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A binary mixture of Bose-Einstein condensate structures exhibits an incredible richness in terms of holding
different kinds of phases. Depending on the ratio of the inter- and intra-atomic interactions, the transition from
the mixed to separated phase, which is also known as the miscibility-immiscibility transition, has been reported in
different setups. Here, we describe such a quantum phase transition (QPT) in an effective Hamiltonian approach
by applying the Holstein-Primakoff transformation in the limit of a large number of particles. We demonstrate
that a nontrivial geometric phase near the critical coupling is present, which confirms the connection between
the Berry phase and QPT. We also show that, by using the spin form of the Hillery and Zubairy criterion, a
two-mode entanglement accompanies this transition in the limit of a large, but not infinite, number of particles.
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I. INTRODUCTION

In recent years, there has been growing interest in studying
two-component quantum fluids. Phase mixing and separation
of the two components due to the relative strength of inter-
species and intraspecies interactions open the gate to inves-
tigating a variety of research topics, including the dynamical
phase transitions [1–3], the production of dipolar molecules
[4], two-mode entanglement [5,6], and the macroscopic quan-
tum self-trapping [7,8]. The phase-separation phenomenon
was first observed in 3He-4He mixtures [9]. Later, it was
reported in different Bose-Einstein condensate (BEC) struc-
tures [10–17]. The ability of the resonant control of two-body
interactions via Feshbach resonances makes these structures
attractive for practical applications.

The observation of controllable phase separation of a
binary BEC was reported by using Feshbach resonance at
hyperfine levels [10–12] and in the isotopes [13] of rubidium
atoms. Additionally, similar results were also obtained by
using different kinds of atoms [14–17]. Theoretical inves-
tigations of these structures have shown that the relative
interaction strength and number of particles play a crucial role
in characterizing the density profiles. A two-species Bose-
Hubbard (BH) model, in the limit of a weakly interacting
gas, is widely used because it can perform a fully analytic
derivation [18]. The characterization of the self-trapping [19],
entanglement [20,21], the dynamical phase transition [22],
etc., was done within the BH model.

In this work, we theoretically study the collective behaviors
of a two-species BEC trapped in a double-well potential.
While the dynamical properties of these structures have been
extensively studied through the mean-field approach [1,23]
and the well-described Bose-Hubbard model [5,24], which
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analyze the low excitations using the Holstein-Primakoff
(HP) transformation [25,26], the analytical descriptions re-
side mainly in the mixed-phase solutions. The motivation
of the present paper is to obtain simple analytical solutions
to describe the system in each of its mixed and separated
phases, which can serve to investigate the quantum properties
of such mixtures. In that respect, we study the Berry phase and
bipartite entanglement through the miscibility-immiscibility
transition.

In many-body systems, the quantum phase transition
(QPT) can be observed when the crossing between ground
and excited states takes place. It is known that such level
crossings generate singularities in the Hilbert space, and it is
therefore natural to expect the reflections of such behaviors
in the wave function. The Berry phase can capture these
points, and its connection to QPT has been studied in different
models [27–29]. Here, we obtain a nontrivial geometric phase
by encircling the critical point and observe that with an
increasing number of particles, the transition in the value of
the Berry phase becomes sharper around the critical point,
and in the thermodynamic limit, N → ∞, there appears a
steplike behavior. Having the ability to adiabatically con-
trol the interatomic interaction strength between two species
[12,13] makes this result valuable for Berry phase-related
applications, and it also provides a tool to detect criticality
in the presence of QPT.

Besides fundamental interest, the model studied here also
offers the possibility to test bipartite entanglement from
macroscopic observables. In large systems, it was shown
that entanglement can be inferred from collective spin mea-
surements [30,31], and experimental observations using this
method have been reported between two spatially separated
atomic ensembles [32–38] and between the spins of atoms
in optical lattices [39,40]. Entanglement characterization of
similar models is, in general, done by using von Neumann
entropy [41]. Here, we analyze such phenomena through the
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miscibility-immiscibility transition by adopting the spin form
of the two-mode entanglement witness [42], originally intro-
duced for two-mode entanglement in [43]. We observe that
the criterion witnesses the entanglement onset in the separated
phase. Unlike the Berry phase, entanglement decays faster
with an increasing number of particles and/or interspecies
interaction strength. We find that this is due to the vanishing
effective coupling term, which is responsible for two-mode
squeezing.

