
PHYSICAL REVIEW A 101, 043607 (2020)

Effective theory for ultracold strongly interacting fermionic atoms in two dimensions
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We propose a minimal theoretical model for the description of a two-dimensional (2D) strongly interacting
Fermi gas confined transversely in a tight harmonic potential, and present accurate predictions for its zero-
temperature equation of state and breathing mode frequency based on existing auxiliary-field quantum Monte
Carlo data. We show that the minimal model Hamiltonian needs at least two independent interaction parameters,
the 2D scattering length and effective range of interactions, to quantitatively explain recent experimental mea-
surements with ultracold 2D fermions. We resolve in a satisfactory way the puzzling experimental observations
of the smaller than expected equations of state and breathing mode frequency. Our establishment of the minimal
model for 2D fermions is crucial to understand the Berezinskii-Kosterlitz-Thouless transition in the strongly
correlated regime.
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I. INTRODUCTION

Two-dimensional (2D) quantum many-body systems are of
great interest due to the interplay of reduced dimensionality
and strong correlation, which leads to enhanced quantum and
thermal fluctuations [1] and a number of ensuing quantum
phenomena such as Berezinskii Kosterlitz Thouless (BKT)
physics [2,3]. In this respect, the recently realized 2D Fermi
gas of ultracold 6Li and 40K atoms under a tight axial con-
finement provides a unique platform [4,5], with unprece-
dented controllability particularly on interatomic interactions.
To date, many interesting properties of ultracold 2D Fermi
gases have been thoroughly experimentally explored [5],
including the equation of state (EoS) at both zero tem-
perature [6,7] and finite temperature [8,9], radio-frequency
spectroscopy [10–12], pair momentum distribution [13], first-
order correlation function and BKT transition [14], and
quantum anomaly in the breathing mode frequency [15–17].
These results may shed light on understanding other impor-
tant strongly correlated 2D systems, such as high-Tc layered
cuprate materials [18], 3He submonolayers [19], exciton-
polariton condensates [20], and neutron stars [21].

The present theoretical model of ultracold 2D Fermi gases
is simple [4,5]. Under a tight harmonic confinement with
trapping frequency ωz along the axial z axis and a weak
confinement ω⊥ in the transverse direction, the kinematic 2D
regime is reached when the number of atoms N is smaller than
a threshold N2D � (ωz/ω⊥)2, so all the atoms are forced into
the ground state of the motion along z [5]. The interatomic
interactions are then described by a single s-wave scatter-
ing length a2D [6], which is related to a three-dimensional
(3D) scattering length a3D via the quasi-2D scattering am-
plitude [22]. Various experimental data have been compared
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and benchmarked with different theoretical predictions of
the simple 2D model [23–32]. For EoS, i.e., the chemical
potential and pressure at essentially zero temperature, good
agreements were found [6,9]. But, at the quantitative level
the experimental data somehow lie systemically below the ac-
curate predictions from auxiliary-field quantum Monte Carlo
(AFQMC) simulations [6,9]. The discrepancy is not so serious
and might be viewed as an indicator of small deviation from
the 2D kinematics [5], in spite of the fact that the 2D condition
N � N2D is well satisfied. However, a serious problem does
arise when two experimental groups measured the breathing
mode frequency in the deep 2D regime most recently [16,17].
The observed frequency turned out to be much smaller than
the well-established theoretical prediction in the strongly in-
teracting regime [25,26]. This discrepancy is at the qualitative
level, suggesting that the simple 2D model with a single
parameter a2D may not be sufficient for the description of
ultracold 2D Fermi gases [33].

The purpose of this work is to provide a minimal theory
of ultracold 2D Fermi gases, with the inclusion of a prop-
erly defined effective range of interactions. The significant
role played by effective range was realized in our previous
work [33]. However, there the effective range is taken to be
a constant R(0)

s = −(2 ln 2)a2
z , which is not reasonable when

the interparticle interaction becomes strong (see Fig. 1). Here
az ≡ √

h̄/(Mωz ) is the harmonic oscillator length along the
z axis. We solve the proposed model Hamiltonian at zero
temperature by taking into account strong pair fluctuations
at the Gaussian level and beyond (Fig. 2), with the help of a
correlation energy from AFQMC in the zero-range limit [30].
This enables us to predict accurate EoS (Figs. 3 and 4), as
well as reliable breathing mode frequency (Fig. 5), going
beyond the Gaussian approximation considered in our pre-
vious work [33]. The puzzling quantitative and qualitative
discrepancies, observed in the previous comparisons between
experiment and theory [5,6,9,16,17], are therefore naturally
resolved in a satisfactory way.
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FIG. 1. Confinement-induced effective range of interactions Rs,
in units of R(0)

s = (− ln 2)a2
z , as a function of the inverse 3D scatter-

ing length az/a3D. The inset shows the effective range as a function
of the two-body binding energy.

