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Supersensitive quantum sensor based on criticality in an antiferromagnetic spinor condensate
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We consider an antiferromagnetic Bose-Einstein condensate in a transverse magnetic field with a fixed
macroscopic magnetization. The system exhibits two different critical behaviors corresponding to transitions
from polar to broken-axisymmetry and from antiferromagnetic to broken-axisymmetry phases, depending on the
value of the magnetization. We exploit both types of system criticality as a resource in the precise estimation
of the control parameter value. We quantify the achievable precision by the quantum Fisher information. We
demonstrate supersensitivity and show that the precision scales with the number of atoms up to N4 around
criticality. In addition, we study the precision based on the error-propagation formula, which provides a
simple-to-measure signal whose scaling coincides with the quantum Fisher information. Finally, we take into
account the effect of nonzero temperature and show that sub-shot-noise sensitivity in the estimation of the control
parameter is achievable in the low-temperature limit.
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I. INTRODUCTION

The properties of a system can change dramatically
through a small change in a control parameter during a
phase transition. Phase transitions can be of a classical or a
quantum nature. An example of a classical transition is the
ice-water-vapor transition of water in the H2O system or the
ferromagnetic-paramagnetic transition in solid-state materi-
als, with temperature as the external parameter in both cases.
On the other hand, quantum phase transitions occur at zero
temperature and are induced by a change in a Hamiltonian pa-
rameter. Phase transitions are classified according to the basic
Ehrenfest classification [1] as first or second order. However,
other classifications are also widespread [2]. A first-order
phase transition is characterized by the coexistence of two
stable phases when the control parameter is within a certain
range. On the other hand, a second-order phase transition is
characterized by a massless spectrum, inducing power-law
scaling for correlations and the notion of universality, which
in turn results in a number of critical exponents quantifying
how rapidly the system changes around criticality.

At the heart of quantum metrology lies the idea of param-
eter estimation using a quantum resource. The best precision
in the estimation of a particular parameter is quantified by the
quantum Fisher information (QFI), related to the distinguisha-
bility of a quantum state from a neighbor state in a geometrical
space [3]. It is recognized [4] that criticality is considered
a perfect resource for parameter estimation. This happens
because quantum states around criticality differ greatly from
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each other, although the control parameter driving the transi-
tion varies by only a small amount.

To date, the role of quantum criticality in parameter es-
timation has been investigated in the Lipkin-Meshkov-Glick
[5], Dicke [6,7], bosonic Josephson junction [8], and many
other quantum models [9]. The first experiment demonstrating
a high sensitivity in parameter estimation around criticality
was reported recently for a system composed of condensed
atoms in a double-well potential [8]. The majority of these
works are devoted to examining the criticality around second-
order phase transitions, while only a few concern first-order
ones [10–12]. However, due to the much more drastic change
in ground-state properties around a first-order transition, it
could be interesting to investigate its relevance for control
parameter estimation using the states as a quantum resource.
Therefore, here we consider a system of a spin-1 Bose-
Einstein condensate (BEC) which presents both a first- and
a second-order phase transition, depending on the system
parameters.

Spinor BECs are composed of N atoms in several Zeeman
energy levels with a given hyperfine spin F enumerated by
the magnetic number m f ∈ [−F, F ]. Here we concentrate on
F = 1. The system possesses an additional spin degree of
freedom, which leads to a range of phenomena absent in
a scalar BEC. The longitudinal magnetization M, which is
the difference in the occupations of the m f = 1 vs m f = −1
components, is approximately conserved in the system and
acts as an independent external parameter. This conservation
law comes from the spin rotational symmetry of contact
interactions when dipole-dipole interactions are neglected.
The global ground state of the F = 1 system is classified
as ferro- or antiferromagnetic, depending on the sign of the
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FIG. 1. Mean-field phase diagram of the antiferromagnetic
spinor condensate under the single-mode approximation and for
fixed magnetization M hosting three phases [16]. In the antiferro-
magnetic (AMF) phase, the components mF = ±1 coexist. In the
broken-axisymmetry (BA) phase, atoms occupy all three Zeeman
components. In the polar phase, all atoms are in the mF = 0 Zeeman
component. In general, the ground state is a superposition of Fock
states. However, when q � qc, the ground state of the AFM phase
is |(N + M )/2, 0, (N − M )/2〉, while for q � qc, the ground state of
the BA phase reads |M, N − M, 0〉. Particularly in the polar phase
the ground state is |0, N, 0〉. The solid black line shows the position
of the critical point qc = 1 − √

1 − (M/N )2. The quantum phase
transition is first order from the polar to the antiferromagnetic phase;
it occurs when the magnetization tends to 0. In other cases, the
transition from the broken-axisymmetry to the antiferromagnetic
phase is of second order.

spin-dependent interactions. The structure of the ground state
of a homogeneous system results from the competition be-
tween spin-dependent interactions (dominant at low magnetic
fields) and the quadratic Zeeman energy (dominant at large
magnetic fields), which gives rise to the emergence of two
different phases and to a critical point which lies in between
them. The position of the critical point depends on the value
of magnetization as depicted in Fig. 1. More importantly for
the purpose of our work, the order of the phase transition
depends on the magnetization value as well. It is first order
when the magnetization tends to 0 [13,14] and second order
for a macroscopic one [15–17].

The purpose of this paper is to perform a comprehensive
study of the metrological usefulness of the two types of
criticality appearing in antiferromagnetic condensates. We
concentrate on a finite-size system (a few thousand atoms)
in which the spatial and internal degrees of freedom can
be decoupled. We quantify the metrological usefulness by
the quantum Fisher information determined by the fidelity
susceptibility [4]. Our numerical method is based on the
exact diagonalization of the system Hamiltonian and on the
consequent evaluation of the QFI for the ground state. We
relate the scaling of the QFI to the critical exponents [9]
for macroscopic magnetizations, showing that it scales with
the system size as N4/3. Our results confirm the general
treatment provided in [9]. In the case of zero magnetization,
when the phase transition is first order, we found its scaling
with the system size to be N4. We confirmed the numerical
results by the analytical perturbative approach. We show that
the QFI around the first-order phase transition is much more
prominent, at least in the zero-temperature case. In addition,
we show that the precision of the estimation of the control
parameter can be obtained by using a simple signal, which is
introduced as the atomic population in the m f = 0 Zeeman

component. Specifically, we evaluate the estimation precision
employing the error-propagation formula and confirm that the
scaling of its inverse with N coincides with the scaling of the
QFI for any magnetization as expected [8]. The extensive use
of the error-propagation formula, simpler to obtain than the
QFI also in experiments, to estimate the sensitivity of both
the first- and the second-order phase transition is one of the
central points of the present work. Finally, we consider the
effect of a nonzero temperature, showing that the value of the
QFI decreases more rapidly for zero magnetization than for a
macroscopic one. However, sub-shot-noise scaling of the QFI
is still possible when the temperature is lower or of the order
of the energy gap.

The paper is organized as follows. In Sec. II, we introduce
the model and review the characteristic properties of its phase
diagram. In Sec. III, we provide the basics of the estimation
theory around criticality. Next, we present our results in
detail for zero and nonzero temperatures in Secs. IV and V,
respectively. Concluding remarks and a summary are given in
Sec. VI.