This paper is organized as follows. In Sec. II, we introduce
the model of a two-species BEC trapped in a double-well
potential and derive the effective Hamiltonians and associ-
ated ground-state wave functions of the mixed and separated
phases. The appearance of the nontrivial geometric phase
around the critical coupling is observed in Sec. III. In Sec. IV,
we discuss the formation of bipartite entanglement by antic-
ipating the spin form of the Hillery and Zubairy criterion. A
summary appears in Sec. V.

II. THE MODEL

We consider two-species (a and b) condensate mixtures
trapped in a double-well potential with a large number of
particles Na(b) � 1 in the low-excitation limit. By assuming
the trap frequency ω of each local potential is much larger than
the interactions among the atoms Nigi, i.e., ω � Nigi, with
i = a, b, we construct the Hamiltonian with the two-mode
approximation [5,44,45], which is given by [1]

Ĥ = ta
2

(â†
LâR + â†

RâL ) + tb
2

(b̂†Lb̂R + b̂†Rb̂L )

+ ga

2
[(â†

LâL )2 + (â†
RâR)2] + gb

2
[(b̂†Lb̂L )2 + (b̂†Rb̂R)2]

+ gab(â†
LâLb̂†Lb̂L + â†

RâRb̂†Rb̂R). (1)

Here, â†
j (â j) and b̂†j (b̂ j) are the creation (annihilation)

operators of species a and b, respectively, that reside in
the jth well, j = L, R. The parameters ta and tb de-
scribe the coupling (tunneling) between two wells, and ga(b)

and gab stand for intraspecies and interspecies interaction
strengths, respectively, which are explicitly given by gαβ =
2π h̄2Aαβ/mαβ

∫ |φα|2|φβ |2dr [23]. Here, Aαβ is the s-wave
scattering length between atoms, and mαβ is the reduced mass,
where we denote gα = gαα and α, β = a, b.

The analysis of the Hamiltonian in Eq. (1) can be simplified
by the introduction of the angular momentum operators for
each species as [46]

Ĵαx = (α̂†
Lα̂L − α̂

†
Rα̂R)/2,

Ĵαy = (α̂†
Lα̂R − α̂

†
Rα̂L )/2i, (2)

Ĵαz = (α̂†
Lα̂R + α̂

†
Rα̂L )/2,

where α = a, b. These operators obey the usual angu-
lar momentum commutation relations: [Ĵ+

α , Ĵ−
α ] = 2Ĵαz and

[Ĵ±
α , Ĵαz] = ∓Ĵ±

α , where Ĵ±
α = Ĵαx ± iĴαy. Inserting these def-

initions into Eq. (1), the Hamiltonian can be rewritten as [5]

Ĥ =
∑

α=a,b

{
tα Ĵαz + gα Ĵ2

αx

} + 2gabĴaxĴbx. (3)

In the limit of a large number of particles, one can make use
of the HP representation of the angular momentum operators.
In this representation, the operators defined in Eq. (2) can
be written in terms of a bosonic mode in the following way
[25,26]:

Ĵ+
α = ĉ†α

√
Nα − ĉ†α ĉα Ĵ−

α =
√

Nα − ĉ†α ĉα ĉα,

Ĵαz = ĉ†α ĉα − jα, (4)

where jα = Nα/2, α = a, b, and ĉα is the standard bosonic
operator, having the commutator [ĉα, ĉ†α′ ] = δα,α′ . Next, we
apply the HP transformation and show that the Hamiltonian
of the two-spin system in Eq. (3) can be written in terms of
two coupled oscillators [47,48]. To do this, we insert Eq. (4)
into Eq. (3) and obtain

Ĥ =
∑

α=a,b

{
tα (ĉ†α ĉα − Nα/2) + gα jα

2

×
⎛
⎝ĉ†α

√
1 − ĉ†α ĉα

Nα

+
√

1 − ĉ†α ĉα

Nα

ĉα

⎞
⎠

2}

+ gab

√
ja jb

⎛
⎝ĉ†a

√
1 − ĉ†aĉa

Na
+

√
1 − ĉ†aĉa

Na
ĉa

⎞
⎠

×
⎛
⎝ĉ†b

√
1 − ĉ†bĉb

Nb
+

√
1 − ĉ†bĉb

Nb
ĉb

⎞
⎠. (5)

