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We consider an expansion of the strongly interacting superfluid Fermi gas in a vacuum in the so-called unitary
regime when the chemical potential μ ∝ h̄2n2/3/m, where n is the density of the Bose-Einstein condensate
of Cooper pairs of fermionic atoms. At low temperatures T → 0, such an expansion can be described in the
framework of the Gross-Pitaevskii equation (GPE). For such a dependence of the chemical potential on the
density, the GPE has additional symmetries, resulting in the existence of the virial theorem, connecting the mean
size of the gas cloud and its Hamiltonian. It leads asymptotically at t → ∞ to the gas cloud expansion, linearly
growing in time. We study such asymptotics and reveal the perfect match between the quasiclassical self-similar
solution and the asymptotic expansion of the noninteracting gas. This match is governed by the virial theorem,
derived through utilizing the Talanov transformation, which was first obtained for the stationary self-focusing of
light in media with a cubic nonlinearity due to the Kerr effect. In the quasiclassical limit, the equations of motion
coincide with three-dimensional hydrodynamics for the perfect monatomic gas with γ = 5/3. Their self-similar
solution describes, within the background of the gas expansion, the angular deformities of the gas shape in the
framework of the Ermakov-Ray-Reid–type system.
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I. INTRODUCTION

One of the key experiments in the discovery of the Bose-
Einstein condensates of gaseous alkali-metal elements [1,2]
was connected to the determination of the distribution func-
tion of Bose atoms during gas expansion in vacuum. This
expansion had some interesting features similar to those in
the expansion of inviscid gas in vacuum, i.e., of a perfect
compressible fluid. In particular, in experiments [1], the gas
expansion was accompanied by angular deformation of the
cloud shape from a cigar form to a disk. The experiment
ignited discussion about the quantum and classical origins
of hydrodynamics [3]. In particular, it is worth noting that
Refs. [3,4] obtained the first scaling time-dependent solu-
tions for bosonic atoms in the hydrodynamic regime for the
anisotropic trap; in addition, Ref. [3] found the spectrum
of breathing modes of the oscillating type in the trapping
potential. Later, the self-similar regimes were observed in the
experiments of O’Hara et al. [5] for the anisotropic expansion
of a strongly interacting degenerate Fermi gas of 6Li atoms
from the optical trap. The measurements of this group were
performed by exploiting the Feshbach resonance [6,7], which
allows one to change the scattering length as in a wide range
from positive to negative values. In this range of as there is
one special point, corresponding to the so-called unitary limit
(askF )−1 → 0 (pF = h̄kF is Fermi momentum), where exact
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and universal results can be obtained (see, e.g., [8,9] for a
review). The reason for the universality of the unitary limit is
connected to the fact that there is no other energy scale besides
the Fermi energy εF at this point. Thus, the chemical potential
μ in the unitary limit scales linearly with εF .

In hydrodynamic content, the first classical works on gas
expansion into vacuum were performed by Ovsyannikov [10]
and Dyson [11]. Both Dyson [11] and Nemchinov [12] pre-
dicted the appearance of anisotropy during gas expansion.
Anisimov and Lysikov [13] constructed an exact self-similar
axial-symmetric solution to the problem of the expansion of
an ideal gas with an adiabatic index γ = 5/3. This solution
describes anisotropic expansion, with a varying angular shape
of the gas cloud, in particular, with the inversion of the initial
cigar-shaped form to the disk and vice versa.

As we will show in this paper, the analogy between the
hydrodynamic expansion of ordinary gases and the expansion
of a quantum Fermi gas into vacuum is actually deeper than
it might seem at first glance. At the quantitative level, the
similarity between quantum and classical hydrodynamics is
seen in the expansion of a strongly interacting Fermi gas of
atoms [5].

In this paper we consider an expansion of the strongly
interacting superfluid Fermi gas in a vacuum in the unitary
regime when the chemical potential μ ∝ h̄2n2/3/m, where
n is the density of the Bose-Einstein condensate of Cooper
pairs of fermionic atoms assuming temperature T → 0. Such
expansion can be described in the framework of the Gross-
Pitaevskii equation (GPE). Because of the chemical potential
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dependence on the density ∼n2/3, the GPE has additional
symmetries resulting in the virial theorem [14] connecting
the mean size of the gas cloud and its Hamiltonian. It leads
asymptotically at t → ∞ to the linear-in-time expansion of
the gas. We carefully study such asymptotics and reveal
a perfect matching between the quasiclassical self-similar
solution and the asymptotic expansion of the noninteracting
gas. It is worth noting that the quasiclassical time-dependent
GPE in the unitary limit represents, after simple rescaling, the
hydrodynamic equations for potential flows of the classical
gas with the adiabatic constant γ = 5/3. Note that all sym-
metries of the GPE in this case remain in the quasiclassical
approximation, which allows one to construct more easily the
Anisimov-Lysikov solution [13] by using the virial theorem
and the Ermakov integral.