II. THE SPIN-1 SYSTEM

We consider a spin-1 (F = 1) atomic BEC in the presence
of a homogeneous transverse magnetic field B. The system

is conveniently described by the vector �̂� = (�̂1, �̂0, �̂−1)T ,
whose components correspond to the atoms in the correspond-
ing Zeeman states enumerated by the quantum magnetic num-
ber m f = 0,±1. We consider a finite-size system composed
of a few thousand atoms in which the generation of spin
domains is energetically costly. It is convenient to work under
the single-mode approximation, in which all atoms in the three
Zeeman modes share the same spatial wave function φ(r)
[18]. Then the external and internal spin degrees of freedom
can be decoupled and the components of the vector are defined
as �̂m f = φ(r)âm f , where âm f is the bosonic annihilation
operator of an atom in the m f -th Zeeman state. Consequently,
the Hamiltonian is cast in the form [19,20]

Ĥ (q)

c
= 1

2N
Ĵ2 − qN̂0 (1)

and consists of two terms: the first one refers to nonlinear
contact interactions between pairs of atoms, while the second
term shows the effect of a quadratic Zeeman shift on the
energy levels. In Eq. (1), Ĵ2 is the total spin operator, which
can be defined in terms of the spin-1 matrices (see Appendix
A), N̂m f is the occupation number operator of atoms in the
m f Zeeman state, the total atom number N is the eigenvalue
of N̂ = ∑

m f
N̂m f , and c = Nc2

∫
dr|φ(r)|4, with the spin-

dependent interaction coefficient c2 defined in terms of the
s-wave scattering lengths [21]. The positive (negative) sign of
c represents the antiferromagnetic (ferromagnetic) nature of
interactions [18]. The coupling constant q gives the strength of
the quadratic Zeeman energy. In fact, the parameter q can be
the sum of two terms, q = qB + qM , as it can be changed us-
ing the magnetic and off-resonant microwave dressing fields,
denoted qB and qM , respectively [15,16]. The value of q can
therefore be tuned between negative and positive values.
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The Hamiltonian, (1), preserves the z component of the
total spin operator, Ĵz = N̂+1 − N̂−1, due to [Ĥ, Ĵz] = 0.
Therefore, the eigenvalues of Ĵz, which are M = −N,−N +
1, . . . , N , being the magnetization, can be used to label
the Hamiltonian eigenbasis (more details in Appendix A).
This is justified based on the fact that the spin-dependent
interaction has rotational symmetry as long as the spin-1
system is isolated from its environment and dipolar interac-
tions are neglected [17]. This is also the main reason why
the linear Zeeman energy plays no role in the Hamilto-
nian, (1), and it acts only as a constant shift on the energy
levels.

Our numerical method is based on the exact diagonaliza-
tion of Hamiltonian (1) and is described in detail in Appendix
B. For convenience, we consider even values of N , nonnega-
tive values of M, and antiferromagnetic interactions (c > 0),
which can be realized with a condensate of sodium-23 atoms
in the F = 1 or F = 2 manifold. For the case of trapping
atoms in a flat trap of volume V , we can assume a homo-
geneous density for the condensate, such that φ(r) = 1√

V
.

Consequently, c = c2
N
V . Here, N

V is the density of the system,
which is maintained as a fixed parameter. In the following, we
use c as the energy unit.

It has been discussed in the literature that Hamiltonian (1)
exhibits both first- and second-order phase transitions at criti-
cal values of the external parameter q [18,22]. In particular, for
the case of zero magnetization, the transition occurs between
the longitudinal polar and the broken-axisymmetry phases,
while in the case of macroscopic magnetization the transition
is between the antiferromagnetic and the broken-axisymmetry
ones. We provide the characteristics of particular phases and
expressions for the corresponding ground states in the caption
to Fig. 1. Moreover, using the fractional occupation number in
the m f = 0 state n0 = 〈N̂0〉/N as the order parameter, one can
define the critical value of q as qc = 1 −

√
1 − (M/N )2 for a

given M/N in the thermodynamic limit using the mean-field
approach [23]. The corresponding phase diagram of the an-
tiferromagnetic condensate has been explored experimentally
[15–17] and agreement with theoretical predictions has been
noted.

In many-body systems in the thermodynamic limit, an
abrupt continuous (discontinuous) change in the first deriva-
tive of the ground-state energy (at zero temperature) around
criticality is observed. This behavior marks a continuous
second-order (discontinuous first-order) phase transition. A
radical change in the derivative of the ground-state energy
E0 is also linked to abrupt changes in the order parame-
ter based on the Hellmann-Feynman theorem, which gives
n0 ≡ −〈 1

N
∂Ĥ (q)

∂q 〉 = − 1
N

∂E0(q)
∂q [24] upon consideration of our

Hamiltonian, (1). In Fig. 2 we show variations of the first
(upper panel) and of the second (lower panel) derivatives
of the ground-state energy of Hamiltonian (1) for finite-size
systems with N = 1000 and 4000. In the case of macroscopic
magnetization (right column) the first derivative of the ground
state changes continuously while the second derivative of the
energy exhibits an abrupt but continuous change around criti-
cality. The second derivative shows discontinuous behavior in
the thermodynamic limit. On the other hand, for zero magneti-
zation, the first derivative of E0 shows a continuous but sudden
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FIG. 2. Upper panel: First derivative of the ground-state energy
of Hamiltonian (1) versus q obtained numerically using the exact
diagonalization method for N = 1000 (dash-dotted blue line) and
N = 4000 (dashed red line), compared to the mean-field results
(solid black line). Lower panel: Second derivative of the ground-state
energy versus q for the same parameters. Left and right columns
correspond to M/N = 0 and M/N = 0.4, respectively.

variation (left column). This variation trends to a discontinuity
when approaching the thermodynamic limit. The peak of the
second derivative of energy is greatly sharpened around crit-
icality. It is noteworthy that for M = 0 and q ∼ 0 the ground
state gives 〈N̂0〉 = N/3 [25]. In this case, all higher-order
derivatives of the ground-state energies are discontinuous. In
general, we conclude that quantum phase transitions are quite
smooth, due to the finite sizes of the considered system. While
the mean field works in the thermodynamic limit, for typical
ultracold gas experiments with average-sized ensembles, the
mean-field results do not necessarily hold. In this case, the
variation of population observables (such as n0’s) should be
extracted in the full quantum approach [17]. For a finite-size
condensate of N spin-1 atoms, the value of qc depends on the
ratio M/N and c, at least to some extent. In order to drive the
system throughout the critical region one can tune the control
parameter q with an external magnetic field or microwave
dressing from negative to positive values. This can be used
to estimate the value of q.

Indeed, it has been discussed that the family of quantum
states around a critical point can be used as a resource
for quantum sensing [4]. This is possible because a small
variation in the control parameter around criticality leads to
a remarkable change in the properties of these states. In the
following, we analyze both types of criticality in an anti-
ferromagnetic spin-1 system and show that the precision of
the estimation of the coupling constant q is greatly enhanced
compared to that in noncritical regions. To this end, in the
next section we briefly present the relation between criticality
and metrology. In this spirit, we describe the quantum Fisher
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information as the essential parameter which provides a
bridge between these territories.

III. QUANTUM ESTIMATION THEORY AROUND
CRITICALITY

A quantum phase transition concerns a radical change in
the ground states of a particular Hamiltonian at a specific
critical point. It has been proved [4] that while varying a
control parameter drives the system into different phases, this
can be used to enhance the precision of the estimation of
the control parameter by its own. This means that criticality
can be a resource in quantum metrology. Here, we recall the
main ingredients of the critical metrology formalism, which is
based on the definition of the QFI.

