
PHYSICAL REVIEW A 101, 043614 (2020)

Topological quantum pumping in spin-dependent superlattices with glide symmetry
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Topological quantum pumping, also known as topological charge pumping, represents an important quantum
phenomenon that shows the fundamental connection to the topological properties of dynamical systems. Here
we introduce a pumping process in a spin-dependent double-well optical lattice with glide symmetry. In the
dynamic process, the glide symmetry protects the band-touching points, and topological properties of the
system are characterized by the non-Abelian Berry curvature. By engineering a suitable form of coupling
between different spin components, the model not only demonstrates topological phase transition but also shows
hybridization between the spatial and temporal domain with topological features captured by the Wilson line
along the synthetic directions. Our work provides a model based on ultracold atoms towards the implementation
of versatile topological matters and topological phenomena in condensed matter systems.
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I. INTRODUCTION

Topological quantum pumping [1], also known as the
dynamical quantum Hall effect, is a very robust transport
process of particles through an adiabatic periodic evolution
of the underlying Hamiltonian. In contrast to its classical
counterpart, the transport in topological quantum pumping is
quantized and is not influenced by the perturbation. Such an
important quantum phenomenon is connected to the topolog-
ical feature of an effective two-dimensional (2D) system, in
which the temporal domain induces a synthetic dimension that
is perpendicular to the direction of the lattice. The pumped
particle in one cycle is characterized by the Chern number of
this 2D system [2–5].

In condensed matter physics, the topological quantum
pumping is not easily observed because of the challenging
requirement for flexible Hamiltonian engineering. Ultracold
atom systems, with highly controllable properties, provide
a perfect platform to observe these topological phenomena
[6,7]. The quantum pumping has already been observed exper-
imentally in ultracold atom systems by driving a superlattice
adiabatically [8,9]. Furthermore, a striking manifestation of
topological quantum pumping, such as spin pumping [10], has
also been observed in ultracold atom systems. Recently, topo-
logical quantum pumping in an effective four-dimensional
system [11,12] was realized in ultracold atom systems with
the measurement of the corresponding second Chern number.
Despite these exciting developments, the pumping processes
in ultracold atom systems with nonsymmorphic symmetry
remain largely unexplored yet. Nonsymmorphic symmetry
is one of the spatial group symmetries, which are the com-
binations of point group operations and nonprimitive lattice
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transitions. It always leads to novel topological phases, such
as nodal points or nodal lines which can be protected by the
nonsymmorphic symmetry [13–20]. The pumping processes
in these systems are expected to lead to novel quantum
phenomena because of the interplay between nonsymmorphic
symmetry and topological features.

In this work, we construct a one-dimensional (1D) spin-
dependent superlattice with band-touching points which are
protected by one of the nonsymmorphic symmetries—glide
symmetry—which is the combination of the spin flip and half
lattice translation. By modulating the coupling amplitude be-
tween different spin components periodically in the pumping
process, one can observe a topological phase transition from a
regime that can be trivially understood by decoupled chains, to
a regime where the coupling becomes significant and the low-
energy physics is determined by one emergent band. Although
the total particle number pumped is still quantized based on
the non-Abelian topological properties of this effective 2D
system, the particle number of each spin component pumped
in one adiabatic driving cycle is not necessarily an inte-
ger anymore. More interestingly, with the appropriate form
of coupling between different spin components, the system
would exhibit glide symmetry along the hybridized direction
of the spatial and temporal domains. The period of Wilson line
along this direction is twice as much as the original dynamical
system. The present proposal is experimentally feasible based
on current state-of-art technology and therefore provides a
platform to explore the intriguing topological phenomena with
nonsymmorphic symmetry in ultracold atom systems.

This paper is organized as follows. In Sec. II we introduce
the model and discuss the band structure of the system. The
glide-symmetry-protected band-crossing points require non-
Abelian Berry curvature to describe the topological proper-
ties. In Sec. III we discuss different types of coupling and the
corresponding topological phase transition. The influence of
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FIG. 1. (a) The evolution of lattice potentials with different spin
components. The lattice potentials of spin-up and -down are shown
by upper and lower surfaces, respectively. The dashed red line and
solid blue line along the x direction (dashed purple arrow) correspond
to the lattice potential at ϕ = 0 for spin-up and -down, respec-
tively. Lattice potentials of different spin components are driven
with the same way along ϕ(t ) direction (solid magenta arrow). A
microwave field B(ϕ) provides the coupling between spin-up and
-down. (b) Tight-binding model of the 1D superlattice for an arbitrary
ϕ. Hollow red dots and solid blue dots represent different sublattice
sites. The intrawell (interwell) tunneling J1(J2) is shown by a single
purple (double green) line. The on-site coupling J is shown by
an orange spiral line. � is the energy detuning between different
sublattices.

different types of glide symmetry in the pumping process is
discussed in Sec. IV. Section V is devoted to our conclusions.