The paper is organized as follows. In Sec. II we discuss
the problem concerning symmetries of the GPE in the unitary
limit and how these symmetries are connected to those found
for the nonlinear Schrödinger equation (NLSE) in the critical
case when the virial theorem can be applied for the description
of the stationary self-focusing of light in media with the
Kerr nonlinearity [14] and symmetries in the case of an ideal
monatomic gas. Section III mainly deals with the self-similar
solution of the anisotropic type of quasiclassical GPE in the
unitary limit for expansion of the Fermi superfluid gas. This
solution describes the angular deformations of the gas shape
within the background of the gas expansion. In Sec. IV we
discuss to what extent the analytical results obtained in the
previous sections are related to the experimental data. In
Sec. V we summarize the results of the paper.

II. SYMMETRIES AND INTEGRALS OF MOTION

First of all, we recall that the topic of gas expansion was
very popular in the hydrodynamic content. It worth noting that
the application of these studies ranged from astrophysics [15]
to laser-matter interaction [16].

Anisimov and Lysikov [13] discovered a very interesting
phenomenon connected with the nonlinear angular deforma-
tion of the gas cloud during its expansion. Such behavior
directly follows from their remarkable solution for an ideal
monatomic gas (see also [16–18] and references therein). This
result, as was pointed out by Dzyaloshinskii [19], represents
a consequence of the symmetry which is well known in
quantum mechanics for motion of a nonrelativistic particle
in the potential V (r) = β/r2. This symmetry, independent of
the sign of β, is dilatation of both spatial coordinates and
time for which r → αr and t → α2t , where α is a scaling
parameter. Indeed, such symmetry was exploited for the first
time by Ermakov in [20] to construct solutions for some
mechanical systems including the motion of a particle in the
potential which is a combination of the oscillator potential
and V (r) = β/r2. Just this symmetry helps one find an exact
solution in the quantum case also (see, e.g., [21,22]).

Subsequently, Ray and Reid [23] rediscovered the Er-
makov results. Now all such equations are commonly called
Ermakov-Ray-Reid systems (see, e.g., [24] and references
therein). As we will show in this paper, this additional sym-
metry for the GPE takes place for both attractive and repulsive
interactions (in optical content, corresponding to focusing and

defocusing nonlinearities). Note that, in quantum mechanics
(see [25]), for the attractive potential V < 0, with constant
|β| larger than some critical value (=h̄2/8m), the quantum
falling of a particle with mass m into the center is possible,
which can be understood as collapse. Moreover, this falling
becomes more quasiclassical as the particle approaches the
center. In the case of the (cubic) Gross-Pitaevskii equation
[26,27], which can be applied for the description of the non-
linear dynamics of the Bose condensate for dilute gases, the
kinetic energy has the same scaling as in the usual quantum
mechanics, i.e., proportional to α−2. The nonlinear interac-
tion term in the GPE, due to the s scattering, has a scaling
proportional to α−d which appears from the conservation of
the total number of particles N = ∫ |ψ |2dr, with d the space
dimension and ψ the wave function of the Bose condensate.
Thus, at d = 2 only, the situation is analogous to that in the
quantum mechanics for potentials V (r) = β/r2. This is a very
special case, as it was first demonstrated by Vlasov et al. [14]
for the two-dimensional (2D) nonlinear Schrödinger equation,
for which the so-called virial relation is valid,

m
d2

dt2

∫
r2|ψ |2dr = 4H, (1)

where the Hamiltonian H in the case of the GPE for the Bose
condensate has the form

H =
∫ [

h̄2

2m
|∇ψ |2 + g|ψ |4

]
dr.