In the thermodynamic limit, Nα → ∞, one can obtain the
effective Hamiltonian as

Ĥ(1) =
∑

α=a,b

{
tα (ĉ†α ĉα − Nα/2) + gα jα

2
(ĉ†α + ĉα )2

}

+ gab

√
ja jb(ĉ†a + ĉa)(ĉ†b + ĉb), (6)

which is analogous to that of two coupled oscillators. By
defining the position and the momentum operators

x̂a = 1√
2

(ĉ†a + ĉa), p̂a = i
1√
2

(ĉ†a − ĉa), (7)

x̂b = 1√
2

(ĉ†b + ĉb), p̂b = i
1√
2

(ĉ†b − ĉb), (8)

we rewrite the effective Hamiltonian as

Ĥ(1) =
∑

α=a,b

{
tα
2

(
p̂2

α + x̂2
α

) + g̃α x̂2
α

}
+ 2g̃abx̂ax̂b, (9)

where g̃α = gα jα and g̃ab = gab
√

ja jb. It is then straightfor-
ward to solve the resulting normal-mode frequencies of the
coupled oscillation, which is given by

ε
(1)
± =

√
ω+ ±

√
ω2− + 4g̃abtatb, (10)

where ω± = g̃ata ± g̃btb + (t2
a ± t2

b )/2. Crucially, one can see
that the normal-mode frequencies can have complex val-
ues depending on the interaction strengths, and the critical
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interspecies coupling strength g∗
ab can be given as

g∗
ab ≡ 1

2

√(
ta
ja

+ 2ga

)(
tb
jb

+ 2gb

)
. (11)

When the interspecies coupling strength exceeds this value,
the system becomes unstable. Therefore, the condition gab >

g∗
ab (gab < g∗

ab) for the immiscibility (miscibility) of the two
species is satisfied. In the thermodynamic limit, jα → ∞, it
reduces to the well-known criticality (e.g., g∗

ab = √
gagb) for

the phase separation of two component BECs [49]. Depending
on the ratio of the intraspecies (ga(b)) and interspecies (gab)
interaction strengths, different types of phases have been
extensively studied theoretically [2,50,51], and such phases
are also seen experimentally [12,16].

The main motivation in this work is to find a solution
above a critical point where the phase transition occurs. Such a
phase transition is well known in Dicke-type models, in which
one can describe the interaction of a single-mode quantized
field with an ensemble of N two-level atoms. It was shown
that above a critical coupling strength these systems can
undergo quantum phase transition [52–54], from the normal
to superradiant phase. Here, we adopt this method [54,55] to
characterize the phase transition between mixed and separated
phases.

To find a solution in a region gab > g∗
ab, we displace the

bosonic operators as

ĉ†a = d̂†
a ±

√
Naβa, ĉ†b = d̂†

b ∓
√

Nbβb. (12)

In the following, we shall just consider the displacements as
ĉ†a = d̂†

a + √
Naβa and ĉ†b = d̂†

b − √
Nbβb. If we insert these

definitions into Eq. (5) and eliminate the first-order term in
the boson operators, we can find the amounts of displacement
of each mode by solving

ta
ja

+ 2

(
ga − gab

√
βb(1 − βb)

βa(1 − βa)

)
(1 − 2βa) = 0, (13)

tb
jb

+ 2

(
gb − gab

√
βa(1 − βa)

βb(1 − βb)

)
(1 − 2βb) = 0. (14)

The resulting effective Hamiltonian can be given by

Ĥ(2) =
∑

α=a,b

{ωα d̂†
α d̂α + κα (d̂†

α + d̂α )2}

+ λ(d̂†
a + d̂a)(d̂†

b + d̂b), (15)

where we consider the boson operators up to the second order,
and the parameters can be found as

ωα = tα + 2gab jα
√

βaβb

√
1 − βα

1 − βα

, (16)

κα = ωα − tα + gα jα
6βα (βα − 1) + 1

2(1 − βα )
, (17)

λ = gab

√
ja jb

(1 − 2βa)(1 − 2βb)√
(1 − βa)(1 − βb)