II. MODEL

We consider atoms with two internal pseudospin states
loaded in a spin-dependent optical lattice. The time-dependent
Hamiltonian in the pumping process can be expressed as

H(x, t ) =
∑

σ

∫
dxψ†

σ (x)

{
− h̄2

2m

∂2

∂x2
− Vs cos2

(
2πx

d

)

+Vlσz sin

(
2πx

d
+ ϕ

)}
ψσ (x)

+
∫

dx{B(ϕ)ψ†
↑ (x)ψ↓(x) + H.c.}, (1)

gwhere σ = ↑,↓ characterize different hyperfine spin states
and σz = ±1. Vs and Vl are the lattice depth for lattices
with short and long lattice spacing, respectively. The short
lattice with λs = d/2 is spin independent, but the long lattice
with λl = d is spin dependent, which means different spin
components feel opposite lattice potentials [21–27]. B(ϕ) is
the microwave field or Raman lasers coupling different spin
components, and the amplitude and phase can be well con-
trolled in experiment [28,29]. The time-dependent parameter
ϕ(t ) = ϕ0 + ωt describes the moving of a spin-dependent
lattice along the x direction, where ω is the frequency of
the pumping process, which was chosen to make sure the
evolution is adiabatic. The evolution of this lattice potential
is shown in Fig. 1(a).

In the extreme case B(ϕ) = 0, the system can be consid-
ered as two independent superlattices. For each spin compo-
nent, the driving process is equivalent to Thouless pumping,
which was already observed in ultracold atom experiments
[8,9]. We can explain this equivalence briefly using the tight-

binding Hamiltonian as

H(ϕ) = −
∑

n

[J1(ϕ)a†
nbn + J2(ϕ)b†nan+1 + H.c.]

+ �(ϕ)

2

∑
n

[a†
nan − b†nbn], (2)

where J1(ϕ) and J2(ϕ) are the nearest-neighbor tunneling,
�(ϕ) is the energy detuning between A and B sublattices, as
one of the two chains shown in Fig. 1(b), and all these pa-
rameters change periodically with ϕ. In the adiabatic process,
the temporal domain can be regarded as a synthetic dimension
perpendicular to the spatial domain and ϕ as the correspond-
ing quasimomentum; then the time-dependent Hamiltonian
(2) can be considered as an effective 2D static Hamiltonian.
The Berry curvature in the first Brillouin zone (BZ) and Chern
number can be well defined, and one can easily find that the
Chern number of the lowest band is C = 1 [30].

If B(ϕ) �= 0, different spin components couple with each
other and different quantum phenomena arise. In this case, the
total Hamiltonian (1) including two different spin components
can also be expressed using tight-binding approximation as

H = J1(ϕ)
∑

n

(a†
n,↑bn,↑ + b†n,↓an+1,↓)

+ J2(ϕ)
∑

n

(b†n,↑an+1,↑ + a†
n,↓bn,↓)

+ J (ϕ)
∑

n

(a†
n,↑an,↓ + b†n,↑bn,↓) + H.c.

+�(ϕ)

2

∑
n

(a†
n,↑an,↑ − b†n,↑bn,↑

− a†
n,↓an,↓ + b†n,↓bn,↓), (3)

where J (ϕ) is the coupling between different spin components
which is proportional to B(ϕ). One can also calculate the band
structure and other physical properties of this effective 2D
system.