Here the coupling coefficient g = 4π h̄2as/m, with as the
scattering length and m the particle mass. It is necessary to
emphasize that the virial relation (1) is valid for any sign
of g. The only restriction follows from the requirement of
convergence of the integrals in (1). It is worth noting that in
classical mechanics the virial theorem establishes the ratio be-
tween mean values of the total kinetic and potential energies.
The simplest way to derive this theorem is calculation of the
second time derivative of a moment of inertia [this results in
a virial relation like Eq. (1)] and then averaging it in time.
Further, we will call the relation (1) the virial theorem.

In this paper we consider another example of the same
symmetry, when the generalized Gross-Pitaevskii equation [8]
can be applied for description of the strongly interacting Fermi
gas in the superfluid phase at T = 0 [28],

ih̄
∂ψ

∂t
= − h̄2

2(2m)
	ψ + μ(n)ψ, (2)

where ψ is the wave function of the Bose condensate of
fermion pairs, m is a fermion mass (2m is a mass of a
fermion pair), and μ is the chemical potential. In the unitary
limit [when (kF as)−1 → 0] the chemical potential reads (see,
e.g., [8])

μ(n) = 2(1 + β )εF , (3)

where the universal interaction parameter β = −0.63, in ac-
cordance with [29,30], and the local Fermi energy

εF = h̄2

2m
(6π2n)2/3.
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Here n = |ψ |2 is the concentration of fermionic pairs. Below
we will normalize the density n by its initial maximum value
n0, the inverse time t−1 by h̄

2m n2/3
0 , and the coordinate r by

n−1/3
0 . In these new (dimensionless) units Eq. (2) reads

i
∂ψ

∂t
= −1

2
	ψ + μ(n)ψ, (4)

where

μ(n) = 2(1 + β )(6π2n)2/3. (5)

Choosing the standard ansatz for the ψ function, ψ =√
n(r, t ) exp[iϕ(r, t )], and separating then real and imaginary

parts in (2), we get the system of continuity and Euler
(eikonal) equations

∂n

∂t
+ (∇ · n∇ϕ) = 0, (6)

∂ϕ

∂t
+

[
μ(n) + (∇ϕ)2

2
+ TQP

]
= 0, (7)

where v = ∇ϕ has the meaning of velocity. Here we used the
condition of the absence of vortices ∇ × v = 0.

The term in Eq. (7) represents the quantum pressure
given by

TQP = −	
√

n

2
√

n
. (8)

Throughout most of the present paper we will neglect this
term and will discuss its possible role in the last two sections.
Neglecting quantum pressure corresponds to the quasiclassi-
cal (or eikonal) approximation (called also the time-dependent
Thomas-Fermi approximation), which assumes more rapid
space and time variations of phase (larger phase gradients
and time derivatives) in comparison with the space and time
variations of the modulus of the ψ function in Eq. (4).

It is important to emphasize that the generalized Gross-
Pitaevskii equation (4) coincides with the NLSE widely used
in nonlinear optics and plasma physics. It is convenient to
exclude in (5) the factor 2(1 + β )(6π2)2/3 by simple rescaling
of the density n,

2(1 + β )(6π2n)2/3 → 5
3 n2/3,

so that Eq. (4) takes the standard form accepted for the NLSE,

i
∂ψ

∂t
+ 1

2
	ψ − (υ + 1)|ψ |2υψ = 0, (9)

with the exponent υ = 2/3. This equation can be written in
the Hamiltonian form

i
∂ψ

∂t
= δH

δψ∗ ,

where the Hamiltonian

H =
∫ [

1

2
|∇ψ |2 + |ψ |2(υ+1)

]
dr, (10)

with the first term coinciding with the total kinetic energy
and the second one responsible for nonlinear interaction of
the repulsion type. After applying the transformation ψ =√

n(r, t ) exp[iϕ(r, t )], equations for the density n and phase

ϕ remain of the Hamiltonian form

∂n

∂t
= δH

δϕ
,

∂ϕ

∂t
= −δH

δn
, (11)

where the Hamiltonian coincides with (10). In terms of n and
ϕ, H takes the form

H =
∫ [

n(∇ϕ)2

2
+ (∇√

n)2

2
+ nυ+1

]
dr.

