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We present a comprehensive derivation of a set of universal relations for spin-orbit-coupled Fermi gases
in three or two dimensions, which follow from the short-range behavior of the two-body physics. Besides
the adiabatic energy relations, the large-momentum distribution, the grand canonical potential, and pressure
relation derived in our previous work for three-dimensional systems [Phys. Rev. Lett. 120, 060408 (2018)], we
further derive high-frequency tail of the radio-frequency spectroscopy and the short-range behavior of the pair
correlation function. In addition, we also extend the derivation to two-dimensional systems with Rashba-type
spin-orbit coupling. To simply demonstrate how the spin-orbit-coupling effect modifies the two-body short-range
behavior, we solve the two-body problem in the sub-Hilbert space of zero center-of-mass momentum and
zero total angular momentum, and we perturbatively take the spin-orbit-coupling effect into account at short
distance, since the strength of the spin-orbit coupling should be much smaller than the corresponding scale of the
finite range of interatomic interactions. The universal asymptotic forms of the two-body wave function at short
distance are then derived, which are independent on the short-range details of interatomic potentials. We find that
new scattering parameters emerge in the universal asymptotic forms, apart from the traditional s- and p-wave
scattering length (volume) and effective ranges. This is a general and unique feature for spin-orbit-coupled
systems. We show how these two-body parameters characterize the universal relations in the presence of
spin-orbit coupling. This work probably sheds light on understanding the profound properties of the many-body
quantum systems in the presence of the spin-orbit coupling.
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I. INTRODUCTION

Understanding strongly interacting many-body systems is
one of the most daunting challenges in modern physics.
Owing to the development of the experimental technique,
ultracold atomic gases acquire a high degree of control and
tunability in interatomic interaction, geometry, purity, atomic
species, and lattice constant (of optical lattices) [1–5]. To date,
ultracold quantum gases have emerged as a versatile platform
for exploring a broad variety of many-body phenomena as
well as offering numerous examples of interesting many-body
states [6–8]. Unlike conventional electric gases in condensed
matter, atomic quantum gases are extremely dilute, and the
mean distance between atoms is usually very large (on the
order of μm), while the range of interatomic interactions
is several orders smaller (on the order of several tens of
nm). Therefore, the two-body correlations characterize the
key properties of such many-body systems near scattering
resonances, where the two-body interactions are simply de-
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scribed by the scattering length and become irrelevant to the
specific form of interatomic potentials.

A set of universal relations, following from the short-
range behavior of the two-body physics, govern some crucial
features of ultracold atomic gases, and provide powerful
constraints on the behavior of the system. Many of these
relations were first derived by Shina Tan, such as the adiabatic
energy relation, energy theorem, general virial theorem, and
pressure relation [9–11]. Afterwards, more universal behav-
iors were obtained by others, such as the radio-frequency (rf)
spectroscopy, photoassociation, static structure factors, and
so on [12]. All these relations are characterized by the only
universal quantity, named contact, and therefore known as
the contact theory. During the past few years, the concept of
contact theory was further generalized to higher-partial-wave
interactions [13–20] as well as to low dimensions [21–29], and
more contacts appear when additional two-body parameters
are involved.

The reason why the contact theory is significantly im-
portant in ultracold atoms is attributed to its direct connec-
tion to the experimental measurements. Some of the univer-
sal relations were experimentally confirmed, involving vari-
ous measurements of the contact itself. For two-component
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Fermi gases with s-wave interactions, D. S. Jin’s group
measured the contact according to three different methods,
i.e., the momentum distribution, photoemission spectroscopy,
and radio-frequency (rf) spectroscopy, and tested the adia-
batic energy relation when the interatomic interaction was
adiabatically swept [30]. The asymptotic behavior of the
static structure factor at large momentum was confirmed by
C. J. Vale’s group, by using Bragg spectroscopy technique
[31,32]. Recently, the temperature evolution of the contact
was resolved independently by M. Zwierlein’s group and C.
J. Vale’s group, especially the characteristic behavior of the
contact across the superfluid transition [33,34]. For single-
component Fermi gases with p-wave interactions, the feasi-
bility of generalizing the contact theory for higher-partial-
wave scatterings was confirmed experimentally by Thywis-
sen’s group [35], in which the anisotropic p-wave interaction
was tuned according to the magnetic vector [36]. Nowa-
days, the contact gradually becomes one of fundamental
concepts in ultracold atomic physics both theoretically and
experimentally.

In the past decade, the realizations of the spin-orbit (SO)
coupling in ultracold neutral atoms have sparked a great deal
of interest [37–44]. It provides an ideal platform on which to
study novel quantum phenomena resulted from SO coupling
in a highly controllable and tunable way, such as topological
insulators and superconductors [6,7], and (spin) Hall effect
[45–47]. Nevertheless, it is still challenging to theoretically
deal with the many-body correlations for SO-coupled sys-
tems. Unlike the situation in condensed matter, where the in-
teractions between electrons are dominated by the long-range
Coulomb potential, the intrinsic short-range feature of inter-
atomic potentials is unchanged for neutral atoms even in the
presence of SO coupling. The natural question may be raised,
from the point of view of the contact theory, as to whether the
two-body physics could provide crucial constraints on many-
body behaviors of SO-coupled atomic systems. In addition, it
was pointed out that although the short-range feature remains,
the SO-coupling effect does modify the short-range behavior
of the two-body wave function [48]. Therefore, the existence
and exact forms of universal relations for SO-coupled atomic
systems attract a great deal of attention. In [49], we prelim-
inarily discussed some of the universal relations for three-
dimensional (3D) Fermi gases in the presence of 3D isotropic
SO coupling. We proposed a simple way to construct the
short-range wave function, in which the SO coupling effect
could be taken into account perturbatively. Since SO-coupling
in general couples different partial waves of the two-body
scatterings, additional contact parameters appear in universal
relations. Before long, our theory was verified by different
groups near s-wave resonances [50,51].

So far, the generalization of the contact theory in the
presence of SO-coupling is mostly discussed in 3D, while
the derivation of these universal relations is still elusive in
two-dimensional (2D) systems. The short-range behavior of
the two-body physics in 2D is different from that in 3D: the
two-body wave function in 3D is power-law divergent, while
one has to deal with the logarithmic divergence in 2D. From
the point of view of the contact theory, different short-range
correlations in two-body physics result in different forms of
universal relations. Therefore, it requires a direct extension

to 2D in the similar manner as in 3D in the presence of SO
coupling.

The purpose of this article is to present a comprehensive
derivation of universal relations for SO-coupled Fermi gases.
Besides the adiabatic energy relations, the large-momentum
distribution, the grand canonical potential and pressure rela-
tion derived in our previous work for 3D systems [49], we
further derive high-frequency tail of the rf spectroscopy and
the short-range behavior of the pair correlation function. Then
we generalize the derivation of universal relations for 3D
systems to 2D case with Rashba SO coupling in a similar way.
For the convenience of the presentation, we still construct the
short-range behavior of the two-body wave function in the
sub-Hilbert space of zero center-of-mass (c.m.) momentum
and zero total angular momentum as before, and then only s-
and p-wave scatterings are coupled [49,52,53]. This simplifi-
cation might be valid at extremely low temperature. However,
when the temperature becomes higher, the contributions from
nonzero c.m. momentum and nonzero total angular momen-
tum channels come into the problem. We may expect more
partial waves should be involved, which in turn introduce
additional two-body parameters. Our results show that the SO
coupling introduces new contacts and modifies the universal
relations of many-body systems.

The remainder of this paper is organized as follows. In
the next section, we present the derivations of the short-range
behavior of two-body wave functions for SO-coupled Fermi
gases in three and two dimensions, respectively. Subsequently,
with the short-range behavior of the two-body wave functions
in hands, we derive a set of universal relations for a 3D
SO-coupled Fermi gases in Sec. III, and then generalize them
to 2D SO-coupled Fermi gases in Sec. IV, including adiabatic
energy relations, asymptotic behavior of the large-momentum
distribution, the high-frequency behavior of the rf response,
short-range behavior of the pair correlation function, grand
canonical potential, and pressure relation. Finally, the main
results are summarized in Sec. V.