With any form of the coupling strength J (ϕ), the band-
touching point emerges at the edge of the BZ where k =
±π/d for an arbitrary ϕ, as shown in Fig. 2. Because of the
degeneracy, the non-Abelian Berry curvature is required to
describe the topological properties of this effective 2D system.
The matrix form of the non-Abelian Berry curvature is [31,32]

F = ∂ kAϕ − ∂ϕAk − i[Ak,Aϕ], (4)

where Ak = i〈u|(∂/∂k)|u〉 and Aϕ = i〈u|(∂/∂ϕ)|u〉 are
Berry-Wilzeck-Zee connections [33,34], which are both 2 × 2
matrix where |u〉 = {|un(k, ϕ)〉} (n � 2) is the instantaneous
periodic Bloch wave function of the lowest two bands at an ar-
bitrary ϕ [where |ψn(k, ϕ)〉 = eikx|un(k, ϕ)〉 is the correspond-
ing Bloch wave function]. The particle number transported
within one cycle can be characterized with the non-Abelian
Chern number [35–37]

Q = − 1

2π

∫ 2π

0

∫
BZ

tr(F ) dk dϕ. (5)

It means that the pumped particles in each cycle should also be
quantized. We should point out this conclusion is relevant only
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FIG. 2. (a)–(c). Band structure of the effective 2D system in dif-
ferent topological phases, where the coupling has the form as J (ϕ) =
J (1 + cos ϕ). (a) J < (J1 + J2)/2, (b) J = (J1 + J2 )/2, (c) J > (J1 +
J2)/2. (d)–(f) The corresponding energy spectrum for different ϕ

in a 1D superlattice with an open boundary condition. (d) When
J < (J1 + J2)/2, there are two zero energy modes at ϕ = 0 and π ,
respectively. (e) When J = (J1 + J2 )/2, there is a band-touching
point at ϕ = 0, and the topological phase transition occurs. (f) When
J > (J1 + J2)/2, the band gap reopens, and there is only one zero
energy mode at ϕ = π .

for weakly interacting bosons when the driving frequency ω

satisfying the condition W � h̄ω � D, where W is the band
width of lowest two bands and D is energy gap between lowest
two bands and the other upper bands. Only in this case can
the lowest two bands be approximated as degenerate in the
whole BZ and the probability of the excitation to the upper
bands can be ignored, which means the dynamic process can
be considered as an adiabatic evolution in the subspace of
lowest two almost degenerate bands. For fermions, the con-
dition W � h̄ω is not needed because of the Pauli exclusion
principle, but h̄ω � D should still be satisfied.

III. TOPOLOGICAL PHASE TRANSITION

In the extreme case J (ϕ) = 0, the lowest two bands are
degenerate in the whole BZ and the Chern number of the
effective 2D system should be C = 2. With the increase of
the amplitude of the microwave field, the gap will be opened
in most of the BZ. But at k = ±π/d , the degeneracy will
be protected by glide symmetry [38]. With different forms
of coupling J (ϕ) corresponding to different types of glide
symmetry, different quantum phenomena can be observed. So
the form of J (ϕ) is crucial for the non-Abelian topological
properties in this effective 2D system. In the following, we
will discuss two typical types of coupling and their topological
consequences.

Case 1: J (ϕ) is real. In this case, with the combination
of a spatial translation of half of the lattice spacing d/2 and
the spin flip ↑ ↔ ↓, the Hamiltonian (1) is conserved. This
operation is independent of ϕ, which means the spatial and
temporal domain is separated, and we can say the system has
spatial glide symmetry. In a tight-binding approximation, the
corresponding spatial glide operator can be written as

Ĝk = e
ikd
2

(
cos

kd

2
σ1τ1 + sin

kd

2
σ1τ2

)
, (6)

where σ and τ are Pauli matrices describing the hyperfine
spin state and pseudospin states on sublattices A and B, re-
spectively. The operator Ĝk satisfies the relation ĜkHkĜ−1

k =
Hk where Hk is the Fourier transformation of tight-binding
Hamiltonian (3), and Ĝ2

k |ψk,n〉 = eikd |ψk,n〉 as Ĝ2
k is a transla-

tion for one lattice spacing. The proof of the relation between
the emergence of band-touching point on the edge of BZ and
the glide symmetry was shown in our earlier work [38]. If
J (ϕ) = 2J is a constant, with the increase of the amplitude of
the microwave field, the topological phase transition emerges
at 2J = J1 + J2 and the Chern number of lowest two bands
becomes C = 0 when passing across this critical point. But
if the amplitude of J (ϕ) has a modulation in the temporal
domain, for example, J (ϕ) = J (1 + cosϕ) where J > 0, then
the topological phase transition emerges at the same point
with the increase of the amplitude, but the Chern number
of lowest two bands will become C = 1 instead of C = 0.
In the experiment, the topological phase transition can be
directly observed by measuring the movement of center of
mass (COM) of the atoms in one cycle. One can prepare the
initial state in the Mott-insulator phase with the lowest two
bands fully filled. Then the movement of COM should have
a sharp transition from one side of the critical point to the
other. It means that if the amplitude of coupling is modulated
periodically, although the total particle number transported in
one cycle is quantized to 1, each spin component transported
can have no quantization property in the pumping process.

