficult, therefore we only discuss the dynamics using varia-
tional methods and the system’s Lagrangian.

We can use Eq. (5) to obtain an approximated result for
the time evolution of a logarithmic BEC by making an ansatz
for the wave function as described in Refs. [34,35]. We will
assume a Gaussian-shaped wave function

�(x, y, z, t ) =
∏

η=x,y,z

1√
2πσ 2

η (t )

× exp

(
− (η − η0(t ))2

4σ 2
η (t )

+ iηαη(t ) + iη2βη(t )

)
,

(8)

with phase terms αη and βη, which are proportional to the
average velocity and inverse radius of curvature, respec-
tively. The Gaussian envelope is chosen because it keeps
its shape in the linear limit and is the soliton solution of
the LogSE. Using this ansatz for the wave function and set-
ting V (�r, t ) = m/2(ω2

x x2 + ω2
y y2 + ω2

z z2), one can solve the
corresponding Euler-Lagrange equations for the Lagrangian
L(t, η0(t ), αη(t ), βη(t )). From the resulting equations we ob-
tain a set of coupled ordinary differential equations describing
the time evolution of the Gaussian trial function’s width under
the influence of dispersion, the harmonic potential, and both
nonlinearities:

∂2

∂t2
σx(t ) = h̄2

4m2
σ−3

x (t ) − ω2
xσx(t )

+ h̄2Na

4m2
√

π
σ−2

x (t )σ−1
y (t )σ−1

z (t ) − b

m
σ−1

x (t ).

(9)
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The equations for σy(t ) and σz(t ) can be obtained by cyclic
permutation x −→ y −→ z −→ x. From Eq. (9) we see that the
coupling between spatial dimensions stems from the Gross-
Pitaevskii interaction. The logarithmic nonlinearity does not
induce a coupling between different spatial dimensions due
to its separability and the Hartree ansatz we made. The ap-
plied approximations, namely, binary interaction potential and
separable wave function, require us to search for deviations
in regimes where the gas is dilute and atomic interactions
weak. In addition, the nonlinearity’s contribution to the overall
energy of a trapped BEC is very small in the presence of
two-body interactions. Experiments searching for deviations
with trapped BECs are hence not suitable, even though many
features, e.g., instability conditions, are altered by the loga-
rithmic nonlinearity. Therefore, we investigate deviations in
the ballistic expansion of BECs.

III. DYNAMICS OF A LOGARITHMIC
BOSE-EINSTEIN CONDENSATE

In this section we study the dynamics of a freely expanding
logarithmic BEC released off a trap under typical experimen-
tal parameters. We look at the time evolution of the BEC’s
width after release of a spherically symmetric trap [so that
σx(t ) = σy(t ) = σz(t ) = σ (t )] and show how the width as a
function of time differs due to the logarithmic nonlinearity’s
influence. This idea is very much alongside the lines of
the last experimental tests using neutron-optical diffraction
experiments in 1981 [33]. Then we discuss the application of
δ-kick collimation (DKC) to magnify these effects and follow
up with an error estimation of the discussed experiment.

A. Free expansion of a spherically symmetric
Bose-Einstein condensate

When the LogSE was first proposed it turned out especially
appealing because it allowed for Gaussian-shaped, solitonic
solutions with width σeq. If the wave function is of width
σeq, linear dispersion and nonlinear self-interaction are in
equilibrium and |�(�r, t )|2 does not change its appearance. In
contrast with the linear time evolution, it leads to a spatial
confinement of the wave function. Thus, we are searching for
an unexpected narrowing of the matter wave packet. For the
spherically symmetric case, the three equations of (9) reduce
to

∂2

∂t2
σ (t ) = h̄2

4m2
σ−3(t ) − ω2σ (t )

+ h̄2Na

4m2
√

π
σ−4(t ) − b

m
σ−1(t ). (10)

To explore the logarithmic nonlinearity’s influence on a
BEC, we numerically integrate Eq. (10) in order to obtain the
width’s time evolution σ (t ). We employ typical experimental
parameters of a 87Rb condensate [N = 5 × 104, a = 90a0,
σ (0) = 2.5 μm, σ̇ (0) = 0] and a free propagation time of 1 s.
The left graph of Fig. 1 depicts σ (t ) of this BEC for different
values of b.