II. UNIVERSAL SHORT-RANGE BEHAVIOR
OF TWO-BODY WAVE FUNCTIONS

The ultracold atomic gases are dilute, while the range of
interatomic potentials is extremely small. When two fermions
get close enough to interact with each other, they usually far
away from the others. If only these two-body correlations
are taken into account, then some key properties of many-
body systems are characterized by the short-range two-body
physics, which is the basic idea of the contact theory. In this
section, we are going to discuss the short-range behavior of
two-body wave functions for 3D Fermi gases in the presence
of 3D SO coupling and 2D Fermi gases in the presence of
2D SO coupling, respectively. Let us consider spin-half SO-
coupled Fermi gases, and the Hamiltonian of a single fermion
is modeled as

Ĥ1 = h̄2k̂2
1

2M
+ h̄2λ

M
χ̂ + h̄2λ2

2M
, (1)

where k̂1 = −i∇ is the single-particle momentum operator, M
is the atomic mass, and h̄ is the Planck’s constant divided by
2π . Here, the SO coupling is described by the term h̄2λχ̂/M
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with the strength λ > 0, and χ̂ takes the isotropic form of k̂1 ·
σ̂ in 3D or the Rashba form of σ̂ × k̂1 · n̂ in 2D [54], where σ̂

is the Pauli operator, and n̂ is the unit vector perpendicular to
the (x − y) plane.

Provided that the c.m. momentum K and the total an-
gular momentum J for two particles with SO coupling are
conserved [52], we can conveniently deal with two-body
problem in the subspace of K = 0 and J = 0. Hereupon,
other partial-wave scatterings are avoided, and only s- and
p-wave scatterings are involved in the problem [49,52,53].
Consequently, the Hamiltonian of two spin-half fermions can
be written as

Ĥ2 = h̄2k̂2

M
+ h̄2λ

M
Q̂(r) + h̄2λ2

M
+ V (r), (2)

where k̂ = (k̂2 − k̂1)/2 and V (r), respectively, denote the
momentum operator for the relative motion r = r2 − r1 and
the short-range interatomic interaction with a finite range ε,
Q̂(r) = (σ̂2 − σ̂1) · k̂ in 3D or Q̂(r) = (σ̂2 − σ̂1) × k̂ · n̂ in
2D, and σ̂ i labels the spin operator of the ith fermion. In the
following, let us consider the two-body problems in the 3D
systems with 3D SO coupling and 2D systems with 2D SO
coupling, respectively.

A. For 3D systems with 3D SO coupling

In the subspace of K = 0 and J = 0, we may choose the
common eigenstates of the total Hamiltonian Ĥ2 and total
angular momentum J(= 0) as the basis of Hilbert space,
which take the forms of [49,52,53]

�0(r̂) = Y00(r̂)|S〉, (3)

�1(r̂) = − i√
3

[Y1−1(r̂)|↑↑〉 + Y11(r̂)|↓↓〉 − Y10(r̂)|T 〉], (4)

where Ylm(r̂) denotes the spherical harmonics with az-
imuthal quantum numbers (l, m), r̂ ≡ (θ, ϕ) is the angu-
lar degree of freedom of the relative coordinate r, |S〉 =
(|↑↓〉 − |↓↑〉)/

√
2 indicates the singlet spin state with total

spin S = 0, and {|↑↑〉, |↓↓〉, |T 〉 = (|↑↓〉 + |↓↑〉)/
√

2} indi-
cate the three triplet states with total spin S = 1. Then, in the
basis of {�0(r̂),�1(r̂)}, the two-body wave function can be
generally written as

	(r) = ψ0(r)�0(r̂) + ψ1(r)�1(r̂), (5)

where ψi(r) (i = 0, 1) is the radial part of the wave function.
Note that we here consider an isotropic p-wave interaction and
the radial wave function ψ1(r) is identical for three scattering
channels, i.e., m = 0,±1.

Typically, in the low-energy scattering limit, the relative
energy of two atoms as well as the SO-coupling strength can
be treated as a perturbation, as long as the atoms get as close
as the distance ε [38,39,49]. Therefore, we assume that the
two-body wave function may take the form of the following
ansatz as in Ref. [49],

	(r) ≈ φ(r) + k2 f (r) − λg(r), (6)

as the distance of two fermions approaches ε. Substituting
the ansatz Eq. (6) into the Schrödinger equation Ĥ2	(r) =

E	(r), and comparing the corresponding coefficients of the
term k2 and λ on both sides, we obtain[

−∇2 + MV (r)

h̄2

]
φ(r) = 0, (7)[

−∇2 + MV (r)

h̄2

]
f (r) = φ(r), (8)[

−∇2 + MV (r)

h̄2

]
g(r) = Q̂(r)φ(r). (9)

These coupled equations can easily be solved for r > ε, and
we obtain

φ(r) = α0

(
1

r
− 1

a0

)
�0(r̂)

+α1

(
1

r2
− 1

3a1
r

)
�1(r̂) + O(r2), (10)

f (r) = α0

(
1

2
b0 − 1

2
r

)
�0(r̂)

+α1

(
1

2
+ b1

6
r

)
�1(r̂) + O(r2), (11)

g(r) = −α1u�0(r̂) − α0(1 + vr)�1(r̂) + O(r2). (12)

Here, α0 and α1 denote two complex superposition coeffi-
cients, ai and bi are s-wave scattering length and effective
range for i = 0, and p-wave scattering volume and effective
range for i = 1, respectively. What makes sense is that, as we
anticipate, two new scattering parameters u and v emerge in
s- and p-wave channels, respectively. They characterize the
modification to the short-range behavior of the two-body wave
function because of SO coupling.

In the absence of SO coupling, if atoms are initially pre-
pared near an s-wave resonance, then the contribution from
the p-wave channel could be ignored, and we have α1 ≈ 0.
Naturally, the two-body wave function 	(r) reduces to the
known s-wave form of (up to a constant α0),

	(r) =
(

1

r
− 1

a0
+ b0k2

2
− k2

2
r

)
�0(r̂) + O(r2), (13)

at short distance r � ε. Subsequently, when SO coupling is
switched on near the s-wave resonance, a considerable p-wave
contribution is involved, and the two-body wave function
becomes

	s(r) =
(

1

r
− 1

a0
+ b0k2

2
− k2

2
r

)
�0(r̂)

+ (1 + vr)λ�1(r̂) + O(r2), (14)

which recovers the modified Bethe-Peierls boundary condi-
tion of Ref. [48] by noticing �0(r̂) = |S〉/√4π and �1(r̂) =
−i(σ̂2 − σ̂1) · (r/r)|S〉/√16π . We can see that the parameter
v characterizes the hybridization of the p-wave component
into the s-wave scattering due to SO coupling. If atoms
are initially prepared near a p-wave resonance without SO
coupling, then the s-wave scattering could be ignored and
we have α0 ≈ 0. The two-body wave function 	(r) takes the
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known p-wave form at short distance, i.e.,

	(r) =
(

1

r2
− 1

3a1
r + k2

2
+ b1k2

6
r

)
�1(r̂) + O(r2). (15)

In the presence of SO coupling near the p-wave resonance,
an s-wave component is introduced, and the two-body wave
function becomes

	p(r) =
[

1

r2
+ k2

2
+

(
− 1

3a1
+ b1k2

6

)
r

]
�1(r̂)

+ uλ�0(r̂) + O(r2) (16)

at short distance. We can see that the parameter u describes
the hybridization of the s-wave component into the p-wave
scattering due to SO coupling. In general, both s- and p-wave
scatterings exist between atoms in the absence of SO cou-
pling. Therefore, when SO coupling is introduced, the two-
body wave function is generally the arbitrary superposition of
Eqs. (14) and (16) and can be written as

	3D(r) = α0

(
1

r
− 1

a0
+ b0k2

2
+ α1

α0
uλ − k2

2
r

)
�0(r̂)

+ α1

[
1

r2
+ k2

2
+ α0

α1
λ +

(
− 1

3a1
+ b1k2

6

+ α0

α1
vλ

)
r

]
�1(r̂) + O(r2) (17)

at short distance r � ε. Equation (17) can be treated as the
short-range boundary condition for two-body wave functions
in 3D in the presence of 3D SO coupling, when both s- and
p-wave interactions are considered.