Let us consider the generic Hamiltonian form

Ĥ (q) = Ĥ0 + qĤq, (2)

whose ground state |ψ0(q)〉 exhibits a quantum phase transi-
tion at a critical value of q = qc (at zero temperature). This
means that the ground state of the above Hamiltonian shows
a drastic change, varying from |ψ0(q)〉 to |ψ0(q + δq)〉 for
a small variation in δq around the quantum critical point
(QCP) at qc. The physical quantity that is used to evaluate
the difference between the two pure quantum states, including
the ground state, is defined by the fidelity [26],

F = |〈ψ0(q)|ψ0(q + δq)〉|. (3)

The relation between the fidelity and the quantum Fisher
information Fq is [3,27–29]

Fq = −4
∂2F
∂δq

2

∣∣∣∣
δq=0

. (4)

More explicitly [4],

Fq(|ψ0(q)〉) = 4[〈∂qψ0|∂qψ0〉 − |〈∂qψ0|ψ0〉|2] (5)

= 4
∑
n �=0

|〈ψ0|Ĥq|ψn〉|2
(E0 − En)2

. (6)

Here, |ψn〉 and En refer to the nth excited eigenstates and
eigenvalues of (2), respectively, and ∂q ≡ ∂/∂q. Moreover,
Eq. (5) can be obtained by Taylor expanding the state |ψ0(q +
δq)〉 around |ψ0〉 up to second order in δq and excluding
the first derivate term due to the normalization condition,
∂〈ψ0|ψ0〉/∂q = 0 [30].

It is important to note that formula (5) is valid if the first
derivative of the ground state exists. In the case of the first-
order quantum phase transition, due to the level crossing the
first derivative of the ground state is discontinuous. However,
in this work, we focus on a finite-size system and therefore
the level crossing changes to avoided level crossing. As a
result, definition (5) is still valid in the case of the first-order
phase transition [31]. In addition, as discussed in [7] and [32],
the QFI and the Bures metric correspondence are not broken
provided that the rank of the ground-state density matrix is not
changed in the critical region [33]. This also works in our case
where the quantum state of the system remains pure, with rank
1 for zero temperature and rank 2 in the finite-temperature
case [7,32].

The QFI is related to the geometrical distinguishability of
quantum states separated by a small variation in q. Conse-
quently, its value is significantly increased around criticality.
This is easily observed from the QFI, (6), since one of the
excited eigenvalues approaches the ground state at the QCP
[4]. On the other hand, the QFI is connected to the precision
of the estimation of the q parameter. In (2), one may consider
the unknown coupling constant as an imprinted phase to be
measured [9]. Since there is no direct observable correspond-
ing to the coupling constants, we cannot measure its value by
just using the conventional approach in quantum mechanics,
that is, evaluating the expectation value of an observable in
a particular state. Therefore, the problem of measuring q
becomes an estimation problem [34]. The ultimate bound of
estimation, called the quantum Cramer-Rao bound (QCRB),
is set by the inverse of the QFI:

δq2 � δq2
QCRB = 1

Fq
. (7)

Therefore, the precision of the estimation of q is significantly
improved at criticality, implying that it is a resource in estima-
tion theory [4,30].

In the case of mixed states ρ̂(q) = ∑
n wn|ψn〉〈ψn|, the

fidelity, (3), is replaced by the more general definition [26,35]

F = tr[
√

ρ̂(q)ρ̂(q + δq)
√

ρ̂(q)]1/2, (8)

which can still be exploited, by using (4), to obtain the QFI.
The explicit result for a single-parameter estimation is [34,36]

Fq = 2
∑
n,m

|〈ψn|∂qρ̂q|ψm〉|2
wn + wm

(9)

for a finite number of particles and continuous phase transition
[36].

As mentioned before, the QFI gives the upper bound of
the sensitivity. However, it is not always easy to find the
optimal measurement to saturate the QCRB. Moreover, it is
not straightforward to extract the QFI experimentally. This
refers to the fact that, in practice, in order to find the QFI,
one needs the full tomography of ρ̂(q) and ρ̂(q + δq). This
process is not easy to implement in large systems. Therefore,
it is convenient to consider the precision given by the error-
propagation formula defined as the signal-to-noise ratio [9],

δq2 = �2Ŝ
|∂q〈Ŝ〉|2 , (10)

where the variance in the signal Ŝ is given by �2Ŝ = 〈Ŝ2〉 −
〈Ŝ〉2. The signal does not always saturate the upper bound
of sensitivity, (7). Nevertheless, it has the advantage of being
easier to measure in realistic experiments. On the other hand,
having access to the error-propagation formula, (10), only
requires the first and second moments of the signal (i.e. 〈Ŝ〉
and 〈Ŝ2〉, respectively).

The upper bound for the scaling of the above-introduced
QFI is set by critical exponents for the second-order quantum
phase transition. It was shown that Fq ∝ Nμ, where μ =
2/(dν), with ν the critical exponent satisfying the divergence
of the correlation length and d the effective spatial dimension,
as explained in [8] and [9]. No bound is expected for the scal-
ing exponent of the QFI around the first-order quantum phase
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transition. On the other hand, the standard quantum limit is
equal to the total atom number N in the zero-temperature
case. In addition, we point out that the QFI in (4), where the
states entering into the fidelity are separated by a variation
in q, is a different quantity from that defined in quantum
interferometry, where states are linked by a unitary operation
[37]. Notably, only the QFI defined in the second way, G,
demonstrates multipartite entanglement and subject to the
Heisenberg limit for its scaling with the number of particles
N , i.e., G(N ) ∼ Nζ , ζ � 2 [37,38].

IV. PRECISE ESTIMATION AROUND CRITICALITY

The antiferromagnetic spin-1 system exhibits two types of
criticalities, depending on the value of the magnetization and
characterized by different behaviors of the second derivative
of the ground-state energy, as mentioned in Sec. II. In the
following, we exploit the quantum criticalities of a spin-1
antiferromagnetic condensate in a transverse magnetic field
to demonstrate a high sensitivity of the estimation of the cou-
pling constant q using the QFI formalism introduced above.
We also provide the useful experimental signal Ŝ , which
almost saturates the QCRB.

A. Zero magnetization

Let us consider first the case of M = 0, where the system
shows a discontinuous quantum phase transition in the ther-
modynamic limit with the critical point at qc = 0 [23]. The
variation of Fq, defined as (6), versus q for N = 1000 is shown
in Fig. 3. Obviously, the value of Fq increases significantly
around criticality, dropping down far away from the critical
region. We also show in the same figure the sensitivity esti-
mated by the error-propagation formula, (10), when the signal
is set to the number of atoms in the m f = 0 Zeeman state,
Ŝ = N̂0. The inverse of (10) almost saturates the QFI, and we
observe the same behavior for both quantities when increasing
the precision around criticality. Note that the maxima of Fq

and 1/δq2 are shifted to the same extent with respect to the
mean-field critical point qc = 0 due to the finite number of
atoms considered. That is, upon increasing N , the evaluated
qc value for a finite system approaches the prediction of the
mean-field formalism for N → ∞ [23].