II. EFFECTIVE RANGE OF INTERACTIONS

We start by considering the collision of two fermions
with mass M and unlike spin in a highly anisotropic har-
monic trapping potential, described by a quasi-2D scattering

FIG. 2. Total energy with the two-body bound-state energy sub-
tracted as a function of ln(kF as ), at (a) Rs = 0 and (b) Rs �
−0.2511a2

s . The mean-field and GPF predictions are shown by blue
dot-dashed lines and red squares, respectively. At zero range in (a),
the latest AFQMC result [30] is plotted by orange dashed line. The
inset shows the beta function β = �Ec/�EGPF [see Eq. (4)]. At finite
range in (b), our theory (black solid line) is compared to the DMC
data (green dot) [38].

amplitude [22],

fQ2D(k; a3D, az ) = 4π√
2πaz/a3D + �

(
k2a2

z /2
) , (1)

where the function � (x) has the expansion � (x →
0) � − ln(2πx/B) + (2 ln 2)x + iπ with B � 0.905 [22].
In the simplest treatment, one may parametrize the
quasi-2D collision using a 2D scattering length a2D [5,6],
by setting the 2D scattering amplitude f2D(k; a2D) =
−2π/ ln[ka2D(k)/i] = fQ2D(k; a3D, az ). In general, one
thus obtains a momentum-dependent a2D(k), which in
the zero-energy limit takes the form a2D(k → 0) = as ≡
az

√
π/B exp(−√

π/2az/a3D) [22,34]. The advantage of this
simple treatment is that the description universally depends
on a single parameter a2D, to be evaluated at a characteristic
collision momentum k0, i.e., k0 = √

2Mμ̃/h̄, where μ̃ is the
chemical potential that does not include the two-body binding
energy [5,6].

A more adequate parametrization of the 2D collision is
to include an effective range of interactions Rs in the 2D
scattering amplitude [35]

f2D(k; as, Rs) = 4π

−2 ln (kas) − Rsk2 + iπ
, (2)

whose pole gives a two-body bound state with binding en-
ergy εB = h̄2κ2/M, where the wave vector κ satisfies Rs =
2 ln(κas)/κ2. The same two-body bound state should be
supported by the pole of the quasi-2D scattering ampli-
tude in Eq. (1) as well. By setting k → iκ there, we find√

2πaz/a3D + � [−εB/(2h̄ωz )] = 0 [36]. Therefore, we can
directly calculate the effective range Rs, once εB or κ is solved
at a given az/a3D.

The effective range obtained in this way is reported in
Fig. 1. It decreases monotonically from R(0)

s ≡ (− ln 2)a2
z

with increasing az/a3D (main figure) or binding energy εB

(inset). We note that R(0)
s can be easily derived from the

second expansion term in � (x → 0) and its magnitude, i.e.,
R(0)

s ∼ a2
z , is a clear indication of the quasi-2D nature of atom

collisions [5,22]. As the wave function of two colliding atoms
at distance within az is set by the full 3D contact interaction
potential, these collisions can never be purely 2D. They can
only be approximately treated as 2D, out of the range ∼az.

III. MANY-BODY THEORY

To account for the effective range Rs, it is useful to adopt a
two-channel model [33,37,38]

H =
∑

kσ={↑,↓}
ξkc†kσ

ckσ +
∑

q

(2ξq/2 + ν)b†qbq

+ g√
S

∑
kq

(bqc†q/2+k↑c†q/2−k↓ + H.c.), (3)

where ξp ≡ h̄2p2/(2M ) − μ, and ckσ and bq are the annihila-
tion operators of atoms and molecules in the open- and closed-
channels, respectively. The channel coupling g is related to
Rs, via Rs = −4π2h̄4/(M2g2), the detuning ν of molecules
is tuned to reproduce the binding energy εB, i.e., ν = −εB +
(g2/S )