B. For 2D systems with 2D SO coupling

Let us consider two spin-half fermions scattering in the
x-y plane. We easily find that the total angular momentum
J perpendicular to the x-y plane is conserved as well as the
c.m. momentum K [55]. Therefore, we may still focus on the
two-body problem in the subspace of K = 0 and J = 0, which
is spanned by the following three orthogonal basis

�0(ϕ) = 1√
2π

|S〉, (18)

�−1(ϕ) = e−iϕ

√
2π

|↑↑〉, (19)

�1(ϕ) = eiϕ

√
2π

|↓↓〉, (20)

where ϕ is the azimuthal angle of the relative coordinate r.
Then the two-body wave function can formally be expanded
as

	(r) =
∑

m=0,±1

ψm(r)�m(ϕ), (21)

and ψm(r) is the radial wave function. Analogously, the
strength of SO coupling as well as the energy can be taken
into account perturbatively at short distance. We assume that
the two-body wave function has the form of the ansatz Eq. (6),
and the corresponding functions to be determined can easily
be solved out from the Schrödinger equation outside the range
of the interatomic potential, i.e., r � ε. After straightforward
algebra, we obtain

φ(r) = α0

(
ln

r

2a0
+ γ

)
�0(ϕ)

+
(

1

r
− π

4a1
r

) ∑
m=±1

αm�m(ϕ) + O(r2), (22)

f (r) = −α0

(
π

4
b0 + 1

4
r2 ln

r

2a0

)
�0(ϕ)

+
(

1 − 2γ

4
r − 1

2
r ln

r

2b1

) ∑
m=±1

αm�m(ϕ) + O(r2),

(23)

g(r) = −
( ∑

m=±1

αm

)
u�0(ϕ)

− α0

(
vr + r√

2
ln

r

2b1

) ∑
m=±1

�m(ϕ) + O(r2) (24)

for r � ε, where γ is Euler’s constant, αm (m = 0,±1) is
complex superposition coefficients, am and bm are s-wave
scattering length and effective range for m = 0, and p-wave
scattering area and effective range for |m| = 1, respectively.
Here, we have assumed that the p-wave interaction is isotropic
and thus is the same in m = ±1 channels, and applied the
p-wave effective-range expansion of the scattering phase shift,
i.e., k2 cot δ1 = −1/a1 + 2k2 ln (kb1)/π [56]. We find that
two new scattering parameters are similarly introduced, and
they demonstrate the hybridization of s- and p-wave scattering
in the presence of Rashba SOC in 2D. Finally, the asymptotic
form of the two-body wave function at short distance can be
written as

	2D(r) = α0

[
ln

r

2a0
+ γ − π

4
b0k2 +

( ∑
m=±1

αm

α0

)
uλ − k2

4
r2 ln

r

2a0

]
�0(ϕ)

+
∑

m=±1

αm

[
1

r
+

(
− π

4a1
+ 1 − 2γ

4
k2 + α0

αm
vλ

)
r +

(
−k2

2
+ α0

αm

λ√
2

)
r ln

r

2b1

]
�m(ϕ) + O(r2) (25)

for r � ε. It is apparent that 	2D(r) naturally decouples to the
s- and p-wave short-range boundary conditions in the absence
of SO coupling. However, Rashba SO coupling mixes the s-
and p-wave scatterings, and two new scattering parameters

u and v are introduced. We should note that the short-range
behaviors of the two-body wave function, i.e., Eqs. (17) and
(25), are universal and does not depend on the specific form
of interatomic potentials.
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C. New two-body parameters for a spherical-square-well
potential

As we have discussed, new two-body parameters need to
be introduced in the presence of SO coupling. These new
two-body parameters are independent from the well-known
scattering length (volume) as well as the effective range, and
should be determined by the specific form of the two-body
interaction. To provide a clear picture for these new parame-
ters, we take the spherical-square-well potential as an example
to demonstrate how the new parameters are evaluated. For a
3D system, we assume that the two-body interaction has the
following form:

V (r) =
{−V0, 0 � r � ε,

0, r > ε,
(26)

where ε is the range of the potential and V0 > 0 is the depth of
the well. Outside the potential, i.e., r > ε, φ(r) has the form
of Eq. (10). Inside the potential, using V (r) = −V0, we obtain

φ(r) = α0c0 j0(r̃
√

Ṽ0)�0(r̂) + α1c1 j1(r̃
√

Ṽ0)�1(r̂), (27)

where jν (·)’s are the spherical Bessel function of the first
kind, cν’s are real coefficient, r̃ = r/ε, Ṽ0 = V0/E0, and E0 =
h̄2/Mε2. The continuity conditions of φ(r) at r = ε as well as
those of its first derivative provide four independent equations,
which uniquely determine the s-wave scattering length a0,
p-wave scattering volume a1, and c1 and c2. Then φ(r) is
obtained for a spherical-square-well potential.

With φ(r) in hand, the new two-body parameters u and v

can be calculated from Eq. (9). We have obtained g(r) outside
the potential, i.e., Eq. (12). Inside the potential, i.e., 0� r < ε,
we easily obtain

g(r) = α1

2̃rṼ0
[−2c1̃r

√
Ṽ0 cos(̃r

√
Ṽ0) + A1 sin(̃r

√
Ṽ0)]�0(r̂) + α0

2̃rṼ0
{[A2r̃Ṽ0 + c0̃r

√
Ṽ0 cos(2̃r

√
Ṽ0) − 2c0 sin(2̃r

√
Ṽ0)] j1(̃r

√
Ṽ0)

+ c0[−2 + 2̃r2Ṽ0 + 2 cos(2̃r
√

Ṽ0) + r̃
√

Ṽ0 sin(2̃r
√

Ṽ0)]n1(̃r
√

Ṽ0)}�1(r̂), (28)

and nν (·) is the spherical Bessel function of the second kind.
We find that there are totally four parameters to be determined,
i.e., A1, A2, u, and v, which can be solved out from the
continuity conditions of g(r) as well as those of its first
derivative at r = ε. After some straightforward algebra, we
obtain

uε = vε =
√

Ṽ0

tan(
√

Ṽ0) −
√

Ṽ0

. (29)

For a 2D system, we can also calculate the new two-body
parameters introduced by SO coupling for a model potential
following the similar procedure.

III. UNIVERSAL RELATIONS IN THE PRESENCE
OF ISOTROPIC 3D SO COUPLING

In the previous section, we have discussed the two-body
problem in the presence of SO coupling, and obtained the
short-range behaviors of the two-body wave functions with
zero c.m. momentum and zero total angular momentum.
However, for a many-body system, the c.m. momentum of a
pair of fermions as well as their total angular momentum is
generally not conserved any longer. In this case, all the partial
waves should be taken into account besides the s- and p-wave
scatterings. Therefore, we may anticipate that additional new
two-body parameters in high-partial-wave channels should be
introduced besides u and v, then our perturbation method
can still be generalized to many-body systems if more new
two-body parameters are included. To simplify the discussion
of Tan’s universal relations of SO-coupled Fermi gases, we
assume that only a few partial waves come into the problem,
for example, only s- and p-wave scatterings are taken into
account as discussed before. Then we are ready to consider
Tan’s universal relations of SO-coupled many-body systems,
if only two-body correlations are taken into account. Owing

to the short-range property of interactions between neutral
atoms, when two fermions (i and j) get as close as the range of
interatomic potentials, all the other atoms are usually far away.
In this case, the many-body wave functions approximately
take the forms of Eq. (17) in 3D systems with 3D SO coupling,
when the fermions i and j approach to each other. We need
to pay attention that the arbitrary superposition coefficient
αm(X) then becomes the functions of the c.m. coordinates of
the pair (i, j) as well as those of the rest of the fermions,
which we include into the variable X. In the follows, we
derive a set of universal relations for SO-coupled many-body
systems by using Eq. (17) for 3D SO-coupled Fermi gases.
These relations include adiabatic energy relations, the large-
momentum behavior of the momentum distribution, the high-
frequency tail of the rf spectroscopy, the short-range behavior
of the pair correlation function, the grand canonical potential,
and pressure relation. Let us consider a strongly interacting
two-component Fermi gases with total atom number N . For
simplicity, we consider the case with b0 ≈ 0 for broad s-wave
resonances in the follows.