The Hamiltonian equations of motion (11) are the same equa-
tions (6) and (7) transformed under simple rescaling; n and ϕ

in this case play the role of canonically conjugated quantities.
The second term in H is responsible for the quantum pres-

sure in Eq. (7). In the quasiclassical limit (the Thomas-Fermi
approximation), this term becomes small and can be neglected
so that we arrive at the hydrodynamic equations for potential
flow of monatomic gas with a specific heat ratio (adiabatic
index) γ = 5/3 (υ = 2/3). This γ is remarkable for both the
NLSE and its quasiclassical limit. It turns out that the equa-
tions of motion in this case have two additional symmetries.
The first symmetry forms a dilatation group of the scaling
type. However, for the NLSE (9) such symmetry appears as
a result of the conservation of the total number of particles N
so that at d = 3 only the nonlinear potential ∼|ψ |4/3 in Eq. (9)
has the same scaling as the Laplace operator 	. At d = 2
such symmetry takes place for the nonlinear potential ∼|ψ |2
(in this case the NLSE describes the stationary self-focusing
of light in a medium with the Kerr nonlinearity). In the
general case the dilatation symmetry arises at ν = 2/d (see,
for instance, [31,32]). The second symmetry of conformal
type was first found by Talanov for the cubic NLSE at d = 2
[33] and is called now the Talanov transformations. In optical
content these are the lens transformations well known in linear
optics.

These symmetries are of the Noether type and generate
two additional integrals of motion. They can be obtained
from the virial theorem (1) (first obtained for the 2D cubic
NLSE in [14]), after integrating twice in time (dimensionless
variables): ∫

r2|ψ |2dr =2Ht2 + C1t + C2. (12)

Hence we get asymptotically at t → ∞, independently of C1

and C2, ∫
r2|ψ |2dr →2Ht2.

Therefore, the mean size (indeed, the rms) of the gas cloud
varies at large t linearly in time,

〈r2〉1/2 ∝ t
√

2H/N . (13)

This result is very important since it perfectly matches the
quasiclassical solution in Eq. (13) with the linearly varying
solutions for the noninteracting particles (ballistic expansion)
(see, e.g., [28]).

It should be emphasized that the virial theorem (1) is the
exact result; it can be applied in particular in the quasiclassical
limit also when the quantum pressure term in H is eliminated.
The latter corresponds to the classical monatomic gas ex-
pansion. In this case Anisimov and Lysikov [13] constructed
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exact axial-symmetric self-similar solution based in fact on
the existence of two integrals of motion C1 and C2 (see the next
section). This solution describes the gas expansion in time in
correspondence with (12) with nonlinear angular deformation
of the gas shape.

III. SELF-SIMILAR QUASICLASSICAL SOLUTION

Note that the quasiclassical limit of Eq. (9) or its equivalent
[Eqs. (6) and (7)] corresponds to neglecting the quantum
pressure term so that we arrive at the gas dynamical system
consisting of the continuity equation (6) and the equation
for ϕ,

∂ϕ

∂t
+ (∇ϕ)2

2
+ 5

3
n2/3 = 0. (14)

Let us search for a solution of these equations in the self-
similar form (see, e.g., [13,34–36])

n = 1

axayaz
f

(
x

ax
,

y

ay
,

z

az

)
, (15)

assuming that the three scaling parameters ax, ay, and az are
functions of time. Note that the ansatz (15) conserves the total
number of particles.

Then the continuity equation (6) admits integration result-
ing in the expression for the phase ϕ,

ϕ = ϕ0(t ) +
∑

l

ȧlal

2
ξ 2

l , (16)

where the function ϕ0(t ) can be found after substitution in the
eikonal equation and ξx = x/ax, ξy = y/ay, and ξz = z/az are
the self-similar variables. Substitution of (16) into the eikonal
equation yields that

äxax = äyay = äzaz = λ

(axayaz )2/3
, (17)

where λ is an arbitrary positive constant which is determined
from the initial condition. For f (ξ ) we have

f (ξ ) =
[

1 − 3λ

10
ξ 2

]3/2

. (18)

We will assume that the initial density is also defined
from the Thomas-Fermi approximation. In the presence of a
harmonic trap, at the stationary state we have the equilibrium
condition

μ(n) = μ(n0) − m
∑

ω2
i x2

i ,

where μ(n) is given by (5). Recall that, because of pairing in
this expression, 2m appears instead of m. This gives the initial
density distribution

n = n0

[
1 − mω2

mn−2/3
0

μ(n0)

∑
ξ 2

i

]3/2

,

where ωm = max(ωi ) and ai(0) = ωm/ωi. This profile
matches precisely with the self-similar solution (15) and (18)
at t = 0. Hence we have that

λ = 10mω2
mn−2/3

0

3μ(n0)
,

FIG. 1. Behavior of the density factor f (ξ ) (arbitrary units).

or in terms of N ,

λ = 5

6

(
π2

N

)2/3(
ω3

m

ωxωyωz

)2/3

.