, (18)

where a = b and b = a. Before proceeding, let us check these
parameters in the limits of gab � g∗

ab and gab � g∗
ab. For the

case gab � g∗
ab the displacement parameters have zero value,
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FIG. 1. The displacement amounts (a) βa and (b) βb as a function
of coupling strength gab for different values of gb. Here, we use equal
tunneling amplitudes, tα/ jα = 0.1ga, and in the insets, we consider
the infinite number of particles case and take tα/ jα = 0.

i.e., βα = 0, and the Hamiltonian in Eq. (15) reduces to the
one given for the mixed phase in Eq. (6). When gab � g∗

ab,
the displacement parameters take a single value, i.e., βα =
0.5, as seen in Fig. 1. In this limit, two oscillators become
uncoupled, λ = 0, and by increasing the interaction strength
of the interspecies, it contributes to only the effective strengths
of the intraspecies, κα , and tunneling, ωα , coefficients, which
makes the Hamiltonian Ĥ(2) stable for all gab values. To
see this, we find the new eigenfrequencies by moving to a
position-momentum representation defined by

X̂a = 1√
2

(d̂†
a + d̂a), P̂a = i

1√
2

(d̂†
a − d̂a), (19)

X̂b = 1√
2

(d̂†
b + d̂b), P̂b = i

1√
2

(d̂†
b − d̂b), (20)

where one can see the relation between the coordinates: X̂α =
x̂α − χα

√
2Nαβα , χa,b = ±1. By following the same steps that

were done for Ĥ(1) in Eq. (6), we can find the corresponding
oscillator energies for Ĥ(2) as

ε
(2)
± = 1

2

[
ω̃2

a + ω̃2
b ±

√(
ω̃2

a − ω̃2
b

)2 + 16λ2ωaωb
]1/2

, (21)

where ω̃2
α = ωα (ωα + 4κα ). The new excitation energy, ε

(2)
− ,

is real over the whole parameter space, and hence, Ĥ(2)

describes the system in the phase-separation region.
Next, we give the ground-state wave functions of the mixed

and separated phases. Since the two effective Hamiltonians
are obtained in the form of two coupled harmonic oscillators,
their wave functions can be found as the product of harmonic
oscillator eigenfunctions, which can be given by

ψ ( j)
GS

(q ja, q jb) =
√

m

π
G1(q ja, q jb)G2(q ja, q jb), (22)

where j = 1, 2 stand for the solutions of the mixed and
separated phases, respectively, with q1α

= xα , q2α
= Xα , and

G1(q ja, q jb) and G2(q ja, q jb) represent Gaussian functions
defined by

G1(q ja, q jb) = e
m

2 [ξ (q jaC−q jbS)2], (23)

G2(q ja, q jb) = e
m

2 [ξ−1(q jaS+q jbC)2], (24)

043608-3



MEHMET GÜNAY PHYSICAL REVIEW A 101, 043608 (2020)

with parameters

ξ = ca + cb +
√

(ca − cb)2 + 4λ2

2K
, (25)

K =
√

cacb − λ/2, cα = (ωα + 4κα )
√

ωα/ωα, (26)

C = cos(φ), S = sin(φ), tan(2φ) = 2λ

ca − cb
, (27)

 =
√

K/m, m = 1/
√

ωaωb, (28)

where we denote a = b and b = a. We define the parameters
above for only ψ (2)

GS
; by inserting βα = 0 into the these param-

eters one can obtain the desired solution for ψ (1)
GS

.
In the following sections, having derived the effective

Hamiltonians and associated ground states that describe
mixed and separated phases, we investigate the quantum fea-
tures of this kind of phase transition in terms of the geometric
phase and bipartite entanglement.

III. GEOMETRIC PHASE

In this section, we demonstrate that by encircling the
critical point in parameter space, where the miscibility-
immiscibility transition occurs, a nontrivial Berry phase can
be obtained for the system considered in this work. Let us start
by introducing the collective angular momentum operators
after displacement operation is done. In the limit of a large
number of particles, they can be found as [see the Appendix]

Ĵαx
∼= χα

√
Nαβα (1 − βα ) + 1 − 2βα√

2(1 − βα )
X̂α, (29)