This topological phase transition can be explained as fol-
lows. With an arbitrary ϕ, the topological properties of the
instantaneous 1D Hamiltonian are characterized by the Zak
phase. Only two special times ϕ = 0 and ϕ = π need to be
considered, because at these moments, this 1D system is a
two-leg Su-Schrieffer-Heeger (SSH) model and the Zak phase
should be 0 or π , which depends on the coupling strength
J (ϕ), as discussed in our earlier work [38]. Because J (ϕ) =
J (1 + cos ϕ) has a modulation in temporal domain, the system
touches the critical point only at ϕ = 0 when 2J = J1 + J2, as
shown in Figs. 2(a)–2(c). If the system has an open boundary
condition in real space, the topological phase transition can
also be characterized by the change of edge states, as shown
in Figs. 2(d)–2(f). Although the conclusions come from the
tight-binding model, the numerical calculation with plane-
wave expansion can get the same results, which was shown
in the Appendix.

Case 2: J (ϕ) is complex, namely, J (ϕ) = J (1 + eiϕ ). In
this case, the glide operation which conserves the Hamiltonian
(1) is the combination of a spatial translation of half of the lat-
tice spacing d/2 and the spin flip with an ϕ-dependent phase
ψ↑(x) → ψ↓(x), ψ↓(x) → e−iϕψ↑(x). In this case, the spatial
and temporal operations couple with each other, leading to
the fact that the spatial and temporal domain is inseparable
[39]. Therefore, the system demonstrates a type of symmetry,
namely, synthetic glide symmetry. Using a similar method, the
corresponding synthetic glide operator can be written as

Ĝk,ϕ = e
i(kd−ϕ)

2

(
cos

kd

2
cos

ϕ

2
σ1τ1− sin

kd

2
sin

ϕ

2
σ2τ2

+ sin
kd

2
cos

ϕ

2
σ1τ2 − cos

kd

2
sin

ϕ

2
σ2τ1

)
, (7)
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where Ĝ2
k,ϕ |ψk,n〉 = ei(kd−ϕ)|ψk,n〉, which is a translation along

the synthetic direction instead of a lattice spacing. With the
increase of the coupling strength, the system also exhibits
a topological phase transition from C = 2 to C = 1 at the
critical point 2J = J1 + J2. It can be seen that the position of
critical point depends only on the amplitude of the coupling
|J (ϕ)| = J

√
2(1 + cos ϕ).

IV. WILSON LINE

It looks like the above two cases have similar behaviors
in topological phase transition. But we should point out that
the topological properties of these two systems are different
because of two different types of glide symmetry. In these
effective 2D systems, the Wilson line is required to char-
acterize the non-Abelian topological properties [34,40]. For
example, the Wilson line starting from � = (0, 0) pointing to
an arbitrary point k = (k, ϕ) can be defined as

W�→k = P exp

{
i
∫

L
A(k) · dk

}
, (8)

which is a path-ordered (P) integral and L is the path from �

to k in reciprocal space. In experiment, if the initial state was
prepared on the eigenstate of the nth band as |ψn(0, 0)〉 with
quasimomentum k = 0, the amplitude of matrix element of
a Wilson line can be estimated by detecting the population of
atoms on the mth band at quasimomentum k after the dynamic
evolution along route L as |W mn

�→k|2 where

W mn
�→k = 〈um(k, ϕ)|W�→k|un(0, 0)〉. (9)

The measurement of phases of the Wilson line is also pos-
sible in ultracold atoms [41]. But in our work, it is not
needed because only the measurement of the amplitude can
distinguish the influence of different glide symmetries. To
ensure the above relation (9) is correct, the criterion W �
h̄ω � D should also be satisfied due to the same reason in
the discussion of Eq. (5). Because the amplitude of J (ϕ)
determines the topological phases, both W and D are related
to J . When J is much smaller than the other energy scales,
the band width W is approximately equal to 2J , so the driven
frequency ω should be larger than J . However, after passing
the critical point, the increase of J only enlarges the band
gap D where W depends on other energy scales, so ω should
be much smaller than J . The Wilson line can be expressed
as a sequence of path-ordered products of projectors and
calculated numerically [42–44].