One can see a narrowing of the BEC’s width over
time compared with the usual GP-energy-driven expansion
due to the logarithmic nonlinearity. The blue (dashed) line

corresponds to the current known upper bound b < 3.3 ×
10−15 eV. After 1 s of free propagation it differs by ≈20 μm
compared with the linear case (b = 0). The dotted (green,
orange, red) lines depict the expansion for larger values of
b. We chose b arbitrarily so that one can see the spatial
confinement of the wave function taking place. One can see
that there exists a maximum width σmax = max σ (t ) which is,
as we will show, not only a function of b, but also the initial
conditions of the BEC [σ (0), σ̇ (0), N , and a].

The logarithmic BEC’s maximum width can be calculated
by using the energy functional 〈�|H |�〉. Inserting the Gaus-
sian ansatz from Eq. (8),the energy per particle is

E (σ (t ))

N
= 3

2
mσ̇ 2(t ) + 3h̄2

8mσ 2(t )
+ 3

2
mω2σ 2(t )

+ h̄2Na

4
√

πmσ 3(t )
+ 3b ln σ (t ) + C, (11)

where the time derivative joined the equation via the rela-
tion mσ̇ (t ) = −2h̄β(t )σ (t ), which is obtained by solving the
Euler-Lagrange equations, the center-of-mass motion was set
αη(t ) = 0, and C is an arbitrary constant. As the BEC is
released (ω = 0), the width immediately starts to increase.
Hence, energy contributions with σ (t ) in the denominator
become smaller. Due to its conservation, the initial energy
transfers to the σ̇ (t )2-dependent term and, in the case of
b = 0, reaches a constant value in the far field. If b �= 0, the
energy of the logarithmic constituent is increasing and will
ultimately counter the dispersion. This leads to a contraction
until, again, the pressure of Heisenberg uncertainty and two-
particle interactions lead to an expansion.

Asserting that the initial energy E (σ (0)) completely trans-
fers into the logarithmic energy contribution (at which point
the BEC can only contract), we find the formula for the
maximum value of σ (t ) is

σmax = max σ (t ) = σ (0) exp χ, (12)

where

χ = 1

3b

(
3

2
mσ̇ 2(0) + 3h̄2

8mσ 2(0)
+ h̄2Na

4
√

πmσ 3(0)

)
. (13)

This maximum width is indicated in the left graph of
Fig. 1 by horizontal lines for the two examples for which the
confinement is visible. The dimensionless parameter χ is the
ratio of initial energy to b.

The right graph of Fig. 1 depicts the contour lines of
the difference in width of linear and nonlinear free expan-
sion σ (t ; b = 0) − σ (t ; b = 3.3 × 10−15 eV) for different χ .
Since b is set, we change the initial width σ (0) for variation
of χ . The values for N , a, and σ̇ (t ) are the same as in the
simulations of Fig. 1 (left). We see that, in the regime of large
χ , smaller absolute deviations of σ (t ) are found. This is due to
the prevalence of interaction and kinetic energy in the system.
In the vicinity of χ ≈ 1, we find the strongest deviations. This
is the region in which we find equilibrium of logarithmic self-
interaction and dispersion which results in solitonic behavior
of the logarithmic BEC. When χ � 1, the initial energy of the
system consists mainly of logarithmic self-interaction energy,
and the initial width is the upper bound σmax ≈ σ (0). In these
cases the BEC does not even disperse but immediately starts
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FIG. 1. (left) Numerically simulated time evolution of a spherically symmetric BEC’s width σ (t ) during free propagation for different
values of b. The blue (dashed) curve represents the evolution under the current known upper bound on b. The two horizontal lines show the
calculated maximum width from Eq. (12) for the two examples for which spatial confinement is visible. (right) Contour lines depicting the
difference in width of linear and nonlinear expansion σ (t ; b = 0) − σ (t ; b = 3.3 × 10−15 eV) for different χ [see Eq. (13)]. The parameter χ

has been varied by changing the initial width σ (0) while keeping N = 5 × 104, a = 90a0, and σ̇ (0) = 0. For example, χ = 103 corresponds
to roughly 1 μm and χ = 10−1 to 30 μm initial width of the simulated BEC.

to contract until the contraction is countered by the resulting
repulsive two-body interactions.