Ĵαy
∼= −

√
1 − βα

2
P̂α, (30)

Ĵαz
∼= Nα (βα − 1/2) + 2χα

√
NαβαX̂α

+ 1

2

(
P̂2

α + X̂ 2
α − 1

)
, (31)

where χa = 1, χb = −1, and X̂α and P̂α are given in Eqs. (7)
and (8). Here, we consider terms up to (1/N)th order in
the expansion. In the ground state, 〈Ĵαy〉 = 0, and the main
contribution to the expectation values of Ĵαx and Ĵαz comes
from the first terms in Eqs. (29) and (31), respectively. Thus,
we can safely neglect the other terms in the thermodynamic
limit and obtain

〈Ĵαz〉
Nα

=
{−0.5, gab � g∗

ab,

(βα − 0.5), gab > g∗
ab,

(32)

and

〈Ĵαx〉√
Nα

=
{

0, gab � g∗
ab,

χα

√
βα (1 − βα ), gab > g∗

ab,
(33)

in which one can clearly observe that above g∗
ab there is a

macroscopic excitation for each one. We introduce a time-
dependent unitary transformation U (φ(t )) = e−iφ(t )Ĵz , where
Ĵz = Ĵaz + Ĵbz and φ(t ) is the slowly time varying parameter,
which can be defined in an experiment by constructing an
adiabatic loop for the interatomic interaction strength between
two species via Feshbach resonances [12,13]. When this
phase, φ(t ), is varied between 0 and 2π , a state in phase space
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FIG. 2. The scaled Berry phase of the system for (a) a large and
(b) small number of particles and as a function of coupling strength
gab. Here, we use equal tunneling amplitudes for (a), tα/ jα = 0.1ga,
and an equal number of particles, Na = Nb = 104. In the inset, we
take tα/ jα = 0 (or, equivalently, jα = ∞). For a finite number of
particles (b), we use tα = 100ga and obtain the results by solving
the eigenstates of Eq. (3) numerically.

will encircle the critical point. Then, the Berry phase can be
defined in the ground state as [29]

γ = i
∫ 2π

0
dφ〈ψ |U †(φ)

d

dφ
U (φ)|ψ〉 = 2π〈Ĵz〉, (34)

where |ψ〉 is the time-independent ground-state wave func-
tion. If we insert Eq. (32) into Eq. (34), the total scaled Berry
phase of the system can be defined as

γ̃

2π
=

{
0, gab � g∗

ab,

βa + βb, gab > g∗
ab,

(35)

where we use γ̃ = 1 + γ /N , with Na = Nb = N . In Fig. 2, we
demonstrate the scaled Berry phase of the system as a function
of coupling strength gab for finite and infinite numbers of
particles. As shown, in the large-particle limit, the scaled
Berry phase has a zero value for gab � g∗

ab and above g∗
ab

increases with increasing coupling strength, and its derivative
becomes discontinuous at the critical value g∗

ab. Interestingly,
in the thermodynamic limit, there is a steplike transition,
which can be seen in the inset of Fig. 2(a). This is due to
solutions of Eqs. (13) and (14). When tα/ jα = 0, one can
see that there is a single solution for each displacement, i.e.,
βα = 0.5.

It is also possible to obtain a nontrivial Berry phase for each
species if we define the unitary transformation as U (φ(t )) =
e−iφ(t )Ĵαz , and we can obtain γα = 2π〈Ĵαz〉. It can be read from
Eq. (32) that above the critical coupling strength g∗

ab there is
a finite atomic inversion for each species. This illustrates the
fact that each species has also a nontrivial Berry phase.

As shown above, increasing the number of particles creates
a sharper transition. Increasing interspecies coupling leads to
the higher value of the Berry phase. This scenario, however,
is not the same for bipartite entanglement. In the following
section, we discuss this in more detail.

IV. BIPARTITE ENTANGLEMENT

Detecting the entanglement in an ensemble system by
accessing the individual particles is not practical. To obtain a
solution in such structures, the global parameters, such as total
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FIG. 3. Hillery-Zubairy entanglement criterion [Eq. (36)] as a
function of coupling strength gab. EHZ < 0 witnesses the presence
of entanglement between the two collective spins. Here, we use
tα = 100ga and gb = ga. In the inset, we take Na = Nb = N and
observe that entanglement decays faster as N increases.

spin, are used instead [32,33]. By having such observables
in a system, it becomes possible to quantify entanglement
[31,56–59]. For example, in a recent experiments [36–38],
bipartite entanglement was reported for ultracold atomic
BECs by measuring collective spins.