The function f (ξ ) [Eq. (18)] is spherically symmetric with
respect to ξ . It varies from 1 at ξ = 0 up to zero at ξmax =√

10/3λ; above ξmax the density n is equal to zero (see Fig. 1).
In accordance with (17), the dynamics of the three scaling
parameters ai(t ) (i = 1, 2, 3) is described by the Newton
equation for the motion of a particle

äi = −∂U

∂ai
, (19)

where the potential

U = 3λ

2(axayaz )2/3
. (20)

It is worth noting that at the point ξ = ξmax the obtained
quasiclassical solution given by (15)–(19) breaks down, which
follows from estimation of the quantum pressure term which
becomes infinitely large. In this case, ξ = ξmax plays the role
of a reflection point in the usual quasiclassical approximation
in quantum mechanics. This means that in the vicinity of 	ξ

around ξ = ξmax one needs to match the constructed solution
at ξ < ξmax (inner region) with that at ξ > ξmax (outer region),
where we should neglect nonlinearity in the NLSE (free
Schrödinger equation). This problem was discussed in [34] for
the strong collapse regime in the supercritical NLSE with d =
3 and ν = 1. In the given case, the matching problem can be
also resolved if 	ξ = |ξ − ξmax| 
 ξmax. However, the given
problem is more complicated because of the time-dependent
anisotropy for the quasiclassical solutions (15)–(19) (see the
following sections). Nevertheless, we can understand qualita-
tively the behavior of these solutions in the transient region.
Solutions near ξ = ξmax have to oscillate in space and time.
The nature of such oscillations is due to diffraction. These
oscillations are analogous to Newton rings in optics. This
question is beyond the scope of the present paper.

We should notice also that near ξ = ξmax the unitary limit is
not also applicable because kF becomes infinitely large. Near
this point, however, the nonlinear term is small and we again
return to the same matching problem as in the previous case.
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A. Virial theorem for the scaling parameters

It is more or less evident that Newton equations (19) have
to have the same symmetry properties as the original NLSE
(9), which can be easily verified. Note first that for Eq. (19)
the energy integral is written in the standard form

E = 1

2

∑
i=1,2,3

ȧ2
i + 3λ

2(axayaz )2/3
.

Second, for Eq. (19), by direct calculation it is possible to get
the virial theorem (1), written in terms of ai. For

∑
a2

i we have

d2

dt2

∑
i

a2
i = 2

∑
i

[(
dai

dt

)2

+ ai
d2ai

dt2

]
.

Then substitution of (19) into this relation gives finally

d2

dt2

∑
i

a2
i = 2

∑
i

(
dai

dt

)2

+ 6λ

(axayaz )2/3
= 4E ,

which coincides with the virial identity (1). Its twice integra-
tion gives two integrals C1 and C2:∑

i

a2
i = 2Et2 + C1t + C2. (21)

Hence

C1 = d

dt

∑
i

a2
i − 4Et, (22)

C2 =
∑

i

a2
i − 2Et2 − C1t . (23)

In the isotropic (spherically symmetric) case when ax = ay =
az ≡ a the equations of motion transform into one equation

ä = λ

a3
, (24)

with the energy E = 3
2 (ȧ2 + λ

a2 ) and 3a2 = 2Et2 + C1t + C2.
From the latter relation we immediately have that the gas
cloud expands asymptotically in the radial direction at t → ∞
with constant velocity

v∞ =
√

2E/3 (25)

(ballistic regime). This result is in agreement with the virial
theorem (13).

If we change the sign of the potential in Eq. (24) then we
get the falling of the particle on the potential center, which, as
known in quantum mechanics, becomes more quasiclassical
while approaching the center (see [25]).

For the expansion of a noninteracting gas from a harmonic
potential √〈

x2
i

〉 ∝ (
√

h̄ωi/2m)t

and v∞ = const, in agreement with our intuitive considera-
tions and with Eq. (25) as well. (Let us recall that for quasi-
2D disk-shaped traps the trapping frequency ωz � ωx  ωy.)
Thus, we have almost perfect matching of ballistic results for
a noninteracting gas and quasiclassical results derived for a
strongly interacting Fermi gas in the eikonal approximation.