In the spatial-temporal separable system, because
〈u1(k, ϕ)|∂ϕ |u2(k, ϕ)〉 = 0, which means the eigenstates
of the lowest two bands cannot couple with each other in a
pumping process, the Wilson line is a trivial straight line.
But in the spatial-temporal inseparable system, because
of the hybridization of the spatial and temporal domains,
〈u1(k, ϕ)|∂ϕ |u2(k, ϕ)〉 �= 0, and the tunneling between
different bands will be induced in the pumping process.
The form of the Wilson line will always be complex and
depends on the route of adiabatic evolution. In Fig. 3(b) the
route of evolution is only in the temporal domain and the
quasimomentum is k = 0, as the solid magenta arrow shows
in Fig. 3(a). The population on the ground state decreases
smoothly from 1 but increases suddenly after going through

FIG. 3. Wilson line. The initial state was prepared on the ground
state at k = 0. (a) The solid magenta and dashed green arrows
correspond to two pumping processes along different directions
respectively. The yellow area is part of the first BZ. The white and
light yellow areas correspond to the ground states that have “+” and
“−” eigenvalues of the glide operator respectively. (b) and (c) The
population on different bands in the pumping process along different
directions. Panel (b) is along the ϕ direction and keeps k = 0, and
panel (c) is along the diagonal line of the first BZ as ϕ = kd . The
parameters are Vs = 8ER, Vl = 4ER and B0 = 0.01ER, where ER =
h̄2π 2/(2md2) is the recoil energy.

the edge of the BZ. The Wilson line has the same period as
the original Hamiltonian in the temporal domain. In Fig. 3(c)
we add a very small force to accelerate the atoms in the
spatial domain and drive the system in the temporal domain
simultaneously. By fine-tuning the force as F = h̄k̇ = h̄ω/d ,
one can control the atoms moving along the diagonal line of
the BZ of this effective 2D system, as the dashed green arrow
shows in Fig. 3(a). After one period of driving, the state flips
to the eigenstate of the first excited band, which is orthogonal
to the initial state. Only after another period can it return to
the initial one, which corresponds to a Möbius strip.

All these results arise from the synthetic glide symmetry.
In the extreme case that the coupling amplitude approaches
zero, the lowest two bands are almost degenerate in the whole
BZ and the Wilson line can be calculated analytically. If the
pumping is along ϕ direction as the solid magenta arrow
shows in Fig. 3(a), the Wilson line has the matrix form as

W0→ϕ = eiθ (ϕ)

(
cos(ϕ/4) −i sin(ϕ/4)

−i sin(ϕ/4) cos(ϕ/4)

)
, (10)

where the bases are the lowest two eigenstates of instanta-
neous Hamiltonian |u−

kϕ
(x)〉 and |u+

kϕ
(x)〉, and ± corresponds

to different eigenvalues of glide symmetry operator, respec-
tively. Here eiθ (ϕ) is the U(1) part with a complex form, and
the SU(2) part shows that the populations on “−” and “+”
bands in evolution should be |W−−|2 = cos2(ϕ/4) = [1 +
cos(ϕ/2)]/2 and |W−+|2 = cos2(ϕ/4) = [1 − cos(ϕ/2)]/2,
which have a period of 4π in the temporal domain if the
initial state is prepared on the ground state |u−

kϕ
(x)〉. But

in this pumping process, there is a band-crossing point at
the edge of BZ where ϕ = π because of the synthetic glide
symmetry, and after passing this point, |u+

kϕ
(x)〉 becomes the

ground state. So the population on the lowest band |W11|2
should flip from |W−−|2 to |W−+|2, and it will flip again
after passing another edge. The period of the population
evolution is 2π as shown in Fig. 3(b). If the pumping is
along the diagonal direction of BZ as the dashed green arrow
shows in Fig. 3(a), the matrix form of the Wilson line is
similar to Eq. (10), except that ϕ is replaced by the parameter
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p = (kd + ϕ)/2 along the hybridized direction, but |u−
kϕ

(x)〉
is always the ground state along this direction because of the
synthetic glide symmetry. Then the population on the lowest
band should always be |W−−|2, and the period of evolution is
4π as shown in Fig. 3(c). We point out that all the evolution of
the population on the ground state can be directly measured in
experiment if the initial state prepared in the superfluid phase
instead of the Mott-insulator phase. More analytical proof and
detailed discussions are shown in the Appendix.