There are several practical criteria [30,31,43] for the de-
tection of entanglement. These methods are, in general, suf-
ficient, but not necessary. Depending on the structure in a
given system, some criteria work better. For instance, in our
recent work [48], we compared different types of criteria
when the system exhibits a quantum phase transition, where
we observed that criteria based on bilinear products of spins
can witness the entanglement of two strongly interacting
ensembles for a small number of particles, which the criteria
of first-order spin fails to detect.

In this section, we anticipate the spin form of the criterion
derived by Hillery and Zubairy [43] to investigate bipartite en-
tanglement. We first introduce the inequality for the detection
of entanglement based upon the effective local spin operators
(29)–(31), which is given by [42]

EHZ = 〈Ĵ+
a Ĵ−

a Ĵ+
b Ĵ−

b 〉 − |〈Ĵ+
a Ĵ−

b 〉|2 < 0, (36)

where EHZ < 0 witnesses the presence of entanglement be-
tween the two collective spins. It is important to note that a
complete analysis of the derivation of the criterion is beyond
the scope of the present paper, and we point the reader to
Refs. [42,60,61] for more details.

In Fig. 3, we demonstrate the results of Eq. (36) as a
function of interspecies coupling strength gab for various
numbers of particles. When the interspecies coupling strength
exceeds the critical value, a transition also appears in the
entanglement. Unlike the Berry phase, entanglement decays
at larger values of gab and/or N . This is due to the effective
coupling strength λ in Eq. (15), which can be considered the
source of bipartite entanglement. The explanation of this be-
havior is as follows. When the interatomic coupling strength
increases, gab � g∗

ab, the value of the displacement parameters
approaches the single value, i.e., βα → 0.5, where effective

coupling vanishes [see Eq. (18)]. A similar story is valid for
an increasing number of particles. As N → ∞, βα → 0.5 (see
Fig. 1). This can be observed in the inset of Fig. 3.

In Ref. [5], by using the criterion based on quadrature
squeezing [62], it was shown that two-mode entanglement
can be present in the stable region (gab < g∗

ab). Ng et al.
observed that higher entanglement can be obtained as the
system becomes closer to the critical point. Here, however,
EHZ starts to capture entanglement around the critical value,
gab � g∗

ab (see Fig. 3). This shows that the criteria obtained
from the squeezing of the spin noise and the ones via the
squeezing of the bilinear products of the spin are successful
in different inseparability regimes [59]. Experimental testing
of these criteria, however, is possible in a system of the two-
component BEC by adiabatically changing the interatomic
interaction strength around the critical value.

V. SUMMARY

In summary, we have investigated theoretically the ground-
state properties of the two-component Bose-Einstein conden-
sate trapped in a double-well potential. We observed that the
system can undergo a QPT at a critical coupling strength. We
obtained the effective Hamiltonians and associated ground-
state wave functions to describe the system in each of its
mixed and separated phases. The nontrivial geometric phase
is found near the critical coupling in the limit of small
and large numbers of particles, where we observe a steplike
transition in the thermodynamic limit. The accuracy of the
model is confirmed by comparison with the exact numerical
solution in the limit of a small number of particles limit
(see Fig. 2). We also anticipated the spin form of the Hillery
and Zubairy criterion to quantify entanglement across a QPT.
It was observed that the entanglement witness EHZ decays
with increasing the interspecies interaction strength and/or
number of particles. The tunable interactions between the two
species via Feshbach resonances make the model a promising
simulator for this kind of structure and can find potential
in the area of quantum communication [63] and quantum
sensing [64].
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APPENDIX

Here, we show the derivations of Eqs. (29) and (30). By
inserting displaced operators defined in Eq. (12) into Eq. (4),
they become

Ĵ+
α = (d̂†

α + χα

√
Nαβα )

√
1 − βα

√
1 − ξα, (A1)

ξα ≡
(

1 − d̂†
α d̂α + χα

√
Nαβα

Nα (1 − βα )

)
. (A2)
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After expanding the last term,
√