In order to see how the total number of atoms affects
the precision in the inset in Fig. 3, we show the logarithms
of the maxima of Fq and 1/δq2(N̂0) versus log N . Both of
them exhibit exponential behavior. The fitting gives the same
scaling exponents for the QFI and for the inverse 1/δq2, i.e.,
F max

q ∼ [1/δq2]max ∼ 0.05N4, which beats the sub-shot-noise
sensitivity ∼N . The identification of the particular signal that
saturates the QFI is important from the experimental point
of view. The reason is that in order to find the QFI, one
needs to determine the full tomography of the density matrix
and subsequently to evaluate the QFI, (8), which is hardly
possible for large systems, as mentioned before. Alterna-
tively, one may extract the classical Fisher information, i.e.,
Fc = ∑

x (∂qP(x|q))2/P(x|q), where P(x|q) is the probability
distribution of getting q conditioned on making measurements
over all eigenvalues of an observable X̂ , (X̂ |x〉 = x|x〉) [39].
The optimization of the classical Fisher information over all
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FIG. 3. The scaled quantum Fisher information Fq/N (solid
black line), the precision 1/Nδq2 (dashed red line), and the analytical
F approx

q /N results up to the second correction using perturbation
theory around q ∼ 0 (dash-dotted blue line) versus the parameter
q for N = 1000 and M/N = 0. The turquoise diamond marks the
explicit analytical value of the QFI at q = 0, i.e., Fq(q = 0)/N =
(16/405)N3. Note that the perturbation theory prediction is in good
agreement with the Fq in the validity range of the perturbative
approach, that is, for small enough q. Inset: Logarithm of the maxima
for Fq and 1/δq2 (Ŝ = N̂0) depending on log N .

possible observables approaches the QCRB marked by the
QFI. On the other hand, measurement of the number of atoms
in the m f = 0 Zeeman component and extraction of its first
and second moments are more easily accessible in practice
and yet provide essentially the same information.

As the region of criticality is around q = 0, when the
magnetization is 0, it is convenient to use the perturbation
theory to approximate the eigenvalues and eigenvectors of
Hamiltonian (1). Using these, it is possible to approximate the
QFI value around criticality and to extract the corresponding
scaling exponent. To this end, we employ the second-order
perturbation theory formalism for small values of q. Suppose
that the unperturbed Schrödinger equation (with q = 0) has
Ĥ0|ψ (0)

n 〉 = E (0)
n |ψ (0)

n 〉. When the parameter q is small but
nonzero, the idea is to express the Schrödinger equation
(Ĥ0 + qĤq )|ψ̃n〉 = Ẽn|ψ̃n〉 up to the second-order corrections

Ẽn = E (0)
n + qE (1)

n + q2E (2)
n + O(q3),

(11)
|ψ̃n〉 = ∣∣ψ (0)

n

〉 + q
∣∣ψ (1)

n

〉 + q2
∣∣ψ (2)

n

〉 + O(q3),

where every single term can be expressed by the eigenval-
ues and eigenstates of the unperturbed Hamiltonian Ĥ0 [40].
Consequently, one can find the explicit corrections to the
eigenenergies Ẽ (1,2)

n and eigenstates |ψ (1,2)
n 〉 of the spin-1

system when Ĥ0 = c
2N Ĵ2 and Ĥq = −N̂0. More details on

the derivation of the results are presented in Appendix C
[see Eqs. (C3) and (C4)]. In Fig. 3 we show the QFI calcu-
lated using expression (6) and approximated eigenvalues and
eigenstates. Agreement between the exact results and those

043609-5



MIRKHALAF, WITKOWSKA, AND LEPORI PHYSICAL REVIEW A 101, 043609 (2020)

0.07 0.08 0.09 0.1 0.11 0.12 0.13
0

50

100

150

200

250

8.8 9 9.2
14

14.5

15

FIG. 4. Scaled quantum Fisher information Fq/N (solid black
line) and scaled precision 1/(Nδq2) calculated with Ŝ = N̂0 (dashed
red line) versus q for N = 6000 and M/N = 0.4. Here, the critical
point is shifted compared to the one given by the mean field at qc =
0.084. Inset: Logarithm of the maxima for Fq and 1/δq2 (Ŝ = N̂0)
versus N .

approximated by the perturbation theory is found when q ∼ 0.
The value of the QFI can be calculated analytically at q = 0
using the approximated eigenstates and eigenvectors, (C3) and
(C4). We found that Fq(q = 0) ≈ N3(N + 3)16/405, which
is ∝ 0.04N4. This result is in excellent agreement with the
numerical prediction for the QFI value as demonstrated in
Fig. 3. To this purpose, one may also consider the ratio 1/δq2

with the signal Ŝ = N̂0 by inserting the approximated ground
state, (C3), into (10). We obtain 1/δq2 = 16

405 N4 for small q
using the first- and second-order moments of N̂0 and (B11).
This result is in complete agreement with the approximated
QFI value.

Finally, we note that for a second-order quantum phase
transition an algebraic scaling for the QFI is expected [41],
similarly as for the relevant observables (see, e.g., [42]). This
behavior is implied by scale invariance, in turn allowed by the
vanishing of the mass gap in the thermodynamic limit. On the
contrary, at a first-order quantum phase transition, the same
scalings can occur only provided that the correlation length
(of the order of the inverse of the mass gap) is at least equal
to the finite size of the considered system. A similar situation
occurs, for instance, for two points connected correlations. For
both types of quantum phase transition, algebraic ansatzes for
the scalings of the observables can be adopted for finite-size
analysis.

B. Macroscopic magnetization

When the magnetization is nonzero, a continuous quantum
phase transition occurs in the system as discussed in Sec. III.
In this case, the position of the critical point is qc = 1 −√

1 − (M/N )2 as shown by the mean-field approach [23]. The
variations of the QFI and of the inverse of the signal-to-noise
ratio for Ŝ = N̂0 versus q are shown in Fig. 4 using N = 6000

8.6 8.8 9 9.2
11

12

13

14

15

16

17

FIG. 5. Logarithm of the maxima for Fq (solid lines) and for
1/δq2 (dashed lines) versus log N for different values of M/N :
0.2, 0.4, 0.6, and 0.8. The values of both maxima increase with
the number of particles N and follow the power law F max

q ∝ Nμ

([1/δq2]max ∝ Nμ′
) with fixed μ (μ′).

and M/N = 0.4. Similarly to the case of zero magnetization,
the values of Fq and 1/δq2 increase significantly around
criticality. We extracted the scaling of the maxima of the QFI
and of 1/δq2. We show its logarithms versus log N in the inset
in Fig. 4. We obtained F max

q ∼ 10.7N1.36 and [1/δq2]max ∼
10.05N1.36, which have the same power-law scaling versus N
with different prefactors. In the case of macroscopic magneti-
zation we observe Fq ∼ N4/3. This means that μ = 4/3.

The agreement between the scaling exponents of the QFI
and of 1/δq2 has been generally demonstrated to occur at
second-order quantum phase transitions, provided that the
signal coincides with the order parameter [8]. In the same
paper this equivalence was measured explicitly for a bosonic
Josephson junction model realized in an ultracold atom setup.
It is interesting that the same agreement arises in our model
at the first-order transition, perhaps due to the appearance
of a scaling regime at the considered finite sizes. It is also
noteworthy that the scaling exponent that we found here gives
the same scaling as for the QFI (or, equivalently, the fidelity
susceptibility) in the Lipkin-Meshkov-Glick [43], Dicke [44],
and bosonic Josephson junction [8] models.