A. Adiabatic energy relations

To investigate how the energy varies with the two-body in-
teraction, we consider two many-body wave functions 	 and
	 ′, which are corresponding to different interaction strengths,
respectively. And they satisfy the Schrödinger equation with
different energies

N∑
i=1

Ĥ(i)
1 	 = E	, (30)

N∑
i=1

Ĥ(i)
1 	 ′ = E ′	 ′, (31)
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if there is not any pair of atoms within the range of the
interaction, where Ĥ(i)

1 denotes the single-atom Hamiltonian
Eq. (1) for the ith fermion. By subtracting [31]∗ × 	 from
	 ′∗ × [30], and integrating over the domain Dε , the set of all
configurations (ri, r j ) in which r = |ri − r j | > ε, we arrive at

(E − E ′)
∫
Dε

N∏
i=1

dri	
′∗	

= − h̄2

M
N

∫
r>ε

dXdr
[
	 ′∗∇2

r 	 − (∇2
r 	 ′∗)	]

+ h̄2λ

M
N

∫
r>ε

dXdr[	 ′∗(Q̂	) − (Q̂	 ′)∗	], (32)

where N = N (N − 1)/2 is the number of all the possible
ways to pair atom. Using the Gauss’ theorem, the first term
on the right-hand side (RHS) can be written as

− h̄2

M
N

∫
r>ε

dXdr
[
	 ′∗∇2

r 	 − (∇2
r 	 ′∗)	]

= − h̄2

M
N

∫
©
∫

r=ε

[	 ′∗∇r	 − (∇r	
′∗)	] · n̂dS

= h̄2ε2

M
N

1∑
i=0

∫
dX

(
ψ ′∗

i

∂

∂r
ψi − ψi

∂

∂r
ψ ′∗

i

)
r=ε

, (33)

where S is the boundary in which the distance between the
two atoms in the pair (i, j) is ε with, n̂ is the direction normal
to S but opposite to the radial direction, and ψ0 (ψ1) is
the s-wave (p-wave) component of the radial two-body wave
function. In addition, for the second term on the RHS of
Eq. (32), we have

Q̂(r)	 = − 2

r2

∂

∂r
(r2ψ1)�0(r̂) + 2

∂ψ0

∂r
�1(r̂), (34)

then it becomes

h̄2λ

M
N

∫
r>ε

dXdr[	 ′∗(Q̂(r)	) − (Q̂(r)	 ′)∗	]

= 2λh̄2ε2

M
N

∫
dX(ψ ′∗

0 ψ1 − ψ ′∗
1 ψ0)r=ε . (35)

Combining Eqs. (32), (33), and (35), we obtain

(E − E ′)
∫
Dε

N∏
i=1

dri	
′∗	

= h̄2ε2

M
N

1∑
i=0

∫
dX

(
ψ ′∗

i

∂

∂r
ψi − ψi

∂

∂r
ψ ′∗

i

)
r=ε

+ 2λh̄2ε2

M
N

∫
dX

(
ψ ′∗

0 ψ1 − ψ ′∗
1 ψ0

)
r=ε

. (36)

Inserting the asymptotic form of the many-body wave func-
tion Eq. (17) into Eq. (36), and letting E ′ → E and 	 ′ → 	,

we find

δE ·
∫
Dε

N∏
i=1

dri|	|2 = − h̄2

M

(
I (0)

a − λIλ

)
δa−1

0

− h̄2I (1)
a

M
δa−1

1 + E1

2
δb1 + 3λh̄2

2M
Iλδv

− λh̄2

M

(
2λI (1)

a − 1

2
Iλ

)
δu +

(
1

ε
+ b1

2

)
I (1)

a δE , (37)

where

I (m)
a = N

∫
dX|αm(X)|2, (38)

Em = N
∫

dXα∗
m(X)[E − T̂ (X)]αm(X), (39)

Iλ = N
∫

dXα∗
0 (X)α1(X) + c.c., (40)

Eλ = N
∫

dXα∗
0 (X)[E − T̂ (X)]α1(X) + c.c. (41)

for m = 0, 1, and T̂ (X) is the kinetic operator including the
c.m. motion of the pair (i, j) and those of all the rest fermions.
Using the normalization of the many-body wave function
(see Appendix A)∫

Dε

N∏
i=1

dri|	|2 = 1 +
(

1

ε
+ b1

2

)
I (1)

a , (42)

we can further simplify Eq. (37) as

δE = − h̄2

M

(
I (0)

a − λIλ

)
δa−1

0 − h̄2I (1)
a

M
δa−1

1

+ E1

2
δb1 + 3λh̄2Iλ

2M
δv + λh̄2

2M

(
Iλ − 4λI (1)

a

)
δu, (43)

which yields the following set of adiabatic energy relations

∂E

∂a−1
0

= − h̄2

M

(
I (0)

a − λIλ

)
, (44)

∂E

∂a−1
1

= − h̄2I (1)
a

M
, (45)

∂E

∂b1
= E1

2
, (46)

∂E

∂u
= λh̄2

2M

(
Iλ − 4λI (1)

a

)
, (47)

∂E

∂v
= 3λh̄2Iλ

2M
. (48)

Interestingly, two additional new adiabatic energy relations
appear, i.e., Eqs. (47) and (48), which originate from new scat-
tering parameters introduced by SO coupling. These relations
clearly describe the relationships between the macroscopic
internal energy and the microscopic two-body scattering pa-
rameters for an SO-coupled many-body system.

B. Tail of the momentum distribution at large q

Let us then study the asymptotic behavior of the large
momentum distribution for a many-body system with N
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fermions. The momentum distribution of the ith fermion is
defined as

ni(q) =
∫ ∏

t =i

drt |	̃i(q)|2, (49)

where 	̃i(q) ≡ ∫
dri	3De−iq·ri , and then the total momentum

distribution can be written as n(q) = ∑N
i=1 ni(q). When two

fermions (i, j) get close while all the other fermions are far
away, we may write the many-body function 	3D at r =
|ri − r j | ≈ 0 as the following ansatz:

	3D(X, r) =
[
α0(X)

r
+ B0(X) + C0(X)r

]
�0(r̂)

+
[
α1(X)

r2
+ B1(X) + C1(X)r

]
�1(r̂) + O(r2),

(50)

where αm, Bm and Cm (m = 0, 1) are all regular functions.
Comparing Eq. (17) with Eq. (50) at small r, we find

B0(X) = −α0

a0
+ α1uλ, (51)

B1(X) = α1k2

2
+ α0λ, (52)

C0(X) = −α0k2

2
, (53)

C1(X) = − α1

3a1
+ α1b1k2

6
+ α0vλ. (54)

The asymptotic form of the momentum distribution at large
q but still smaller than ε−1 is determined by the asymptotic

behavior at short distance with respect to the two interacting
fermions, then we obtain

	̃i(q) ≈
q→∞

∫
dr	3D(X, r ∼ 0)e−iq·r. (55)

With the help of ∇2(r−1) = −4πδ(r), we have

f (q) ≡
∫

dr
e−iq·r

r
= 4π

q2
, (56)

so that ∫
dr

α0(X)

r
�0(r̂)e−iq·r = 4π

q2
α0(X)�0(q̂), (57)∫

drB0(X)�0(r̂)e−iq·r = 0, (58)∫
drC0(X)r�0(r̂)e−iq·r = −8π

q4
C0(X)�0(q̂), (59)∫

dr
α1(X)

r2
�1(r̂)e−iq·r = −i

4π

q
α1(X)�1(q̂), (60)∫

drB1(X)�1(r̂)e−iq·r = −i
8π

q3
B1(X)�1(q̂), (61)∫

drC1(X)r�1(r̂)e−iq·r = 0. (62)

Inserting Eqs. (57)–(62) into Eq. (55), and then into Eq. (49),
we find that the total momentum distribution n(q) at large q
takes the form

n3D(q) ≈ N
∫

dX
32π2α1α

∗
1�1(q̂)�∗

1(q̂)

q2
+ i

32π2[α0α
∗
1�0(q̂)�∗

1(q̂) − α∗
0α1�

∗
0(q̂)�1(q̂)]

q3

+ [32π2α0α
∗
0�0(q̂)�∗

0(q̂) + 64π2k2α1α
∗
1�1(q̂)�∗

1(q̂) + 64π2λ(α0α
∗
1 + α∗

0α1)�1(q̂)�∗
1(q̂)]

1

q4
+ O(q−5). (63)

If we only show the solicitude for the dependence of the
momentum distribution on the amplitude of q, then we find
that the odd-order terms of q−1 vanish after the integration
over the direction of q. Finally, we obtain

n3D(q) = C(1)
a

q2
+ (

C(0)
a + C(1)

b + λPλ

) 1

q4
+ O(q−6), (64)

where the contacts are defined as

C(m)
a = 32π2I (m)

a , (m = 0, 1), (65)

C(1)
b = 64π2M

h̄2 E1, (66)

Pλ = 64π2Iλ. (67)

With these definitions in hands, the adiabatic energy relations
Eqs. (44)–(48) can alternatively be rewritten as

∂E

∂a−1
0

= − h̄2C(0)
a

32π2M
+ λ

h̄2Pλ

64π2M
, (68)

∂E

∂a−1
1

= − h̄2C(1)
a

32π2M
, (69)

∂E

∂b1
= h̄2C(1)

b

128π2M
, (70)

∂E

∂u
= λ

[
h̄2Pλ

128π2M
− λ

h̄2C(1)
a

16π2M

]
, (71)

∂E

∂v
= 3λh̄2Pλ

128π2M
. (72)

In the case of λ = 0, Eqs. (68), (69), and (70) simply reduce
to the common form of the adiabatic energy relations for s-
and p-wave interactions [10,17], with regard to the scattering
length (or volume) as well as effective range. We should
note that for the s-wave interaction, there is a difference of
the factor 8π from the well-known form of adiabatic energy
relations. This is because we include the spherical harmonics
Y00(r̂) = 1/

√
4π in the s-partial wave function. Besides, an

additional factor 1/2 is introduced to keep the definition of
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contacts consistent with those in the tail of the momentum
distribution at large q. In the presence of SO coupling, two
additional adiabatic energy relations appear, i.e., Eqs. (71) and
(72), and a new contact Pλ is introduced.