It is worth noting that in the virial relation (21), besides
total energy E there are two more integrals of motion C1 and

C2. In principle, if C1 > 0 then the solution with a2 ∝ C1t is
possible for some intermediate times, but not initially. The
regime with a ∝ (t0 − t )1/2 is typical for weak self-similar
collapse (see [34,37]).

B. Anisotropic self-similar solution

The simplest anisotropic case corresponds to the cylindri-
cally symmetric expansion and is governed by the scaling
parameters ax = ay = a/

√
2 and az = b. For a � b we have

the case of an initially disk-shaped cloud, while for b � a
we are effectively in the cigar-shaped limit. An isotropic limit
obviously corresponds to b = a/

√
2.

In the anisotropic cylindrically symmetric case Eq. (17)
reads

ä = −∂U

∂a
, b̈ = −∂U

∂b
, (26)

with the initial ratio b/a|t=0 = ω⊥/
√

2ωz. The effective po-
tential in accordance with Eq. (20) is given by

U = 3λ

2(a2b/2)2/3
.

Note that this system belongs to the so-called Ermakov type
of equations [20]. These equations describe the motion of two
degrees of freedom and therefore to integrate this system it
is enough to have two autonomous integrals of motion which
should be in involution. In our case, however, we have three
integrals of motion. The first one is the total energy

E = 1

2
(ȧ2 + ḃ2) + 3λ

2(a2b/2)2/3
. (27)

The second and third integrals are two constants C1 and C2

which appear in (12), while the double integration over time
of the virial identity (1),

d2

dt2
(a2 + b2) = 4E . (28)

The integrals (22) and (23), however, are not autonomous;
they contain an explicit dependence on time and therefore
cannot provide a complete integration of the system. As we
will see, only their combination defines the needed integral of
motion for the Ermakov type of equations.

Let us introduce now the polar coordinates for a and b,

a = r cos �, b = r sin �.

In these variables the virial theorem (28) acquires the evident
form

d2

dt2
r2 = 4E ,

where the total energy E , in accordance with (27), is

E = 1

2
(ṙ2 + r2�̇2) + 3λ

21/3r2(cos2 � sin �)2/3
, (29)

and correspondingly

r2 = 2Et2 + C1t + C2, C1 = d

dt
r2 − 4Et . (30)
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FIG. 2. Effective potential Ueff (�).

Multiplying now (29) by r2 and using the relations (30),
simple calculations give that the combination

Ẽ = Er2 − 1
2 r2ṙ2 = EC2 − C2

1 /8

is a constant (the Ermakov integral). As a result, we arrive at
a conservation law for the new “energy”

Ẽ = 1

2

(
d�

dτ

)2

+ Ueff (�), (31)

with new time τ ,

dτ = dt

r2
, (32)

where τ = ∫ t
0

dt ′
2E (t ′ )2+C1t ′+C2

, with

Ueff (�) = 3λ

21/3(cos2 � sin �)2/3
(33)

playing the role of potential energy. It is always positive and
goes to infinity for � → 0 and � → π/2. The minimum
of Ueff (�) = 9λ/2 corresponds to the isotropic case when
sin �min = 1/

√
3. Graphically, the effective potential Ueff (�)

is shown in Fig. 2.
The new time τ [Eq. (32)] can be easily expressed through

t ,

√
2Ẽτ = arctan

√
2E (t + t0)

χ
− arctan

√
2Et0
χ

,

where χ2 = Ẽ/E and t0 = C1
4E so that τ = 0 at t = 0. If the

initial velocity is equal to zero (which is typical for experi-
ment) the constant C1 = 0 and

√
2Ẽτ = arctan

√
2Ẽt

C2
.

In this case, asymptotically at t → ∞,

τ → τ∞ = π

2
√

2Ẽ
. (34)

The trajectory �(τ ) is defined from integration of (31),

τ =
∫

d�√
2[Ẽ − Ueff (�)]

.