V. CONCLUSION

In this work, we propose a quantum pumping process by
periodically driving a spin-dependent superlattice. Because
of the glide symmetry, the band structure has nodal lines,
and the topological properties of this system should be char-
acterized by non-Abelian Berry curvature. In this system,
we find that the topological phase transition can be well
controlled by the form of coupling between different spin
components. Especially, we can find the case that each spin
component transported in one cycle is not quantized in our
system, although the total particle number pumped is still
quantized. In addition, the interplay between the glide sym-
metry and the coupling between different spin components
can hybridize the temporal and spatial domains, which in-
duces the synthetic glide symmetry, and may open a route to
topological phenomena, such as a Möbius strip without the
need of a twisted boundary. The spin-dependent superlattice
system can be highly controlled experimentally and exhibit
versatile physics. The generalization of the present model al-
lows realizing the Floquet topological systems with nonsym-
morphic symmetry using a periodically driving process with
high frequency [39,45–48]. The influence of interaction on
topological pumping processes may open up more interesting
quantum phenomena.

ACKNOWLEDGMENTS

We acknowledge the useful discussion with Xiang-Fa
Zhou, and S.L.Z. also thanks Qi Zhou and Zheng-Wei Zhou
for valuable suggestions. S.L.Z. was supported by start-up
funding of Huazhong University of Science and Technology.
J.M.C. was supported by the National Key R&D Program of
China (Grant No. 2018YFA0306600).

APPENDIX A: THE RESULT OF TOPOLOGICAL
PROPERTY OF THE QUANTUM PUMPING PROCESS

WITH EXACT CALCULATION USING
PLANE-WAVE EXPANSION

Using the plane-wave expansion, we check all results in the
main text and find consistent results. We chose two types of
interspin coupling where the spatial and temporal domains are
separable and inseparable, respectively.

Consider the spatial-temporal separable system first. To
generalize our results, the microwave field coupling different
spin components should have the form B(ϕ) = B0(1 + cos ϕ)
The band structure is shown in Fig. 4. One can see that the
band structure of this effective 2D system using plane-wave
expansion is similar to that deduced from the tight-binding
model in the main text with only quantitative differences. The
asymmetry of the lower and upper two bands mainly comes

FIG. 4. Band structure of the effective two-dimensional system
with coupling B(ϕ) = B0(1 + cos ϕ) using plane-wave expansion.
The lattice depths with short and long wavelength are Vs = Vl = 6ER

respectively. (a) B0 = 0.5ER, (b) B0 = 0.8ER, (c) B0 = 1.0ER.

from the next-nearest-neighbor tunneling and the influence of
the higher bands. Here we choose the lattice depth with short
and long wavelength to be Vs = Vl = 6ER where ER = h2

2md2 is
the recoil energy. One can easily check that the topological
properties are similar to the result of tight-binding model.
When B0 ≈ 0.8ER, this effective 2D system has a band-
touching point at � point and thus has a topological phase
transition, as shown in Fig. 4(b). Figure 5 shows the trace of
non-Abelian Berry curvature on two sides of this topological
phase transition.

Then we consider the spatial-temporal inseparable system.
In this case, the microwave field coupling different spin com-
ponents should have the form B(ϕ) = B0(1 + eiϕ ) to preserve
the synthetic glide symmetry. The band structure is almost
same as Fig. 4, and the topological phase transition can also
be observed.