C. The high-frequency tail of the rf spectroscopy

Next, we discuss the asymptotic behavior of the rf spec-
troscopy at high frequency. The basic ideal of the rf transition
is as follows. For an atomic Fermi gas with two hyperfine
states, denoted as |↑〉 and |↓〉, the rf field drives transitions
between one of the hyperfine states (i.e., |↓〉) and an empty
hyperfine state |3〉 with a bare atomic hyperfine energy dif-
ference h̄ω3↓ due to the magnetic field splitting [57,58]. The
universal scaling behavior at high frequency of the rf response
of the system is governed by contacts. In this subsection, we
are going to show how the contacts defined by the adiabatic
energy relations characterize such high-frequency scalings of
the rf transition in 3D Fermi gases with 3D SO coupling. Here,
we will present a two-body derivation first, which may avoid
complicated notations as much as possible, and the results can
easily be generalized to many-body systems later. The rf field
driving the spin-down particle to the state |3〉 is described by

Hrf = γrf

∑
k

(e−iωt c†3kc↓k + eiωt c†↓kc3k ), (73)

where γrf denotes the strength of the rf drive, ω is the rf
frequency, and c†

σk and cσk are the creation and annihilation
operators for fermions with the momentum k in the spin states
|σ 〉, respectively.

For any two-body state |	2b〉, we may write it in the
momentum space as

|	2b〉 =
∑
σ1σ2

∑
k1k2

φ̃σ1σ2 (k1, k2)c†σ1k1
c†σ2k2

|0〉, (74)

where φ̃σ1σ2 (k1, k2) is the Fourier transform of φσ1σ2 (r1, r2) ≡
〈r1, r2; σ1, σ2|	2b〉, i.e.,

φ̃σ1σ2 (k1, k2) =
∫

dr1dr2φσ1σ2 (r1, r2)e−ik1·r1 e−ik2·r2 , (75)

and σi = ↑,↓ denotes the spin of the ith particle. The specific
form of φ̃σ1σ2 (k1, k2) can easily be obtained by using that
of the two-body wave function 〈r1, r2; σ1, σ2|	2b〉 in the
coordinate space, i.e., Eq. (5). Acting Eq. (73) onto Eq. (74),
we obtain the two-body wave function after the rf transition,

Hrf|	2b〉
= γrfe

−iωt
∑
k1k2

[φ̃↓↑(k1, k2)c†3k1
c†↑k2

− φ̃↑↓(k1, k2)c†3k2
c†↑k1

+ φ̃↓↓(k1, k2)(c†3k1
c†↓k2

− c†3k2
c†↓k1

)]|0〉. (76)

The physical meaning of Eq. (76) is apparent: after the rf
transition, the atom with initial spin state |↓〉 is driven to the
empty spin state |3〉, while the other one remains in the spin
state |↑〉. Therefore, there are totally four possible final two-
body states with, respectively, possibilities of |φ̃↓↑|2, |φ̃↑↓|2,

|φ̃↓↓|2, and |φ̃↓↓|2. Taking all these final states into account,
and according to the Fermi’s golden rule [29], the two-body
rf transition rate is therefore given by the Franck-Condon

factor,

�2(ω) = 2πγ 2
rf

h̄

∑
k1k2

(|φ̃↓↑|2 + |φ̃↑↓|2 + 2|φ̃↓↓|2)

× δ(h̄ω − �E ), (77)

where �E is the energy difference between the final and initial
states, and takes the form of

�E = h̄2k2

M
− h̄2q2

M
+ h̄ω3↓, (78)

where k = (k1 − k2)/2, h̄2q2/M is the relative energy of
two fermions in the initial state, and ω3↓ ≡ ω3 − ω↓ is the
bare hyperfine splitting between the spin states |3〉 and |↓〉,
and can be set to 0 without loss of generality. Now, we are
interested in the asymptotic form of �2(ω) at large ω but
still small compared to h̄/Mε2, which is determined by the
short-range behavior when two fermions get as close as ε.
Combining Eqs. (75) and (77), as well as the asymptotic form
of the two-body wave function Eq. (17) at r = r1 − r2 ∼ 0,
we finally obtain the asymptotic behavior of the rf response of
3D SO-coupled Fermi gases at large ω,

�2(ω) = Mγ 2
rf

16π2h̄3

[
c(1)

a

(Mω/h̄)1/2 + c(0)
a + 3c(1)

b /4 + λpλ

(Mω/h̄)3/2

]
,

(79)

where c(0)
a , c(1)

a , c(1)
b , and pλ are contacts for a two-body system

with N = 1 in the definitions Eqs. (65)–(67).
For many-body systems, all possible N = N (N − 1)/2

pairs may contribute to the high-frequency tail of the rf
spectroscopy, while high-order contributions from more than
two fermions are ignored. Then we can generalize the above
two-body picture to many-body systems by simply redefining
the constant N into the contacts, and then obtain

�N (ω) = Mγ 2
rf

16π2h̄3

[
C(1)

a

(Mω/h̄)1/2 + C(0)
a + 3C(1)

b /4 + λPλ

(Mω/h̄)3/2

]
,

(80)

where C(0)
a , C(1)

a , C(1)
b , and Pλ are corresponding contacts for

many-body systems. In the absence of SO coupling, Eq. (80)
simply reduces to the ordinary asymptotic behaviors of the rf
response for s- and p-wave interactions, respectively [13,59].

D. Pair correlation function at short distances

The physical meaning of pair correlation function
g2(s1, s2) is apparent, which gives the probability of finding
two fermions with one at the position s1 and the other one
at the position s2 simultaneously. It is defined as g2(s1, s2) ≡
〈ρ̂(s1)ρ̂(s2)〉, here ρ̂(s) = ∑

i δ(s − ri ) denotes the density
operator at the position s. Then we can formally write a pure
many-body state |	〉 of N fermions as [29]

g2(s1, s2) =
∫

dr1dr2 · · · drN 〈	|ρ̂(s1)ρ̂(s2)|	〉

= N (N − 1)
∫

dX′|	(X, r)|2, (81)
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where r = s1 − s2 is relative coordinates of the pair fermions
at positions s1 and s2, and X′ denotes the degrees of freedom
of all the other fermions. If we further integrate over the
c.m. coordinate of the pair, then we can define the spatially
integrated pair correlation function as

G2(r) ≡ N (N − 1)
∫

dX|	(X, r)|2, (82)

and X includes the c.m. coordinate R = (s1 + s2)/2 of the
pair besides X′. Inserting the short-range form of many-body
wave functions for SO coupled Fermi gases, i.e., Eq. (17) into
Eq. (82), we find

G2(r) ≈ N (N − 1)
∫

dX
{

α1α
∗
1�1�

∗
1

r4

+ α∗
0α1�

∗
0�1 + α0α

∗
1�0�

∗
1

r3
+

[
α0α

∗
0�0�

∗
0

+ k2α1α
∗
1�1�

∗
1 + λ(α∗

0α1 + α0α
∗
1 )�∗

1�1

+ λuα∗
1α1(�∗

0�1 + �0�
∗
1 )

−α∗
0α1�

∗
0�1 + α0α

∗
1�0�

∗
1

a0

]
1

r2
+ O(r−1)

}
. (83)

Further, if we are only care about the dependence of
G2(r) on the amplitude of r = |r|, then we can integrate
over the direction of r, and use the definitions of contacts
Eqs. (65)–(67), then it yields

G2(r) ≈ 1

16π2

[
C(1)

a

r4
+

(
C(0)

a + C(1)
b

2
+ λ

Pλ

2

)
1

r2

+
(

−2C(0)
a

a0
− 2C(1)

a

3a1
+ b1C

(1)
b

6
+ λ(u + v)

Pλ

2

)
1

r

]
,

(84)

which reduces to the results in the absence of the SO coupling
for s- and p-wave interactions, respectively [9,13,31,60,61].