In order to demonstrate how increasing the magnetization
changes the estimation precision, in Fig. 5 we show the
maximum values for the QFI and for 1/δq2, versus log N for
different values of M/N . The maximum value of log Fq grows
upon increasing the number of particles for different values of
the fractional magnetization. Moreover, by increasing M/N ,
the maximal values of the QFI decrease while they still display
very similar slopes. This suggests that the scaling of the QFI
with N can have the same scaling power law with the same
scaling exponent:

F max
q ∝ Nμ. (12)
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TABLE I. Values of the scaling exponent for the maxima of the
quantum Fisher information F max

q ∝ Nμ, for the inverse of the error-

propagation formula [1/δq]max ∝ Nμ′
, and for the energy gap �min

N ∝
Nα versus the fractional magnetization M/N . Here, the values are
extracted by fitting to the numerical data.

M/N

0.2 0.4 0.6 0.8

μ 1.37 1.36 1.35 1.35
μ′ 1.37 1.36 1.35 1.35
α −0.35 −0.34 −0.34 −0.34

To be more precise, in Table I we list the scaling exponents for
each of the lines shown in Fig. 5 versus the fractional magneti-
zation M/N . The value of μ is almost fixed for different values
of the fractional magnetization M/N . In addition, a similar
behavior is observed for 1/δq2, [1/δq2]max ∝ Nμ′

. We discuss
this point in more detail in Sec. VI.

Thus far, we have considered the effect of criticality in
the ideal case of zero temperature. Nevertheless, in realistic
situations the temperature is always above absolute zero and
the system, (1), is never in a pure state but, rather, in mixed
states. Motivated by this fact, in the following section we
consider the effect of a finite temperature on the estimation
precision.

V. THE ROLE OF NONZERO TEMPERATURE

In the case of a nonzero temperature T , the quantum states
of the system are described by the canonical Gibbs density
matrix

ρ(q) =
∑

n

e−En (q)/kBT

Z
|ψn〉〈ψn|, (13)

where the eigenstates are weighted by wn := e−En (q)/kBT /Z
and Z := tr(e−H/kBT ) is the partition function with the Boltz-
mann constant kB. The QFI and the signal-to-noise ratio can
be extracted using Eqs. (8) and (3) [45]. We focus on the
case of macroscopic magnetizations here and return to zero
magnetization later. In Fig. 6, we provide the density plots
of Fq (a) and 1/δq2 (b) versus q and kBT for N = 100 and
M/N = 0.4. As the temperature is increased, the maximum
value of Fq and 1/δq2 approaches 0. For the case of zero
magnetization, we have obtained the same qualitative plots
as for macroscopic magnetization, given in Fig. 6. However,
the region where the QFI and 1/δq2 are not affected by
temperature is pushed toward the lower temperature range.

In order to understand the finite-temperature behavior, let
us first investigate the energy gap �(q, N ) = E0(q) − E1(q),
defined as the energy difference between the ground state
and the first excited state of the Hamiltonian, (1), close to
criticality. The minimum of the energy gap is expected to be
subject to the asymptotic law [47,48]

�min ∝ Nα, (14)

and its variation to a scaling function of the form

�(N, q) = �min f (Nβε), (15)

(a) (b)
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FIG. 6. The precision in the estimation of the parameter q quan-
tified by Fq (a) and the error-propagation formula through 1/δq2

(b) versus q and kBT for N = 100 and M/N = 0.4. The estimation
precision decreases with an increase in the temperature. This is due to
the increasing thermal fluctuations, which beat the quantum effects.
Logarithms of the maximal values for Fq (solid lines) and 1/δq2

(dashed lines) versus log N for kBT/c = 0, 2 × 10−2, and 10−1 when
M/N = 0.4 (c) and kBT/c = 0, 5 × 10−4, and 10−2 when M/N = 0
(d). The sensitivity of the estimation of q approaches the standard
quantum limit for both the QFI and 1/δq2 when the temperature
increases. In the case of zero magnetization (d), a change in the
value of the scaling exponent is observed for the lowest temperature
(kBT/c = 5 × 10−4). A few points on the right-hand side of the blue
curve lie in the intermediate regime, where the scaling exponent is
modified due to the nonzero temperature, because their correspond-
ing energy gaps are of the order of the temperature.

where f (x) is the homogeneous function and ε = q − qN
c ,

with qN
c being the position of the energy gap minimum. The

scaling exponents α and β are independent of the system size,
and moreover, they are the same for all systems belonging
to the same universality class. We verified the energy gap
scaling and we demonstrate it for M/N = 0.4 in Fig. 7(a).
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FIG. 7. Scaling of the energy gap, (15), for (a) M/N = 0.4 and
(b) M = 0. Inset: Logarithms of the energy gap minimum versus
log N . The fits confirm the power-law behavior, (14), with the scaling
exponents α = −0.34 for M/N = 0.4 and α = −1 for M = 0.
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FIG. 8. Decay of the maximal values of the QFI and of 1/δq2

in the presence of a nonzero-temperature kBT for N = 500 and
(a) M/N = 0.4 and (b) M = 0. The dashed vertical line marks the
value of the energy gap, while the solid black line marks the zero-
temperature limit. When the temperature is of the order of the energy
gap, one can still obtain the sub-shot-noise sensitivity.

In addition, in the inset in Fig. 7(a), we provide the values
for the fitted scaling exponent and show that it scales as
�min ∝ N−0.34 for macroscopic magnetization M/N = 0.4.
In Table I, we list the scaling exponents of the energy gap
minimum α versus other values of the fractional magneti-
zation M/N ; all of them are close to −1/3. Our findings
are consistent with the prediction for an antiferromagnetic
condensate [15]. Moreover, the scaling exponent of the energy
gap is the same as that for a ferromagnetic spinor condensate
[20], the Lipkin-Meshkov-Glick [48], the bosonic Josephson
junction [8], and the interacting Dicke [47] models. In the
case of zero magnetization the energy gap minimum scales
as N−1 [15,49,50]. Although the universal behavior cannot
be expressed in terms of critical exponents, it indeed can
be observed in Fig. 7(b) with the scaling of the energy gap
minimum as �min = 2.83N−1.

Having explored the energy gap of the system, we can
now achieve a better understanding of the finite-temperature
behavior of both Fq and 1/δq2. We demonstrate this for the
macroscopic M = 0.4 in Fig. 8(a) and zero magnetization
in Fig. 8(b). Three regimes of the QFI (and 1/δq2) can be
distinguished, depending on the temperature value compared
to the energy gap: (i) the quantum (zero-temperature) regime
for kBT � �min; (ii) the intermediate regime, when kBT ≈
�min; and (iii) the classical regime for kBT � �min [51–53].
In the first regime, Fq and 1/δq2 are robust against thermal
fluctuations. However, as the temperature increases, both the
QFI and 1/δq2 decrease. In the third regime, the scaling of
the QFI approaches the classical shot-noise limit, which is
∼N . Moreover, it is interesting to note that in the case of
the first-order phase transition the quantum robust regime is
pushed toward lower temperatures compared to that of the
second-order phase transition. This is due to the fact that
in the latter case, the (finite-size) energy gap is three times
smaller than the second-order one [15]. This squeezes the
quantum robust regime to lower temperatures in the case of
zero magnetization.