APPENDIX B: DISCUSSION ABOUT THE WILSON LINE

Consider the extreme case B(ϕ) = 0 first. The Hamiltonian
of each spin component is

Hσ (x, ϕ) =
∫

dxψ†
σ (x)

{
− h̄2

2m

∂2

∂x2
− Vs cos2

(
2πx

d

)

+Vlσz sin

(
2πx

d
+ ϕ

)}
ψσ (x), (B1)

which has the relation as H↑(x, ϕ) = H↓(x + d/2, ϕ). As-
sume that the plane-wave solution of the Bloch wave func-
tion on the lowest bands of the instantaneous Hamiltonian

FIG. 5. The trace of non-Abelian Berry curvature of the effective
two-dimensional system in different topological phases. The lattice
depth with short and long wavelength are Vs = Vl = 6ER respec-
tively. (a) B0 = 0.5ER, (b) B0 = 1.0ER.
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H↑(x, ϕ) is

|ψkϕ,↑(x)〉 =eikx|ukϕ,↑(x)〉

= eikx

√
d

∑


c(k, ϕ) exp

{
i2πx

d

}
|↑〉, (B2)

which has the eigenenergy ε(k, ϕ). We have the relation∑
 |c(k, ϕ)|2 = 1 because of the normalization of the Bloch

wave function. Then the corresponding plane-wave solution
of the instantaneous Hamiltonian H↓(x, ϕ) with the same
eigenenergy should have the form as

|ψkϕ,↓(x)〉 =eikx|ukϕ,↓(x)〉

= eikx

√
d

∑


(−1)c(k, ϕ) exp

{
i2πx

d

}
|↓〉, (B3)

which satisfy the relation ψkϕ,↑(x) = ψkϕ,↓(x + d/2). Then
we consider the case that B(ϕ) is not zero, where different
spin components and different energy bands with the same
quasimomentum k will be coupled and the result will be very
complex. But if the coupling strength is very small, only the
subspace spanned by the lowest band needs to be considered.
Then the effective Hamiltonian can be written as a 2D matrix
using these two states as bases. The diagonal term is identical,
and the off-diagonal term is the coupling between two spin
components, which can be estimated as �k,ϕB(ϕ) where

�k,ϕ =
∫ d

0
ψ∗

kϕ,↓(x)ψkϕ,↑(x) dx

=
∑



(−1)|c(k, ϕ)|2. (B4)

It can be validated numerically that �k,ϕ is always positive in
the first BZ. Then we need to discuss two different cases that
B(ϕ) is real and complex separately.

1. The spatial and temporal domain are separable

Assume that the coupling has the form B(ϕ) = B0(1 +
cos ϕ), then the effective Hamiltonian can be written as

Heff (k, ϕ) = εk,ϕI + B0(1 + cos ϕ)�k,ϕσx. (B5)

The eigenstates of this effective Hamiltonian can be written as

|ψ±
k,ϕ (x)〉 = {|ψkϕ,↑(x)〉 ± |ψkϕ,↓(x)〉}/

√
2

= eikx

√
2d

∑


c(k, ϕ) exp

{
i2πx

d

}

× (|↑〉 ± (−1)|↓〉). (B6)

The sign of the ground state depends only on the sign of
coupling B0 + B′ cos(ϕ). For example, if B0 > B′ > 0, it is
always positive, which means |ψ−

k,ϕ
(x)〉 is always the ground

state. The form of the non-Abelian Berry connection can be
estimated as

i〈u+
kϕ (x)|∂ϕ|u+

kϕ (x)〉 = i〈u−
kϕ (x)|∂ϕ|u−

kϕ (x)〉
= i

∑


c∗
 (k, ϕ)∂ϕc(k, ϕ),

i〈u+
kϕ (x)|∂ϕ|u−

kϕ (x)〉 = 0, (B7)

which has only the diagonal term. From the Eq. (6), we know
that the form of the Wilson line in this case is a straight line;
there is no population transition in the pumping process.

2. The spatial and temporal domain are inseparable

When the coupling has the form B(ϕ) = B0(1 + eiϕ ), the
result will be very different. In this case, the coupling is
complex, so the effective Hamiltonian has a different form as

Heff (k, ϕ) = εk,ϕI + B0(1 + cos ϕ)�k,ϕσx

− B0 sin ϕ�k,ϕσy. (B8)

Because the off-diagonal terms can be rewritten as
2B0 cos(ϕ/2)eiϕ/2�k,ϕ , which has an additional phase eiϕ/2,
the eigenstates of the effective Hamiltonian are

|ψ±
k,ϕ (x)〉 = {|ψkϕ,↑(x)〉 ± e−iϕ/2|ψkϕ,↓(x)〉}/

√
2

= eikx

√
2d

∑


c(k, ϕ) exp

{
i2πx

d

}

× (|↑〉 ± (−1)e−iϕ/2|↓〉). (B9)

Then if the pumping process is in the temporal domain, the
matrix elements of the non-Abelian Berry connection is

i〈u+
kϕ (x)|∂ϕ|u+

kϕ (x)〉 = i〈u−
kϕ (x)|∂ϕ|u−

kϕ (x)〉

= i
∑



c∗
 (k, ϕ)∂ϕc(k, ϕ) + 1

4
,

i〈u+
kϕ (x)|∂ϕ|u−

kϕ (x)〉 = i〈u−
kϕ (x)|∂ϕ|u+

kϕ (x)〉 = −1

4
.