E. Grand canonical potential and pressure relation

In this subsection, let us first consider the grand thermo-
dynamic potential J for a homogeneous system, which takes
the form of [62]

J ≡ −PV = E − T S − μN, (85)

where P, V , T , S, μ, N are, respectively, the pressure, volume,
temperature, entropy, chemical potential, and total particle
number. The grand canonical potential J is the function of
V , T , S, and takes the following differential form:

dJ = −PdV − SdT − Ndμ. (86)

For the two-body microscopic parameters, we may evalu-
ate their dimensions as a0 ∼ Length1, a1 ∼ Length3, b1 ∼
Length−1, u ∼ Length−1, and v ∼ Length−1. Therefore, there
are basically following energy scales in the grand thermody-
namic potential, i.e., kBT , μ, h̄2/MV 2/3, h̄2/Ma2

0, h̄2/Ma2/3
1 ,

h̄2b2
1/M, h̄2u2/M, h̄2v2/M. Then we may express the thermo-

dynamic potential J in the terms of a dimensionless function

J̄ as [21,63]

J (V, T, μ, a0, a1, b1, u, v)

= kBT J̄
(

h̄2/MV 2/3

kBT
,

μ

kBT
,

h̄2/Ma2
0

kBT
,

h̄2/Ma2/3
1

kBT
,

h̄2b2
1/M

kBT
,

h̄2u2/M

kBT
,

h̄2v2/M

kBT

)
. (87)

Consequently, the simple scaling law can be deduced as

J (γ −3/2V, γ T, γμ, γ −1/2a0, γ
−3/2a1, γ

1/2b1, γ
1/2u, γ 1/2v)

= γJ (V, T, μ, a0, a1, b1, u, v). (88)

Keeping all other variables constant, the derivative of Eq. (88)
with respect to γ at γ = 1 simply yields(

−3V

2

∂

∂V
+ T

∂

∂T
+ μ

∂

∂μ
− a0

2

∂

∂a0

−3a1

2

∂

∂a1
+ b1

2

∂

∂b1
+ u

2

∂

∂u
+ v

2

∂

∂v

)
J = J . (89)

Since

J − T
∂J
∂T

− μ
∂J
∂μ

= J + T S + μN = E , (90)

and the variation of the grand thermodynamic potential δJ
with respect to the two-body parameters at fixed volume V ,
temperature T , and chemical potential μ is equal to that of
the energy δE at fixed volume V , entropy S, and particle
number N , i.e., (δJ )V,T,μ = (δE )V,S,N and V ∂J

∂V = J , we
easily obtain from Eqs. (89) and (90)

−3

2
J − a0

2

∂E

∂a0
− 3a1

2

∂E

∂a1
+ b1

2

∂E

∂b1
+ u

2

∂E

∂u
+ v

2

∂E

∂v
= E .

(91)

Further, by using adiabatic energy relations, Eq. (91) becomes

J = −2

3
E − h̄2

96π2Ma0

(
C(0)

a − λ
Pλ

2

)
− h̄2C(1)

a

32π2Ma1
+ h̄2b1C

(1)
b

384π2M

− λuh̄2

48π2M

(
λC(1)

a − Pλ

8

)
+ λvPλh̄2

128π2M
. (92)

Consequently, we obtain the pressure relation, i.e.,
P = −J /V , which respectively reduces to the well-known
results in the absence of the spin-orbit coupling

P = 2E

3V
+ h̄2C(0)

a

96π2MVa0
(93)

for s-wave interactions, which is consistent with the result of
Refs. [11,61,64], and

P = 2E

3V
+ h̄2C(1)

a

32π2MVa1
− b1h̄2C(1)

b

384π2MV
(94)

for p-wave interactions, which is consistent with the result of
Ref. [13].
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IV. UNIVERSAL RELATIONS IN 2D SYSTEMS
WITH RASHBA SO COUPLING

The derivation of the universal relations for 3D Fermi gases
with 3D SO coupling can directly be generalized to those
for 2D systems with 2D SO coupling. In this section, with
the short-range form of the two-body wave function for 2D
systems with 2D SO coupling in hands, i.e., Eq. (25), we are
going to discuss Tan’s universal relations for 2D Fermi gases
with 2D SO coupling, by taking into account only two-body
correlations.

A. Adiabatic energy relations

Let us consider how the energy of the SO-coupled system
varies with the two-body interaction in 2D systems with 2D
SO coupling. The two wave functions of a many-body system
	(r) and 	 ′(r), corresponding to different interatomic inter-
action strengths, satisfy the Schrödinger equation with differ-
ent energies, i.e., formally as Eqs. (30) and (31). Analogously,
by subtracting [31]∗ × 	 from 	 ′∗ × [30], and integrating
over the domain Dε , the set of all configurations (ri, r j ) in
which r = |ri − r j | > ε, we obtain

(E − E ′)
∫
Dε

N∏
i=1

dri	
′∗	

= − h̄2

M
N

∫
r>ε

dXdr
[
	 ′∗∇2

r 	 − (∇2
r 	 ′∗)	]

+ h̄2λ

M
N

∫
r>ε

dXdr[	 ′∗(Q̂	) − (Q̂	 ′)∗	], (95)

where N = N (N − 1)/2 is again the number of all the pos-
sible ways to pair atom. Using the Gauss’ theorem, the first
term on the RHS can be written as

− h̄2

M
N

∫
r>ε

dXdr
[
	 ′∗∇2

r 	 − (∇2
r 	 ′∗)	]

= − h̄2

M
N

∮
r=ε

[	 ′∗∇r	 − (∇r	
′∗)	] · n̂dS,

= h̄2ε

M
N

∫
dX

∑
m=0,±1

(
ψ ′∗

m

∂

∂r
ψm − ψm

∂

∂r
ψ ′∗

m

)
r=ε

, (96)

where S is the boundary of Dε that the distance between the
two fermions in the pair (i, j) is ε, n̂ is the direction normal to
S , but is opposite to the radial direction, and ψ0 (ψ±1) is the
s-wave (p-wave) component of the two-body wave function
as defined in Eq. (21). Since

Q̂(r)	 =
∑

m=±1

[
−

√
2

r

∂

∂r
(rψm)�0(r̂) +

√
2
∂ψ0

∂r
�m(r̂)

]
,

(97)

we find that the second term on the RHS of Eq. (95) can be
written as

h̄2λ

M
N

∫
r>ε

dXdr[	 ′∗(Q̂(r)	) − (Q̂(r)	 ′)∗	]

=
√

2λh̄2ε

M
N

∫
dX

∑
m=±1

(ψ ′∗
0 ψm − ψ ′∗

m ψ0)r=ε . (98)

Combining Eqs. (95), (96), and (98), we have

(E − E ′)
∫
Dε

N∏
i=1

dri	
′∗	 = h̄2ε

M
N

∫
dX

∑
m=0,±1

(
ψ ′∗

m

∂

∂r
ψm − ψm

∂

∂r
ψ ′∗

m

)
r=ε

+
√

2λh̄2ε

M
N

∫
dX

∑
m=±1

(
ψ ′∗

0 ψm − ψ ′∗
m ψ0

)
r=ε

.

(99)

Inserting the asymptotic form of the many-body wave function Eq. (25) into Eq. (99), and letting E ′ → E and 	 ′ → 	, we
arrive at

δE ·
∫
Dε

N∏
i=1

dri|	|2 = h̄2

M

(
I (0)

a +
∑

m=±1

√
2

2
λI (m)

λ

)
δ ln a0 +

∑
m=±1

{
−π h̄2I (m)

a

2M
δa−1

1 +
(
Em − λh̄2I (m)

λ√
2M

)
δ ln b1

− h̄2

M

[(√
2λ2I (m)

a + λ

2
I (m)

λ

)
+

√
2λ2

2
Ip

]
δu + λh̄2

M
I (m)

λ δv −
(

ln
ε

2b1
+ γ

)
I (m)

a δE

}
, (100)

where

I (m)
a = N

∫
dX|αm|2, (101)

Em = N
∫

dXα∗
m(E − T̂ )αm (102)

for m = 0,±1,

I (±1)
λ = N

∫
dXα∗

0α±1 + c.c., (103)

E (±1)
λ = N

∫
dXα∗

0 (E − T̂ )α±1 + c.c., (104)

Ip = N
∫

dXα∗
−1α1 + c.c., (105)
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and T̂ (X) is the kinetic operator including the c.m. motion of the pair as well as those of all the rest fermions. With the help of
the normalization of the wave function (see Appendix B)∫

Dε

N∏
i=1

dri|	|2 = 1 −
∑

m=±1

(
ln

ε

2b1
+ γ

)
I (m)

a , (106)

we can further simplify Eq. (100) as

δE = h̄2

M

(
I (0)

a +
∑

m=±1

λ
I (m)

λ√
2

)
δ ln a0 +

∑
m=±1

{
−π h̄2I (m)

a

2M
δa−1

1 +
(
Em − λ

h̄2I (m)
λ√

2M

)
δ ln b1

− λ
h̄2

M

[√
2λI (m)

a + I (m)
λ

2
+ λ

Ip√
2

]
δu+λh̄2

M
I (m)

λ δv

}
, (107)

which characterizes how the energy of a 2D system with 2D
SO coupling varies as the scattering parameters adiabatically
change and yields the following set of adiabatic energy rela-
tions:

∂E

∂ ln a0
= h̄2

M

(
I (0)

a + λ√
2

∑
m=±1

I (m)
λ

)
, (108)

∂E

∂a−1
1

= −π h̄2

2M

∑
m=±1

I (m)
a , (109)

∂E

∂ ln b1
=

∑
m=±1

(
Em − λ

h̄2I (m)
λ√

2M

)
, (110)

∂E

∂u
= −h̄2λ√

2M

∑
m=±1

[
I (m)

λ√
2

+ λ
(
2I (m)

a + Ip
)]

, (111)

∂E

∂v
= h̄2λ

M

∑
m=±1

I (m)
λ . (112)

Obviously, there are additional two new adiabatic energy
relations appear, i.e., Eqs. (111) and (112), which originate
from new scattering parameters introduced by SO coupling.