1 − ξα , in Eq. (A1) up to the
(1/N)th order, one can arrive at

Ĵ+
α ≈

√
1 − βα

[
(d̂†

α +
√

N1βα ) − βα

1 − βα

X̂α√
2

]
. (A3)

Similarly, one can derive the lowering component, Ĵ−
α =

(Ĵ+
α )†. By using the definitions Ĵαx = (Ĵ+

α + Ĵ−
α )/2 and

Ĵαy = (Ĵ+
α − Ĵ−

α )/2i, we derive Eqs. (29) and (30) as

Ĵαx
∼= χα

√
Nαβα (1 − βα ) + 1 − 2βα√

2(1 − βα )
X̂α, (A4)

Ĵαy
∼= −

√
1 − βα

2
P̂α. (A5)

It is straightforward to obtain the z component of the angular
momentum operator by inserting Eqs. (12), (7), and (8) into
the definition of Ĵαz given in Eq. (4).
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[28] P. Zanardi and N. Paunković, Ground state overlap and quantum
phase transitions, Phys. Rev. E 74, 031123 (2006).

043608-6

https://doi.org/10.1103/PhysRevA.81.043613
https://doi.org/10.1103/PhysRevA.81.043613
https://doi.org/10.1103/PhysRevA.81.043613
https://doi.org/10.1103/PhysRevA.81.043613
https://doi.org/10.1103/PhysRevA.94.013602
https://doi.org/10.1103/PhysRevA.94.013602
https://doi.org/10.1103/PhysRevA.94.013602
https://doi.org/10.1103/PhysRevA.94.013602
https://doi.org/10.1103/PhysRevLett.99.190402
https://doi.org/10.1103/PhysRevLett.99.190402
https://doi.org/10.1103/PhysRevLett.99.190402
https://doi.org/10.1103/PhysRevLett.99.190402
https://doi.org/10.1103/PhysRevLett.113.255301
https://doi.org/10.1103/PhysRevLett.113.255301
https://doi.org/10.1103/PhysRevLett.113.255301
https://doi.org/10.1103/PhysRevLett.113.255301
https://doi.org/10.1103/PhysRevA.71.013601
https://doi.org/10.1103/PhysRevA.71.013601
https://doi.org/10.1103/PhysRevA.71.013601
https://doi.org/10.1103/PhysRevA.71.013601
https://doi.org/10.1103/PhysRevLett.106.120405
https://doi.org/10.1103/PhysRevLett.106.120405
https://doi.org/10.1103/PhysRevLett.106.120405
https://doi.org/10.1103/PhysRevLett.106.120405
https://doi.org/10.1038/nature06186
https://doi.org/10.1038/nature06186
https://doi.org/10.1038/nature06186
https://doi.org/10.1038/nature06186
https://doi.org/10.1103/PhysRevLett.105.204101
https://doi.org/10.1103/PhysRevLett.105.204101
https://doi.org/10.1103/PhysRevLett.105.204101
https://doi.org/10.1103/PhysRevLett.105.204101
https://doi.org/10.1103/PhysRev.103.262.2
https://doi.org/10.1103/PhysRev.103.262.2
https://doi.org/10.1103/PhysRev.103.262.2
https://doi.org/10.1103/PhysRev.103.262.2
https://doi.org/10.1103/PhysRevLett.78.586
https://doi.org/10.1103/PhysRevLett.78.586
https://doi.org/10.1103/PhysRevLett.78.586
https://doi.org/10.1103/PhysRevLett.78.586
https://doi.org/10.1103/PhysRevLett.81.1539
https://doi.org/10.1103/PhysRevLett.81.1539
https://doi.org/10.1103/PhysRevLett.81.1539
https://doi.org/10.1103/PhysRevLett.81.1539
https://doi.org/10.1103/PhysRevA.82.033609
https://doi.org/10.1103/PhysRevA.82.033609
https://doi.org/10.1103/PhysRevA.82.033609
https://doi.org/10.1103/PhysRevA.82.033609
https://doi.org/10.1103/PhysRevLett.101.040402
https://doi.org/10.1103/PhysRevLett.101.040402
https://doi.org/10.1103/PhysRevLett.101.040402
https://doi.org/10.1103/PhysRevLett.101.040402
https://doi.org/10.1103/PhysRevLett.90.163202
https://doi.org/10.1103/PhysRevLett.90.163202
https://doi.org/10.1103/PhysRevLett.90.163202
https://doi.org/10.1103/PhysRevLett.90.163202
https://doi.org/10.1103/PhysRevLett.118.055301
https://doi.org/10.1103/PhysRevLett.118.055301
https://doi.org/10.1103/PhysRevLett.118.055301
https://doi.org/10.1103/PhysRevLett.118.055301
https://doi.org/10.1103/PhysRevA.84.011603
https://doi.org/10.1103/PhysRevA.84.011603
https://doi.org/10.1103/PhysRevA.84.011603
https://doi.org/10.1103/PhysRevA.84.011603
https://doi.org/10.1140/epjd/e2011-20015-6
https://doi.org/10.1140/epjd/e2011-20015-6
https://doi.org/10.1140/epjd/e2011-20015-6
https://doi.org/10.1140/epjd/e2011-20015-6
https://doi.org/10.1103/PhysRevE.95.062142
https://doi.org/10.1103/PhysRevE.95.062142
https://doi.org/10.1103/PhysRevE.95.062142
https://doi.org/10.1103/PhysRevE.95.062142
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1088/0953-4075/49/20/205005
https://doi.org/10.1088/0953-4075/49/20/205005
https://doi.org/10.1088/0953-4075/49/20/205005
https://doi.org/10.1088/0953-4075/49/20/205005
https://doi.org/10.3390/e20020084
https://doi.org/10.3390/e20020084
https://doi.org/10.3390/e20020084
https://doi.org/10.3390/e20020084
https://doi.org/10.1103/PhysRevA.74.063614
https://doi.org/10.1103/PhysRevA.74.063614
https://doi.org/10.1103/PhysRevA.74.063614
https://doi.org/10.1103/PhysRevA.74.063614
https://doi.org/10.1007/s10773-016-3164-y
https://doi.org/10.1007/s10773-016-3164-y
https://doi.org/10.1007/s10773-016-3164-y
https://doi.org/10.1007/s10773-016-3164-y
https://doi.org/10.1103/PhysRevA.84.023629
https://doi.org/10.1103/PhysRevA.84.023629
https://doi.org/10.1103/PhysRevA.84.023629
https://doi.org/10.1103/PhysRevA.84.023629
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRevA.11.981
https://doi.org/10.1103/PhysRevA.11.981
https://doi.org/10.1103/PhysRevA.11.981
https://doi.org/10.1103/PhysRevA.11.981
https://doi.org/10.1103/PhysRevLett.95.157203
https://doi.org/10.1103/PhysRevLett.95.157203
https://doi.org/10.1103/PhysRevLett.95.157203
https://doi.org/10.1103/PhysRevLett.95.157203
https://doi.org/10.1103/PhysRevE.74.031123
https://doi.org/10.1103/PhysRevE.74.031123
https://doi.org/10.1103/PhysRevE.74.031123
https://doi.org/10.1103/PhysRevE.74.031123