(B10)

Because αk (ϕ) = i
∑

 c∗
 (k, ϕ)∂ϕc(k, ϕ) is a real number, the

form of the Wilson line can be estimated as

W0→ϕ = exp

{
T

∫ ϕ

0
iA(ϕ)dϕ

}

= exp

{
T

∫ ϕ

0
i

[(
αk + 1

4

)
I − 1

4
σx

]
dϕ

}

= eiθ (ϕ) exp

{
− i

4

∫ ϕ

0
σxdϕ

}

= eiθ (ϕ)

(
cos(ϕ/4) −i sin(ϕ/4)

− i sin(ϕ/4) cos(ϕ/4)

)
, (B11)

where θ (ϕ) = ∫ ϕ

0 (αk + 1/4)dϕ is the global phase. If the
initial state is prepared on the ground state |ψ−

k,ϕ
(x)〉, the

populations of different bands in the pumping process should
be

|W−−|2 = cos2 ϕ

4
= 1

2

(
1 + cos

ϕ

2

)
,

|W−+|2 = sin2 ϕ

4
= 1

2

(
1 − cos

ϕ

2

)
,

(B12)

which have a period of 4π . Because of the glide opera-
tion along the synthetic dimension where |↑〉 → |↓〉 and
|↓〉 → eiϕ|↑〉, |ψ±

k,ϕ
(x)〉 are the eigenstates of this synthetic
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glide operator with eigenvalues “+” and “−,” respectively.
But we should point out that the amplitude of coupling
2B0 cos(ϕ/2)�k,ϕ will change the sign after passing the edge
of the first BZ; it means that in the range of π � ϕ � 3π ,
|ψ+

k,ϕ
(x)〉 will be the ground state, and the population on the

ground state should changes from |W−−|2 to |W−+|2. That is
the reason we can get the result in Fig. 3(b) [38].

If the pumping process is along the diagonal direction of
the BZ of the effective Hamiltonian, we should redefine new
parameters p = (kd + ϕ)/2 and q = (kd − ϕ)/2. The inverse
transformation is kd = p + q and ϕ = p − q. The eigenstates
can be described using new coordinates as

|u±
pq(x)〉 = 1√

2d

∑


c(p, q)e2π ix/d

×{|↑〉 ± (−1)ei(q−p)/2|↓〉}. (B13)

One can also estimate all elements of the non-Abelian Berry
connection along the p direction using a similar method, and
the form of the Wilson line is the same as Eq. (B11). But

in this case, the difference is that the eigenstates |upq,+(x)〉
and |upq,−(x)〉 will not flip when crossing the edge of the
first BZ, since, although 2B0 cos(ϕ/2) flips the sign, the
quasimomentum k also goes through the edge of BZ, which
results in �k,ϕ = ∑

(−1)|c(k, ϕ)|2 flipping the sign as
well. This result comes from the properties of Bloch wave
function that c(k + 2π/d ) = c+1(k). So the coupling am-
plitude 2B0 cos(ϕ/2)�k,ϕ will not change the sign, and the
population on the lowest band will always be |W−−|2 as shown
in Eq. (B12), which leads to the result in Fig. 3(c).

With the increase of the coupling amplitude �(ϕ), the
influence of higher bands of Hamiltonian Hσ (x, ϕ) such as
the p band cannot be ignored. The lowest four bands need to
be considered, and there is no analytical result in this case.
With numerical calculation, one can find that the dominant
population on the lowest two bands should be |ψ s,−〉 and
|ψ p,−〉 instead of |ψ s,+〉 and |ψ s,+〉 after passing the critical
point of the topological phase transition. But the qualitative
properties of Wilson loop along two different routes still
remain unchanged.
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