B. Tail of the momentum distribution at large q

In general, the momentum distribution at large q is deter-
mined by the short-range behavior of the many-body wave
function when the fermions i and j are close. Similarly as
in the 3D case, we can formally write the many-body wave
function 	2D at r ≈ 0 as the following ansatz:

	2D(X, r) = [α0 ln r + B0 + C0r2 ln r]�0(r̂)

+
∑

m

[
αm

r
+ Bmr ln r + Cmr

]
�m(r̂) + O(r2),

(113)

where α j , B j , and C j ( j = 0,±1) are all regular functions of
X. Comparing Eqs. (25) and (113) at small r, we find that

B0(X) = α0(γ − ln 2a0) +
∑

m=±1

αmλu, (114)

Bm(X) = −αmk2

2
+ λ

α0√
2
, (115)

C0(X) = −α0k2

4
, (116)

Cm(X) = αm

(
− π

4a1
+ 1 − 2γ

4
k2

)
+α0λv +

(
αmk2

2
− λ

α0√
2

)
ln 2b1. (117)

In the following, we derive the momentum distribution at large
q but still smaller than ε−1. Using the plane-wave expansion

eiq·r =
√

2π

∞∑
m=0

∑
σ=±

ηmimJm(qr)e−iσmϕq�(σ )
m (ϕ), (118)

here ηm = 1/2 for m = 0, ηm = 1 for m � 1, and ϕq denotes
the azimuthal angle of q, we have

∫
drα0 ln r�0(r̂)e−iq·r = −2π

q2
α0�0(q̂), (119)

∫
drB0�0(r̂)e−iq·r = 0, (120)

∫
drC0r2 ln r�0(r̂)e−iq·r = 8π

q4
C0�0(q̂), (121)

∫
dr

αm

r
�m(r̂)e−iq·r = −i

2π

q
αm�m(q̂), (122)

∫
drBmr ln r�m(r̂)e−iq·r = i

4π

q3
Bm�m(q̂), (123)

∫
drCmr�m(r̂)e−iq·r = 0, (124)

where q̂ is the angular part of q. Inserting Eqs. (119)–(124)
into Eq. (49), we can obtain the total momentum distribution
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n2D(q) at large q as

n2D(q) ≈ N
∫

dX
∑
m,m′

αmα∗
m′�m(q̂)�∗

m′ (q̂)
8π2

q2
+ i

∑
m

[α∗
0αm�∗

0(q̂)�m(q̂) − α0α
∗
m�0(q̂)�∗

m(q̂)]
8π2

q3

+
{

α0α
∗
0�0(q̂)�∗

0(q̂) +
∑
m,m′

[−
√

2λ(α0α
∗
m�m′ (q̂)�∗

m(q̂) + α∗
0αm�m(q̂)�∗

m′ (q̂)) + 2k2αmα∗
m′�m(q̂)�∗

m′ (q̂)]

}

× 8π2

q4
+ O(q−5), (125)

and the summations are over m, m′ = ±1. If we are only interested in the dependence of n2D(q) on the amplitude of q, then the
expression can further be simplified by integrating n2D(q) over the direction of q, and all the odd-order terms of q−1 vanish.
Finally, we arrive at

n2D(q) =
∑

m=±1 C(m)
a

q2
+

[
C(0)

a +
∑

m=±1

(
C(m)

b − λP (m)
λ

)] 1

q4
+ O(q−6), (126)

where the contacts are defined as

C( j)
a = 8π2I ( j)

a (127)

for j = 0,±1, and

C(m)
b = 16π2M

h̄2 Em, (128)

P (m)
λ = 8

√
2π2I (m)

λ (129)

for m = ±1. With these definitions in hand, the adiabatic
energy relations Eqs. (108)–(112) can alternatively be written
as

∂E

∂ ln a0
= h̄2

8π2M

(
C(0)

a + λ

2

∑
m=±1

P (m)
λ

)
, (130)

∂E

∂a−1
1

= − h̄2

16πM

∑
m=±1

C(m)
a , (131)

∂E

∂ ln b1
= h̄2

16π2M

∑
m=±1

(
C(m)

b − λP (m)
λ

)
, (132)

∂E

∂u
= − h̄2λ

16
√

2π2M

∑
m=±1

P (m)
λ , (133)

∂E

∂v
= h̄2λ

8
√

2π2M

∑
m=±1

P (m)
λ . (134)

In the case of λ = 0, Eqs. (130), (131), and (132) simply
reduce to the common form of the adiabatic energy relations
for s- and p-wave interactions [24,29], with regard to the
scattering length (or area) as well as effective range. And for
the s-wave interaction, there is a difference of the factor 2π

from the Ref. [24], which is because we include the angular
part 1/

√
2π in the s-partial wave function. In addition, two

new adiabatic energy relations, i.e., Eqs. (133) and (134), and
new contacts P (m)

λ appear due to SO coupling.

C. The high-frequency tail of the rf spectroscopy

We may carry out the analogous procedure as that in 3D
systems with 3D SO coupling, and the two-body rf transition
rate takes the form

�2(ω)

= 2πγ 2
rf

h̄

∑
k1k2

(|φ̃↑↓|2 + |φ̃↓↑|2 + 2|φ̃↓↓|2)δ(h̄ω − �E ),

(135)

where

φ̃σ1σ2 (k1, k2) =
∫

dr1dr2φσ1σ2 (r1, r2)e−ik1·r1 e−ik2·r2 . (136)

If we are only interested in the high-frequency tail of the
transition rate, then we can use the asymptotic behavior of
the two-body wave function for a 2D system with 2D SO
coupling, i.e., Eq. (25). Combining with Eqs. (135) and (136),
we obtain the two-body rf transition rate �2(ω) as

�2(ω) = Mγ 2
rf

4π h̄3

[
c(1)

a

Mω/h̄
+ c(0)

a /2 + c(1)
b /2 − λp(1)

λ

(Mω/h̄)2

]
, (137)

where c(0)
a , c(1)

a , c(1)
b , and p(1)

λ are contacts for a two-body
system with N = 1 in the definitions Eqs. (127)–(129).

For many-body systems, all N = N (N − 1)/2 pairs con-
tribute to the transition rate. Similarly, we can redefining the
constant N into the contacts, and then obtain

�N (ω) = Mγ 2
rf

4π h̄3

[
C(1)

a

Mω/h̄
+ C(0)

a /2 + C(1)
b /2 − λP (1)

λ

(Mω/h̄)2

]
,

(138)

where C(0)
a , C(1)

a , C(1)
b , and P (1)

λ are corresponding contacts for
many-body systems. In the absence of SO coupling, Eq. (138)
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simply reduces to the ordinary results for s- and p-wave
interactions, respectively [29,65].

D. Pair correlation function at short distances

Let us then discuss the short-distance behavior of the
pair correlation function for a 2D Fermi gases with 2D SO
coupling. Inserting the asymptotic form of the many-body
wave function at short distance, i.e., Eq. (25) into Eq. (82),
we easily obtain spatially integrated pair correlation function
G2(r). If we only care about the dependence of G2(r) on
the amplitude of r = |r|, then we may take the average of
momentum distribution over the direction of r and obtain

G2(r) ≈ 1

4π2

[∑
m=±1C

(m)
a

r2
+ C(0)

a

(
ln

r

2a0

)2

+
(

2γC(0)
a + λu√

2

∑
m=±1

P (m)
λ

)
ln

r

2a0

+
∑

m=±1

1

2

(−C(m)
b + λP (m)

λ

)
ln

r

2b1

]
. (139)

In the absence of SO coupling, Eq. (139) simply reduces to the
ordinary results for s- and p-wave interactions, respectively
[24,29].