As shown, decreasing the initial kinetic and GP inter-
action energy is advantageous when searching for devia-
tions due to a logarithmic nonlinearity. One can think of
many different ways of achieving this, for example, prepar-
ing BECs with less density (smaller atom number N or
larger initial width σ (0), however this might not be fa-
vorable because high densities are an important factor in
Bose-Einstein condensation), smaller a (BEC species with
inherently smaller scattering length or via tuning of Feshbach
resonances), and removing the BEC’s kinetic energy after the
initial expansion via external potentials which slow down the
expansion.

The latter can be achieved, for example, by using optical
or magnetic δ-kick collimation (DKC) techniques, in which a
trapping potential is shortly switched on in order to counter
the BEC’s dispersion [36]. This magnetic or optical lens
can ultimately be used to generate a collimated (minimally
spreading) matter beam with low interaction energy.

B. Enhancing the logarithmic nonlinearity’s effects by using
δ-kick collimation

By using DKC we are able to diminish the effects due to
the high initial interaction energy and decrease χ which, in
turn, magnifies the logarithmic nonlinearity’s effects on the
BEC’s dynamics. This has been similarly used in order to infer
bounds on collapse models from observation of collimated
cold atom clouds [37,38].

For the simulation of free expansion experiments with
DKC, we choose the same parameters as in the previously
discussed simulations of Sec. III A. The only difference being
that, after a time tDK = 10 ms, a harmonic DKC pulse is

applied. The angular frequency ω of the harmonic potential
[see Eq. (9)] is set to a value that leads to β = σ̇ = 0 (infinite
radius of curvature) at the end of the DKC sequence. The DKC
pulse is so short (�t = 10 μs) that we approximate it as a thin
lens. This means that, in order to collimate the matter beam,
ω2�t ≈ 1/tDK [37]. The simulated time evolution of a BEC’s
width σ (t ) subjected to this DKC pulse is shown in the left
graph of Fig. 2.

We see that the collimation of the BEC does indeed in-
crease the deviations if compared with the free expansion in
Fig. 1. The value of χ is on the order of unity for all examples
shown. The evolution under the current upper bound on b
(blue, dashed line) already differs by ≈60 μm after 1 s of free
propagation, instead of previously ≈20 μm without DKC.
The simulated expansions for larger values for b (dotted,
green, orange, and red line) show the previously described
behavior in the case of χ � 1, where the BEC’s maxi-
mum width is given by the prepared width using the DQK
pulse.

The difference in width, σ (t ; b = 0) − σ (t ; b), for these
experiments is shown in the left graph of Fig. 2. It becomes
apparent that current experiments of BECs in microgravity
could be able to lower the bound on b, since BECs have
already been generated with multiple seconds of free-fall time
[26–29]. For example, the width differs by 5 μm after 1 s of
free propagation, with a value of b one magnitude lower than
the current limit.

C. Error estimation

We now give a brief error estimation of the proposed
experiment.

According to the GPE, the width’s rate of change dur-
ing free expansion of a BEC reaches a constant value [see
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FIG. 2. (left) Numerically simulated time evolution of σ (t ) with same parameter as in Fig. 1 but with application of a DKC pulse after
10 ms of free propagation. The inset plot shows the collimation process of the matter beam. (right) Contour lines depicting the difference in
width σ (t ; b = 0) − σ (t ; b) for different b of the same experiment using DKC as described for the left graph.

Eq. (11)] in the far-field t � mσ 2(0)/h̄ (also t � tDK, so we
set tDK = 0 for convenient notation). The rate of expansion is

σ̇ 2(t � mσ 2(0)/h̄) = σ̇ 2(0)+ h̄2

4m2
σ−2(0)+ h̄2Na

6
√

πm2
σ−3(0)

= σ̇ 2
R + σ̇ 2

HU + σ̇ 2
GP, (14)

where the indices R, HU, and GP indicate the individual con-
tributions due to residual rate of change, Heisenberg uncer-
tainty, and the Gross-Pitaevskii interaction, respectively. We
can interpret our experiment as a test of this linear expansion
in the far-field. Using formula (14), we can estimate an error
on the measurement of σ (t ) by acknowledging uncertainties
of N , a, σ (0), and σ̇ (0). The relative error δσ̇ (t ) = �σ̇ (t )/σ̇ (t )
of the BEC’s width can be estimated as