To investigate the effect of a finite temperature more
quantitatively, in Fig. 6 we show the corresponding loga-
rithmic values of F max

q and [1/δq2]max versus log N , chang-
ing the temperature from 0 to kBT/c = 2 × 10−2, 10−1 for

the magnetization M/N = 0.4 [Fig. 6(c)] and to kBT/c =
0.0005, 0.01 for zero magnetization [Fig. 6(d)]. As we show,
for large enough values of N and macroscopic magnetization,
the scaling exponent for the maximum value of the QFI is re-
duced from 1.38 for zero temperature to 1.30 for kBT = 0.02
and, further, to 1.1 close to the shot-noise limit. A decrease
in the scaling exponent also occurs for zero magnetization
when it changes through 3.17 (kBT/c = 5 × 10−4) and 2.02
(kBT/c = 10−2), approaching the shot-noise limit for higher
temperatures.

VI. DISCUSSION AND CONCLUSION

In the previous sections, we have discussed the effect of
criticality in a spin-1 BEC located in a transverse magnetic
field in order to estimate the value of the coupling constant.
We have reported that the precision of the estimation of q
depends on the type (nature) of criticality we employ.

To this end, we have made use of the quantum Fisher
information as a theoretical criterion to estimate the sensitivity
of our spinor sensors around the critical region. In addition,
we have considered the sensitivity evaluated using the error-
propagation formula. We introduced the respective signal
(equivalent to the population in the m f = 0 manifold, i.e., Ŝ =
N̂0). The identification of this simple-to-measure signal and
the error-propagation formula is of experimental importance,
as it contains the variance �2N̂0 and the average population
〈N̂0〉, which makes it possible to find the sensitivity much
more easily than by the QFI measurement. Indeed, evaluating
the QFI requires state tomography of the system density
matrix ρ̂, which would be a challenging task for ensembles
consisting of thousands of atoms.

First, we have shown that a first-order quantum phase
transition is realized for zero magnetization in the system,
when the transition from the polar to the antiferromagnetic
phase occurs. For a finite-size spinor condensate with total
number of atoms N , we have found that the QFI and the
inverse of the signal-to-noise ratio 1/δq2 scale ∝ N4. We also
investigated the behavior of the QFI around the transition
between the antiferromagnetic and the broken-axisymmetry
phases which occurs for macroscopic magnetization. In this
case, we calculated the scaling of the QFI versus N as Fq ∼
N4/3 around the critical point. We evaluated the same scaling
factors for 1/δq2, finding the same qualitative behavior as
for the QFI. The reason for the decreasing sensitivity with
increasing magnetization lies in the fact that the quantum
Fisher information is related to the distinguishability of the
quantum states of the different phases around the critical
points.

The scaling observed by us can also be analyzed in a
different way. As we show in Fig. 2, the ground state exhibits
a much more pronounced change around criticality in the case
of zero magnetization. In order to get a physical sense, we
consider the error-propagation formula, (10). In this regard,
one can show that in the zero-magnetization case, where the
first-order quantum phase transition occurs, both the variance
�2N̂0 and the slope of the zero-manifold population 〈N̂0〉,
dependent on q, are maximized. In particular, at the critical
point, the variance of N̂0 scales ∝ N2 [17], while ∂q〈N̂0〉 ∝ N3

(see Appendix A for explicit expressions). As a result, δq2
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FIG. 9. Upper panel: Scaling of the quantum Fisher information,
(16), for (a) M/N = 0.4 and (b) M = 0 and for different values of
the total atomic number N . Lower panel: Universal behavior of the
QFI versus the dimensionless parameter ε = q − qN

c for the same
magnetization values.

scales as N4 around criticality. On the other hand, in the
nonzero magnetization case, hosting the second-order phase
transition, it is not the variance �2N̂0 which is maximized
around the critical point; rather, its slope ∂q(�2N̂0) is maxi-
mized quite close to qc. Nevertheless, the denominator ∂q〈N̂0〉
still increases around the QCP. As a result, in the second-
order phase transition, the interplay of the nominator and
denominator of (10) results in the scaling of N4/3 for δq2. In
this case, the variance seems to change as �2N̂0 ∝ N2/3, while
∂q〈N̂0〉 ∝ N , which is less noticeable compared to the scaling
of the first-order transition, ∼N3. This behavior can be seen
qualitatively from the slope of 〈N̂0〉 in Fig. 2.

It is noteworthy also that the QFI is subject to the scaling
hypothesis [43,44]

Fq

F max
q

= g(Nγ ε), (16)

with F max
q being the maximum of the QFI, (12) (correspond-

ing to μ), where γ represents the scaling exponent and g(x)
is a homogeneous function. For the sake of completeness,
in Fig. 9(c) we show the scaling of the QFI with N , (16),
which is characterized by the exponents γ = 2/3 and μ =
4/3 (12). The same scalings have been provided for the QFI
(or, equivalently, the fidelity susceptibility) in the Lipkin-
Meshkow-Glick [43], Dicke [44], and bosonic Josephson
junction [8] models [46]. Consequently, this suggests that
the antiferromagnetic spinor condensate hosts a second-order
quantum phase transition in the same universal class as these

systems. It is interesting that the QFI for zero magnetization
also seems to display a scaling in N , due to the fact that the
correlation length is at least equal to the finite sizes of the
analyzed system [see Fig. 9(d)]. We have also provided the
numerical results for the finite-size energy gap of our spinor
system for zero and nonzero magnetizations, which turn out
to be proportional to N−1/3 and N−1, respectively [17]. The
finite-size energy gap scales as that for other fully connected
models, such as the Lipkin-Meshkov-Glick [48,55] and the
Dicke [47] models and a ferromagnetic spinor condensate
with no spatial degrees of freedom [20].

In addition, we have taken into account the effect of a
nonzero temperature. Depending on the value of the energy
gap compared to the temperature, different regimes of sensi-
tivity appear. For low temperatures kBT � �min the sensitiv-
ity shown by the QFI and by 1/�q2 is quite robust against
thermal noise. Increasing the temperature value reduces the
sensitivity, until the limit kBT � �min, where the sensitivity
greatly diminishes and scales as the classical shot-noise sen-
sitivity. We have found qualitatively similar behavior for both
types of criticalities of the system. In the case of the first-order
transition, the sensitivity is much less robust against noise due
to the smaller energy gap at finite sizes (Sec. V).

For the experimental realization of our protocol, one pos-
sibility is to perform an adiabatic ramp of the ground state
of the system followed by measurement of the population of
the atoms in the m f = 0 Zeeman energy level, namely, N̂0.
The viability of these methods is connected to the energy gap
�, as it determines the adiabatic evolution time τ according
to the adiabatic criterion h̄|〈e|Ḣ |g〉| � �2 [49,56], where |g〉
and |e〉 are the ground and excited states of Hamiltonian
(1), respectively. In the case of zero magnetization, the min-
imum of the energy gap between the ground and the first
excited state is ∼N−1; on the other hand, 〈e|Ḣ |g〉 ∼ N/(3τ )
considering 〈N̂0〉 = N/3 and a linear change with time of
the parameter q. This gives τ � N3/27, which restricts the
possibility of performing adiabatic evolution of the ground
state in relatively small systems. In the case of larger systems,
it might be possible to use other methods, such as the shortcut
to adiabaticity discussed in [49]. On the other hand, in the
case of macroscopic magnetization, the process of adiabatic
sweeping of q is easier to implement due to the wider energy
gap, which scales as N−1/3. In this case, it is possible to
maintain the adiabatic process using the microwave dressing,
as discussed in Refs. [15] and [16]. A similar experimental
work in the context of the bosonic Josephson junction has
been published very recently [8].
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APPENDIX A: COLLECTIVE SPIN-1 OPERATORS