BINARY MIXTURE OF BOSE-EINSTEIN CONDENSATES … PHYSICAL REVIEW A 101, 043608 (2020)

[29] F. Plastina, G. Liberti, and A. Carollo, Scaling of Berry’s phase
close to the Dicke quantum phase transition, Europhys. Lett. 76,
182 (2006).

[30] V. Giovannetti, S. Mancini, D. Vitali, and P. Tombesi, Charac-
terizing the entanglement of bipartite quantum systems, Phys.
Rev. A 67, 022320 (2003).

[31] A. Sørensen, L.-M. Duan, J. I. Cirac, and P. Zoller, Many-
particle entanglement with Bose-Einstein condensates, Nature
(London) 409, 63 (2001).

[32] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Dicke
quantum phase transition with a superfluid gas in an optical
cavity, Nature (London) 464, 1301 (2010).

[33] M. F. Riedel, P. Böhi, Y. Li, T. W. Hänsch, A. Sinatra,
and P. Treutlein, Atom-chip-based generation of entangle-
ment for quantum metrology, Nature (London) 464, 1170
(2010).

[34] D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan,
T. A. B. Kennedy, and A. Kuzmich, Entanglement of Remote
Atomic Qubits, Phys. Rev. Lett. 96, 030405 (2006).

[35] J. Simon, H. Tanji, S. Ghosh, and V. Vuletić, Single-photon
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