Hence the τ period of the oscillations in the potential Ueff (�)
[Eq. (33)] is expressed through the integral

T = 2
∫ �(+)

�(−)

d�√
2[Ẽ − Ueff (�)]

,

where �(±) are roots of the equation Ẽ = Ueff (�) (reflection
points). This integral is expressed via elliptic integrals of the
third order (see [13]). At large value of Ẽ oscillations are
almost independent of the details of Ueff (�). Asymptotically,
in this case the angular velocity d�

dτ
→ ±

√
2Ẽ and the τ

period T → π/
√

2Ẽ , namely, in this limit, T exceeds two
times τ∞ [Eq. (34)]. Notice also that the dependence T (Ẽ ) is
monotonic for the given potential Ueff (�) with the maximum
corresponding to the potential minimum. This means that
in the real experiment (which we will discuss in the next
section), in the better case it is possible to observe only half of
such an oscillation tosc. It is important to note that a return to
the initial shape is impossible in this case. In the quasiclassical
regime, the gas shape behavior will be different for cigar-
and disk-shaped initial conditions. For example, in the cigar-
shaped case we start at fixed Ẽ from the left reflection point of
the potential Ueff (�); in the disk-shaped case we start from the
right reflection point. Therefore, the shape forms will coincide
only for intermediate moments of time, far from the initial
reflection points. We should take into account that at fixed Ẽ
starting from any reflection point we cannot reach its opposite
reflection point. It should be emphasized that the solution
presented here was first obtained by Anisimov and Lysikov
[13] for expansion of an ideal gas with γ = 5/3.

C. General anisotropic case

In the general anisotropic case, when all the scaling param-
eters are different ax �= ay �= az it is convenient to introduce
the spherical coordinates (r, θ , and ϕ) where the total energy
acquires the form

E = 1

2

⌊(
dr

dt

)2

+ r2

(
dθ

dt

)2

+ r2 sin2 θ

(
dϕ

dt

)2
⌋

+ 3λ

21/3r2

1

(sin2 θ cos θ sin 2ϕ)2/3
.

Correspondingly introducing again the Ermakov reduced en-
ergy Ẽ , which is a sequence of the dilatation symmetry,
and new time τ , following the same prescriptions as in the
preceding section, we get

Ẽ = C2E − 1

8
C2

1 =
(

dθ

dt

)2

+ sin2 θ

(
dϕ

dt

)2

+ Ueff , (35)

where the effective potential is now

Ueff = 3λ

21/3(sin2 θ cos θ sin 2ϕ)2/3
. (36)

Thus, we arrive at the system for two degrees of freedom. As
it was pointed out in the preceding section, the integral (35)
is a consequence of the scaling symmetry, but for integration
of the system it is not enough. As it was shown by Gaffet
[38], this system indeed has one additional integral (besides
Ẽ ) which follows from the Painlevé test. The existence of
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FIG. 3. (a) Images of a strongly interacting Fermi gas, which
expands starting from the cigar shape. The expansion time is noted
by each image. (b) Thomas-Fermi radii along the transverse (σx , red)
and longitudinal (σz, blue) directions vs the expansion time. The
markers are the data. The curves are the self-similar-expansion model
without adjustable parameters. (Figure has been taken from [5].)

these two integrals of motion guarantees complete integration
of this system. As in the previous limit, motion in the potential
(36) remains its nonlinear quasioscillatory character.

IV. DISCUSSION OF EXPERIMENTAL DATA
AND COMPARISON WITH OBTAINED RESULTS

The self-similar expansion of a strongly interacting Fermi
gas from a cigar-shaped trap was observed in [5]. The images
of the expanding gas are shown in Fig. 3(a). The transverse
size grows rapidly, while the longitudinal size is nearly sta-
tionary, with a weak growth. In Fig. 3(b) one may see qualita-
tive agreement between the time behavior of the gas expand-
ing shape and the self-similar-expansion model represented by
Eqs. (15) and (26). The cloud images are changing in Fig. 3(a)
from almost ellipsoid and significantly stretched along the z
axis (exposition t = 100 μs) to the almost spherical shape
(at t = 600 μs) and finally from the spherical shape to the
ellipsoid stretched now in the direction perpendicular to z.
The total time of the observation is 2000 μs, which can be
taken as a half period (or less) of the angular shape oscillations
t � tosc/2, in accordance with the results of the preceding
section. The frequency ratio (and thus the anisotropy ratio
up to a factor

√
2) in the experiments [5] was initially rather

large, (around 30) which follows from the Thomas-Fermi
estimation.