The matrix representations of the total spin 1 are defined as

fx = 1√
2

⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦, fy = i√

2

⎡
⎣0 −1 0

1 0 −1
0 1 0

⎤
⎦,

fz =
⎡
⎣1 0 0

0 0 0
0 0 −1

⎤
⎦. (A1)

In order to write the spin operator in terms of the annihilation

and creation operators let us start with the vector �̂�T =
(�̂1, �̂0, �̂−1)T , whose components under the single-mode
approximation are �̂m f (�r) = φ(�r)âm f for m f = 0,±1. If fα i j
denotes the (i, j)th element of the α = x, y, z spin-1 matrix fα
and �i the ith element of the field operator, then the definition
of collective spin operators Ĵα = �

†
i [ fα]i j� j explicitly gives

Ĵx = 1√
2

(�̂†
−1�̂0 + �̂

†
0 �̂−1 + �̂

†
0 �̂+1 + �̂

†
+1�̂0),

Ĵy = i√
2

(�̂†
−1�̂0 − �̂

†
0 �̂−1 + �̂

†
0 �̂+1 − �̂

†
+1�̂0),

Ĵz = �̂
†
+1�̂+1 − �̂

†
−1�̂−1.

Subsequently, by replacing the field operator in terms of
bosonic operators and considering the single-mode approx-
imation, followed by integration over the spatial degrees of
freedom, we get

Ĵx = 1√
2

(â†
−1â0 + â†

0 â−1 + â†
0 â+1 + â†

+1â0 ),

Ĵy = i√
2

(â†
−1â0 − â†

0 â−1 + â†
0 â+1 − â†

+1â0 ), (A2)

Ĵz = â†
+1â+1 − â†

−1â−1,

with the total spin vector operator Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z . More-

over, the number operator in the m f Zeeman state is defined
as N̂m f = �̂†

m f
�̂m f , equivalent to â†

m f
âm f .

APPENDIX B: NUMERICAL METHOD

In order to diagonalize the Hamiltonian, (1), one can use
either the Fock or the Dicke basis. In the following, we give
the parametrization of Hamiltonian (1) for both of these bases.

1. Fock basis

For the diagonalization of (1), it is convenient to use the
Fock basis, which is equivalent to the mean-field ground-state
basis used in Ref. [23]. In this case, the occupation number
of particles in each Zeeman mode sublevel is used as the
Hamiltonian basis. We have used the Fock basis based on the
parametrization,

|k〉 = |N+1, N0, N−1〉 = |k, N + M − 2k, k − M〉, (B1)

which leads to the bounds on k as

kmin = max[0, M/2, M], (B2)

kmax = min[N, (M + N )/2, N + M]. (B3)

Subsequently, we build up the Hamiltonian in this basis and
numerically diagonalize it to obtain the ground state. The
resulting Hamiltonian has a block-diagonal structure in the
basis with the size dim = kmax − kmin + 1. In the extreme
limits of M = 0 and M = N the size of the block is dim =
N/2 − M + 1 and 1, respectively, i.e., the size of blocks
decreases for larger magnetization values.

2. Dicke basis

In order to use the perturbation theory (Sec. III and
Appendix B), it is more straightforward to diagonalize the
Hamiltonian in the Dicke basis [17]. To this end, let us
suppose first that there is no external transverse magnetic
field (q = 0) and then that Hamiltonian (1) reduces to the
form of c

2N Ĵ2. The respective eigenstates are |N,J , M〉 and
their corresponding eigenvalues c

2N J (J + 1), where J and
M represent the total spin number and magnetization (Ĵz

eigenvalues), respectively. Each state has 2J + 1 degeneracy.
Now if q �= 0 due to [Ĵz, N̂0] = 0, the magnetization is still a
good quantum number and therefore one can diagonalize H in
each block of fixed magnetization M. The Dicke basis may be
defined in terms of the Fock basis as [50]

|N,J , M〉 = 1

N (Ĵ (−) )P(Â†)Q(â+1)J |vac〉, (B4)

where P = J − M, 2Q = N − J , Ĵ (−) = √
2(â†

−1â0 + â†
0â1)

is the spin lowering operator and Â† = (â†
0 )2 − 2â†

−1â†
+1 is the

singlet spin operator with the normalization factor

N = J !(N − J )(N + J + 1)!!(J − M )!(2J )!

(2J + 1)!!(J + M )!
, (B5)

with !! being the double fractional. By applying â0 to the
Dicke states we have

â0|N,J , M〉 =
√

A−(N,J , M )|N − 1,J − 1, M〉
+

√
A+(N,J , M )|N + 1,J + 1, M〉, (B6)

with

A−(N,J , M ) = (J 2 − M2)(N + J + 1)

(2J − 1)(2J + 1)
,

A+(N,J , M ) = ((J + 1)2 − M2)(N − J )

(2J + 1)(2J + 3)
. (B7)

Note that because 2Q = N − J , the eigenstates may have
even or odd parities, depending on the number of particles.

The state of the system can be considered in the Dicke basis
as

|ψ〉 =
N∑

J=|M|
CJ ,M |N,J , M〉. (B8)

In order to build the time-independent Schrödinger equation
of (1), Ĥ |ψ〉 = E |ψ〉, one needs matrix elements such as
〈N,J , M|N̂0|N,J ′, M〉. It has been proved that the only
nonzero elements occur with J ′ = J ,J ± 2, and hence the
Schrödinger equation leads to the following tridiagonal matrix
form [50]:

hM
J ,J+2CJ+2,M + hM

J ,J−2CJ−2,M + hM
J ,JCJ ,M = ECJ ,M .

(B9)
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Here, E refers to the eigenenergies and the respective
coefficients are given as

hM
J ,J = c

2N
J (J + 1) − q〈J |N̂0|J 〉,

hM
J ,J+2 = −q〈J + 2|N̂0|J 〉, (B10)

hM
J ,J−2 = −q〈J − 2|N̂0|J 〉

and

〈J |N̂0|J 〉 = A+(N,J , M ) + A−(N,J , M ),

〈J + 2|N̂0|J 〉 =
√

A−(N,J + 2, M )A+(N,J , M ),

〈J − 2|N̂0|J 〉 =
√

A+(N,J − 2, M )A−(N,J , M ),

where we have introduced the notation |J 〉 = |N,J , M〉.
In this paper we have also used the following expressions

involving N̂2
0 :

〈J |N̂2
0 |J 〉 = [A+(N,J , M ) + A−(N,J , M )]2

+ A−(J + 2)A+(J ) + A−(J )A+(J − 2),

〈J |N̂2
0 |J + 2〉 =

√
(A+(J )A−(J + 2) + A+(J ) + A−(J )

+ A+(J + 2) + A−(J + 2)),

〈J |N̂2
0 |J − 2〉 =

√
(A−(J )A+(J − 2) + A+(J ) + A−(J )

+ A+(J − 2) + A−(J − 2)),

〈J |N̂2
0 |J + 4〉 =

√
A+(J )A−(J + 2)A+(J + 2)A−(J + 4),

〈J |N̂2
0 |J − 4〉 =

√
A−(J )A+(J − 2)A−(J − 2)A+(J − 4).