δσ̇ (t ) = 1

σ̇ 2
R + σ̇ 2

HU + σ̇ 2
GP

×
√

σ̇ 4
Rδ2

σ̇ (0)+
(

3

2
σ̇ 2

GP +σ̇ 2
HU

)2

δ2
σ (0) + 1

4
σ̇ 4

GP(δ2
a + δ2

N ),

(15)

where δa, δN , δσ̇ (0), and δσ (0) are the relative errors of a, N ,
σ̇ (0), and σ (0) respectively. The errors of N and a are on equal
footings in terms of influence on δσ (t ). However, we see that
δσ (0) has an especially strong impact on the overall error. This
is due to the cubic impact of σ (0) on the interaction energy
and the quadratic dependence of the quantum pressure.

For example, the total estimated error �σ̇ (t ) for the sim-
ulated experiment in Fig. 2 is smaller than 0.1 μm s−1 if all
relative errors are of 1%. We see that 60 μm is approximately
the expected deviation in width after one second of free
expansion with the current known bound. Even with a 20%
relative error in N , a, and σ (0), the error is 35 μm s−1 and,
thus, after one second of free propagation, smaller then the
expected deviation.

In addition to the exact characterization of the BEC’s
initial state which, in theory, could determine σ (t ), there are
many environmental factors which could give rise to similar
effects. For example, a inhomogeneous magnetic field B might
lead (in first order) to an effective harmonic potential of
frequency ωB that could lead to a narrowing. In the case of the
Gaussian-shaped wave function, the logarithmic nonlinearity
can basically be seen as a time-dependent harmonic potential.
One can calculate that the effect of a logarithmic nonlinearity
and a parasitic harmonic potential are distinguishable if ωB <

b/h̄ ≈ 1 s−1, with the current upper bound on b. This should
be achievable if the BEC is prepared in a magnetic insensitive
state, such that only quadratic Zeeman effects would need to
be accounted for.

Furthermore, it would be important to distinguish a pos-
sible fundamental nonlinearity from an effective, nonlinear,
logarithmic dynamic, for which there exist different ideas of
how those could arise [39–43].

IV. SUMMARY AND DISCUSSION

In this work the feasibility of tests for a logarithmic
nonlinearity in the SE using Bose-Einstein condensates was
examined. Approximating the wave function in a Hartree
ansatz, we proposed the logarithmic Gross-Pitaevskii equation
which describes BECs governed by the LogSE. We analyzed
the free expansion of the logarithmic BEC with several hun-
dreds of milliseconds of free-fall time. As these timescales
become progressively more accessible [26–32], new tests of
the Schrödinger equation and the resulting wave nature of
matter can yield strengthened confirmation for the exactness
of quantum mechanics. However, under typical experimental
parameters, the dynamics induced by two-body interactions
largely outweigh those due to a possible nonlinearity. There-
fore, we proposed using optical or magnetic potentials to
collimate the condensate to obtain a coherent-matter wave
which would propagate as described by the SE. In contrast
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with the linear free expansion, the LogSE spatially confines
a wave packet. This effect can be measured by looking for a
narrowing of the BEC’s density distribution in the far-field.
We have shown that available free-expansion experiments can
be used to determine new bounds on b at least one order of
magnitude below the current known value.

It should be noted that the procedure we followed in order
to derive the LogGPE can be applied for every nonlinearity
which respects the separability condition. There are several
additional nonlinearities, usually proposed for dissipative and
diffusion processes in open quantum systems, which have
this property [39–43] and could therefore be incorporated.
This is especially helpful since, as mentioned in Sec. III C,
it would be necessary to distinguish processes due to resid-
ual interactions with the environment from fundamental
nonlinearities.

The search for nonlinearities in the SE is of fundamental
importance. Since Weinberg’s proposal of a general nonlinear
framework [6] and its experimental testings [44], searches for
deterministic deviations have, to our knowledge, completely
ceased. This is indeed interesting because, since the writings
of the first articles showing the possibility of superluminal
signaling [14–16] there have been several publications at least
questioning its consequences [16,18–21,45].
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