E. Grand canonical potential and pressure relation

Similarly, according to the dimension analysis, we easily
obtain

−J − a0

2

∂E

∂a0
− a1

∂E

∂a1
− b1

2

∂E

∂b1
= E . (140)

Further, by using adiabatic energy relations, Eq. (140) be-
comes

J = −E − h̄2

16π2M

(
C(0)

a + λ

2

∑
m=±1

P (m)
λ

)

− h̄2

16πM

∑
m=±1

[
C(m)

a

a1
+ 1

2π

(
C(m)

b − λP (m)
λ

)]
. (141)

The pressure relation can be obtained by dividing both sides
of Eq. (141) by −V , which respectively reduces to the results
in the absence of SO coupling,

P = E

V
+ h̄2C(0)

a

16π2MV
, (142)

for s-wave interactions, which is consistent with the result of
Ref. [22], and

P = E

V
+

∑
m=±1

h̄2

16πMV

(
C(m)

a

a1
+ C(m)

b

2π

)
(143)

for p-wave interactions, which is consistent with the result of
Ref. [29].

V. CONCLUSIONS

We develop a perturbation method to construct the short-
range form of a two-body problem in the presence of the spin-

orbit coupling. For a two-body system, the center-of-mass
momentum as well as the total angular momentum is a good
quantum number. Then the simplest situation is that with zero
center-of-mass momentum and zero total angular momentum,
in which only s- and p-wave scatterings need to be taken into
account. We find that two new microscopic scattering param-
eters in s- and p-wave channels appear because of spin-orbit
coupling besides the conventional scattering length (volume)
and effective range. The obtained short-range behaviors of
two-body wave functions do not depend on the short-range
details of interatomic potentials. Based on the constructed
short-range form of two-body wave functions, we systemat-
ically study a set of universal relations for spin-orbit-coupled
Fermi gases in three or two dimension, respectively. We find
that new contacts need to be introduced in both three- and two-
dimensional systems. However, due to different short-range
behaviors of two-body wave functions for three- and two-
dimensional systems, the specific forms of universal relations
are distinct in different dimensions. As we anticipate, the
universal relations for spin-orbit-coupled systems, such as the
adiabatic energy relations, the large-momentum distributions,
the high-frequency behavior of the radio-frequency responses,
short-range behaviors of the pair correlation functions, grand
canonical potentials, and pressure relations, are fully captured
by the contacts defined.

In this work, we only consider a simplest situation of a
two-body system with zero center-of-mass momentum and
zero total angular momentum, in which only s- and p-wave
scatterings are included. Our method can also be general-
ized to the case with nonzero center-of-mass momentum and
nonzero total angular momentum. Then more partial waves
should be involved, and we may anticipate that more new
two-body parameters need to be introduced. For a many-body
system consisting of fermions, the center-of-mass momentum
of pairs is no longer conserved as well as the total angular
momentum of pairs. Therefore, we cannot discuss the prob-
lem in the sub-Hilbert space with a specific center-of-mass
momentum and total angular momentum of pairs. Then all
the partial-wave scatterings of pairs should be taken into
account. However, in the Bose-Einstein-condensation limit,
the pairs are tightly bound and their center-of-mass motion
is frozen in the zero-temperature limit. Then our discussion
in the sub-Hilbert space with zero center-of-mass momentum
and zero total angular momentum is still applicable. For a
more general situation, such as that in the unitary limit, our
results of this work need to be further developed, because all
the partial waves should be taken into account theoretically. In
experiments, many-body systems are usually prepared near a
specific partial-wave resonance, i.e., s- or p-wave resonance.
Then in the practical discussion, we may still theoretically
focus on few partial waves [50,51].
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APPENDIX A: NORMALIZATION OF THE WAVE FUNCTION FOR 3D SYSTEMS WITH 3D SO COUPLING

In this Appendix, we are going to derive
∫
Dε

∏N
i=1dri|	|2 for 3D many-body systems with 3D SO coupling. Let us consider

two many-body wave functions 	 ′ and 	, corresponding to different energies h̄2k′2/M and h̄2k2/M, respectively. They should
be orthogonal, i.e.,

∫
Dε

∏N
i=1dri	

′∗	 = 0, and therefore we have∫
r<ε

N∏
i=1

dri	
′∗	 = −

∫
r>ε

N∏
i=1

dri	
′∗	. (A1)

From the Schrödinger equation satisfied by 	 ′ and 	 outside the interaction potential, i.e., r > ε, we easily obtain∫
r>ε

N∏
i=1

dri	
′∗	 = ε2

k2 − k′2 N
∫

dX
∫

r=ε

d r̂
[(

	 ′∗ ∂

∂r
	 − 	

∂

∂r
	 ′∗

)
+ λ

2π

(
ψ ′∗

0 ψ1 − ψ ′∗
1 ψ0

)]
. (A2)

In the presence of SO coupling, only s- and p-wave scatterings are involved in the subspace K = 0 and J = 0, and the wave
function at short distance takes the form of Eq. (17). Using the asymptotic behavior of the wave function, we easily evaluate∫

r<ε

N∏
i=1

dri|	|2 = − lim
k′→k

1

2

(∫
r>ε

N∏
i=1

dri	
′∗	 +

∫
r>ε

N∏
i=1

dri	
′	∗

)

= −N
∫

dX
{ |α1|2

ε
+|α1|2b1

2

}
= −

(
1

ε
+ b1

2

)
I (1)

a , (A3)

which in turn yields ∫
Dε

N∏
i=1

dri|	|2 = 1 +
(

1

ε
+ b1

2

)
I (1)

a . (A4)

APPENDIX B: NORMALIZATION OF THE WAVE FUNCTION FOR 2D SYSTEM WITH 2D SO COUPLING

In this Appendix, we are going to derive
∫
Dε

∏N
i=1dri|	|2 for 2D many-body systems with 2D SO coupling. Let us consider

two many-body wave functions 	 ′ and 	, corresponding to different energies h̄2k′2/M and h̄2k2/M, respectively. They should
be orthogonal, i.e.,

∫
Dε

∏N
i=1dri	

′∗	 = 0, and therefore we have∫
r<ε

N∏
i=1

dri	
′∗	 = −

∫
r>ε

N∏
i=1

dri	
′∗	. (B1)

From the Schrödinger equation satisfied by 	 ′ and 	 outside the interaction potential, i.e., r > ε, we easily obtain∫
r>ε

N∏
i=1

dri	
′∗	 = ε

k2 − k′2 N
∫

dX
∫

r=ε

d r̂

[(
	 ′∗ ∂

∂r
	 − 	

∂

∂r
	 ′∗

)
+

∑
m=±1

λ√
2π

(
ψ ′∗

0 ψm − ψ ′∗
m ψ0

)]
. (B2)

In the presence of SO coupling, only s- and p-wave scatterings are involved in the subspace K = 0 and J = 0, and the wave
function at short distance takes the form of Eq. (25). Using the asymptotic behavior of the wave function, we easily evaluate∫

r<ε

N∏
i=1

dri|	|2 = − lim
k′→k

1

2

(∫
r>ε

N∏
i=1

dri	
′∗	 +

∫
r>ε

N∏
i=1

dri	
′	∗

)

= N
∫

dX
∑

m=±1

(
ln

ε

2b1
+ γ

)
|αm|2 =

∑
m=±1

(
ln

ε

2b1
+ γ

)
I (m)

a , (B3)

which in turn yields ∫
Dε

N∏
i=1

dri|	|2 = 1 −
∑

m=±1

(
ln

ε

2b1
+ γ

)
I (m)

a . (B4)

[1] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with
ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[2] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of ultra-
cold atomic Fermi gases, Rev. Mod. Phys. 80, 1215 (2008).

043616-14

https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/RevModPhys.80.1215


UNIVERSAL RELATIONS FOR SPIN-ORBIT-COUPLED … PHYSICAL REVIEW A 101, 043616 (2020)

[3] T. Köhler, K. Góral, and P. S. Julienne, Production of cold
molecules via magnetically tunable Feshbach resonances, Rev.
Mod. Phys. 78, 1311 (2006).

[4] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach
resonances in ultracold gases, Rev. Mod. Phys. 82, 1225 (2010).

[5] C. Gross and I. Bloch, Quantum simulations with ultracold
atoms in optical lattices, Science 357, 995 (2017).

[6] X. L. Qi and S. C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[7] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Collo-
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