(B11)

The fact that N̂0 only connects eigenstates with J and J ±
2 results in the Hamiltonian eigenstates having even or odd
parity [50,57].

APPENDIX C: EIGENSTATES AND EIGENVALUES OF
HAMILTONIAN (1). PERTURBATION THEORY

In order to obtain the analytical expressions for the QFI
for zero magnetization, we use the second-order perturbation
theory to find the eigenstates and eigenenergies of Hamilto-
nian (1). To this end, as mentioned in Sec. IV, we employ
the second-order perturbation theory in the Dicke basis for
small values of q. Let us take the unperturbed Hamiltonian Ĥ0,
which satisfies Ĥ0|ψ (0)

n 〉 = E (0)
n |ψ (0)

n 〉, where E (0)
n and |ψn(0)〉

are the eigenvalues and eigenstates, respectively. Based on the
second-order perturbation theory, the eigenbasis of the per-
turbed Schrödinger equation (Ĥ0 + qĤq )|ψ̃n〉 = Ẽn|ψ̃n〉 can
be calculated as [40]

Ẽn = E (0)
n + qE (1)

n + q2E (2)
n + O(q3),

|ψ̃n〉 = ∣∣ψ (0)
n

〉 + q
∣∣ψ (1)

n

〉 + q2
∣∣ψ (2)

n

〉 + O(q3),

where we can find the corrections to the eigenenergies via

Ẽ (1)
n = − 〈

ψ (0)
n

∣∣N̂0

∣∣ψ (0)
n

〉
,

Ẽ (2)
n =

∑
m �=n

∣∣〈ψ (0)
m

∣∣N̂0

∣∣ψ (0)
n

〉∣∣2

E (0)
n − E (0)

m

(C1)

and the corrections to the eigenstates as

∣∣ψ (1)
n

〉 =
∑
m �=n

〈
ψ (0)

m

∣∣N̂0

∣∣ψ (0)
n

〉
E (0)

n − E (0)
m

∣∣ψ (0)
n

〉
,

∣∣ψ (2)
n

〉 =
∑
k �=n

∑
m �=n

〈
ψ (0)

m

∣∣N̂0

∣∣ψ (0)
k

〉〈
ψ

(0)
k

∣∣N̂0|ψ (0)
n

〉
(
E (0)

n − E (0)
l

)(
E (0)

n − E (0)
m

) ∣∣ψ (0)
n

〉

−
∑
k �=n

〈
ψ (0)

n

∣∣N̂0

∣∣ψ (0)
n

〉〈
ψ

(0)
k

∣∣N̂0

∣∣ψ (0)
n

〉
(
E (0)

n − E (0)
k

)2

∣∣ψ (0)
k

〉

− 1

2

∑
k �=n

〈
ψ (0)

n

∣∣N̂0

∣∣ψ (0)
k

〉〈
ψ

(0)
k

∣∣N̂0

∣∣ψ (0)
n

〉
(
E (0)

n − E (0)
k

)2

∣∣ψ (0)
n

〉
. (C2)

Now, let us consider the case Ĥ0 = c
2N Ĵ2, the eigenstates

being given by the conventional Dicke states |N,J , M〉 with
eigenvalues c

2N J (J + 1). Particularly, the ground state in this
case is known as |N,J = 0, M = 0〉 and the first excited state
as |N,J = 2, M = 0〉 (due to the parity condition). Using
Eqs. (C1) and (C2) we can extract the perturbative results for
the ground and the first excited states of the Hamiltonian, (1),
which read

|ψ̃0〉 =
(

1 − q2 2N3(N + 3)

405

)
|J = 0〉

+ q
2N

√
N (N + 3)

9
√

5

(
1 + q

2N (2N + 3)

63

)
|J = 2〉

+ q2 4N2
√

N (N + 5)(N + 3)(N − 2)

1575
|J = 4〉, (C3)

|ψ̃2〉 = −q
2N

√
N (N + 3)

9
√

5

(
1 + q

2N (2N + 3)

63

)
|J = 0〉

+
(

1 − q2 2N3(N + 3)

405
− q2 8N2(N + 5)(N − 2)

12005

)

× |J = 2〉

+ q
4N

√
(N + 5)(N − 2)

49
√

5

(
1 − q

2N (2N + 3)

1617

)

× |J = 4〉

+ q2 4
√

5N2
√

(N + 7)(N + 5)(N − 2)(N − 4)

4851
√

13

× |J = 6〉, (C4)

respectively, corresponding to the eigenenergies

Ẽ0 = −q
N

3
− q2 4N2(N + 3)

135
,

Ẽ2 = 3

N
− q

11N + 6

21

+ q2

[
4N2(N + 3)

135
− 16N (N + 5)(N − 2)

1715

]
.

Note that the energy gap scales as 3/N and it is in
agreement with the exact numerical results [17]. In order
to find the QFI value, it suffices to consider only the two
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FIG. 10. (a) Energy of the ground E0 (solid blue line) and the first
excited E2 (solid red line) states of Hamiltonian (1) from the exact
diagonalization method. The approximated results from perturbation
theory are represented by the corresponding dashed black lines. Here,
the total atom number is N = 1000 and M = 0. (b) Average value of
the population in the mf = 0 Zeeman level using the ground state
〈ψ0|N̂0|ψ0〉 (solid blue line) and the first excited state 〈ψ2|N̂0|ψ2〉
(solid red line). The corresponding approximate values are given by
the dashed black lines as 〈ψ̃0|N̂0|ψ̃0〉 and 〈ψ̃2|N̂0|ψ̃2〉.

lowest-energy states of Hamiltonian (1). A similar depen-
dence of the QFI on the value of the two lowest-lying energy
states has been observed in the Lipkin-Meshkov-Glick model
[5]. Consequently, we derive an analytical formula for the
QFI, making use of (C3) and (C4). The final expression
becomes unwieldy and we do not report the explicit forms
here. Instead in Fig. 3 we show the QFI for N = 1000 and
M = 0 using both the exact numerical and the perturbative

results, which demonstrate a good agreement for q ∼ 0. In
particular, it is interesting that the maximal value of the QFI
around criticality can be derived easily by inserting (C3) into
(5), which gives 16

405 N4 ≈ 0.04N4. The exponent is in very
good agreement with the numerical results obtained by the
exact diagonalization method given in Sec. IV A [54]. The
scaling of the precision versus N might be evaluated based
on the error-propagation formula, (10). Using (C3), (10), and
(B11) for the first and second moments of N̂0 around QCP
gives

�2N̂0 = 4N (N + 3)

45
, (C5)

∂q〈N̂0〉 = 8

135
N2(N + 3). (C6)

The value of the variance which confirms the result of
Ref. [17] refers to the super-Poissonian statistics of the BEC
in the single state. Using the precision leads to 16N3(N+3)

405 =
0.04N4, which is in excellent agreement with the numerical
results presented in Sec. IV.

In Fig. 10(a) we show the eigenenergies of (C4) versus
q using both the exact numerical and the approximate ap-
proaches. Moreover, in order to check the validity of our
perturbation approach, in Fig. 10(b) we presented the average
value of N̂0 over both the ground and the first excited states,
using both perturbative and exact numerical diagonalization
of Hamiltonian (1). There are good agreements in the limits
of validity. As we see, for q = 0, the results give a singlet
state which is specified by 〈N̂0〉 = N/3 [25].
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