The small deviation of the data from the self-similar be-
havior in Fig. 3(b) was attributed [39] to the contribution of
quantum pressure (8) to the hydrodynamic model (6) and (7).
That TQP term is neglected to obtain a self-similar solution
of Eqs. (15) and (26). This difference, however, may be
explained even without the quantum pressure, by possible
deviation of the equation of state from the μ ∝ n2/3 depen-
dence (3) since in experiment the interaction parameter is

FIG. 4. Data are experimental values τ 2(t ) ≡ m[〈r2〉 −
〈r2〉t=0]/〈r · ∇U 〉t=0 measured for a strongly interacting normal
Fermi gas after expansion for time t , initially trapped in potential
U (r). The black curve is the expansion law (37). Black markers
correspond to the gas on-resonance, 1/kF as ≈ 0, red and blue
markers correspond to 1/kF as  0.59 and −0.61, respectively,
and the solid curves are the results of a calculation without free
parameters [40].

not tuned exactly on-resonance 1/kF as = 0, with the estimate
1/kF as  −0.14 [5].

Exactly on-resonance, the mean-square cloud size 〈r2〉 is
found [40] to evolve as

〈r2〉 = 〈r2〉t=0 + t2

m
〈r · ∇U (r)〉t=0, (37)

where U (r) is the initial trapping potential. The expansion law
(37) was obtained within the Thomas-Fermi approximation
and coincides with the quasiclassical dependence of 〈r2〉
[Eq. (21)] in the unitary limit for C1 = 0 (or equivalently
for initial velocity equal zero). It should be emphasized that,
according to (21), 〈r2〉 indeed depends linearly on energy E ,
which was verified in experiments [40].

Note that the expansion law (37) is indeed the same as for
the ideal gas and coincides with the virial theorem (1). Note
that the expansion law is obtained for both zero- and finite-
temperature gas with an equation of state P = 2

3E, where P is
the pressure and E is the energy density, while the relation
μ ∝ n2/3 is a particular case of this state that corresponds
to the isentropic regime for γ = 5/3. The equation of state
P = 2

3E and expansion law (37) are consequences of the
resonant interaction with 1/kF as = 0. Away from resonance,
the expansion laws differ slightly from each other, which is
seen in the measurements displayed in Fig. 4. Nevertheless,
these laws for different parameters 1/kF as have the same
parabolic dependence on t . It should be emphasized that dur-
ing the expansion the interaction parameter 1/kF as changes
due to a drop in gas density. When the parameter values fall
outside the interval (−1, 1), the quantum effects become less
significant and the gas expansion approaches the law for a
classical monatomic gas, which coincides, however, with (37).
For these reasons we guess that expansions with 1/kF as 
0.59 and −0.61 (red and blue curves, respectively, in Fig. 4)
correspond to a normal Fermi gas.
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V. CONCLUSION

We have demonstrated that the symmetry for the GPE in
the unitary limit, describing a strongly interacting superfluid
Fermi gas, results in the virial theorem (1). As a consequence,
independently of the ratio between the quantum pressure and
chemical potential while the Fermi superfluid gas expands, the
rms size of the gas cloud scales linearly with time asymptot-
ically. so the expansion velocity tends to the constant value
v∞ = (2H/N )1/2.

For the description of the expansion of the strongly inter-
acting superfluid Fermi gas we have applied the self-similar
quasiclassical theory. For large timescales the theory matches
quite well with simple ballistic ansatz and also with the
initial quasiclassical distribution of the trapped gas. This self-
similar solution is a consequence of the scaling symmetry
of the Ermakov type. In the unitary limit, when both kinetic
and potential energies scale linearly with the Fermi energy,
our quasiclassical solution for the superfluid quantum gas
coincides with the Anisimov-Lysikov solution [13] for clas-
sical gas expansion in the isentropic regime. This anisotropic
solution describes the nonlinear deformations of the cloud
shape during the self-similar gas expansion. For the initial
condition in the cigar-shaped form this solution demonstrates
successively all the stages of gas expansion, starting from
the distribution extended along the cigar axis, bypassing the

spherically symmetrical one, and ending with the distribution
turned at angle π/2 with respect to the initial cigar form. Such
behavior was first observed in experiments [5]. For the initial
distribution in the form of a quasi-2D disk, all stages of the
expansion are inverse to those for the initial distribution in the
cigar form.

It should be emphasized that the solutions developed in
this paper are based on a quasiclassical theory which, in
the leading order, does not differ from the hydrodynamics
of an ideal gas with the adiabatic exponent γ = 5/3. The
difference between a quantum gas and a classical one in the
problem of gas expansion into vacuum consists in taking into
account quantum pressure, the inclusion of which leads to the
appearance of density oscillations in both time and space at
the boundary of the expanding cloud. These oscillations are
of the diffraction type and have the same nature as Newton
rings in optics.
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