∑
k[h̄2k2/M + εB]−1 [33,38], and S is the area.
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The two-channel model Hamiltonian has three indepen-
dently tunable parameters: as and Rs related to the interparticle
interaction, and also the particle density n [or equivalently
Fermi wave vector kF = (2πn)1/2]. Therefore, any physical
observables of interest can be expressed as functions of two
independent dimensionless combinations of the three param-
eters, such as kF as and k2

F Rs (or Rs/a2
s ). In the following,

to make contact with experiments we will often plot the
observables as a function of ln(kF as), at a given filling factor
N/N2D. We note that, the information of the dimensionless
effective range, i.e., k2

F Rs or Rs/a2
s , is implicitly contained in

the filling factor N/N2D.
It is worth noting, our two-channel Hamiltonian only pro-

vides a mininal theory of ultracold 2D Fermi gases. For a de-
tailed discussion of its applicability, we refer to Appendix A.

A. Gaussian pair fluctuation approximation and beyond

We solve the model Hamiltonian at different orders of
approximation at zero temperature. Formally, the ground-state
energy E may be decoupled as

E
[

ln (kF as), k2
F Rs

] = EMF + �EGPF + �Ec, (4)

where εF = h̄2k2
F /(2M ) is Fermi energy for a system with

number density n. The mean-field (MF) theory provides
the leading term EMF, while the major correction arising
from strong pair fluctuations at a Gaussian level can be
obtained by using the Gaussian pair fluctuation (GPF) theory
[29,33,39–41], i.e., �EGPF = EGPF − EMF. The effect of pair
fluctuations beyond Gaussian level may be characterized by
a correlation energy �Ec, which is anticipated to be much
smaller than �EGPF. We may fix a correlation energy �Ec

by requiring the sum of the three contributions in Eq. (4) to
coincide with the AFQMC result at zero range Rs = 0 [30].
The effective range correction could then be calculated within
the GPF theory and approximately taken into account in �Ec

by assuming that the change in the latter is proportional to the
change in the GPF part.

To clarify this idea, in Fig. 2(a) we plot the ground-
state energy in the zero-range limit (Rs = 0), predicted by
mean-field theory, GPF theory [29], and AFQMC simula-
tion [30]. Indeed, the correlation energy given by the dif-
ference between the GPF and AFQMC energies is notably
smaller than �EGPF. In particular, �Ec becomes vanishingly
small in the tight-binding limit of ln(kF as) → −∞ [29]. It
is then useful to define a beta function β = �Ec/�EGPF � 1,
which varies as functions of the two dimensionless interaction
parameters ln(kF as) and k2

F Rs. For small k2
F Rs, however, it

seems plausible to assume that β relies on εB/εF only, whose
dependence can be readily extracted in the zero-range limit
using the AFQMC data, as shown in the inset of Fig. 2(a).
The other possible choice of the β function is considered in
Appendix B.

We thus establish a viable procedure to calculate the
ground-state energy at nonzero effective range. For a given set
(kF as, k2

F Rs), we first calculate the binding energy εB/εF and
determine the value of β. Both mean-field and GPF theories
are then applied to obtain EMF and �EGPF, and consequently
�Ec = β�EGPF. In Fig. 2(b), we present E = EGPF + �Ec in
the black line for a fixed ratio Rs/a2

s � −0.2511, at which

we may benchmark our prediction against available high-
precision diffusion Monte Carlo (DMC) data (i.e., the single
green dot) [38,42]. We find that the correction �EGPF becomes
smaller at nonzero effective range. Towards the noninteract-
ing limit (as → ∞) and hence large k2

F Rs, �EGPF vanishes
quickly. This is understandable since pair fluctuations become
weaker with decreasing channel coupling g and even mean-
field theory may provide an accurate prediction at sufficiently
large k2

F Rs [38]. The correlation energy also significantly re-
duces at finite effective range and we find |�Ec| < 0.02NεF at
all interaction strengths for Rs/a2

s � −0.2511. The agreement
between our theory with DMC is excellent, with a difference
less than 0.01NεF .

IV. RESULTS AND DISCUSSIONS

Once the ground-state energy E of a uniform 2D Fermi
gas is determined, we calculate directly the chemical potential
μ and pressure P using standard thermodynamic relations.
Experimentally, these homogeneous EoS can be extracted
from a low-temperature trapped Fermi gas, by using the local
density approximation [43], which assigns a local chemical
potential μ(r) = μpeak − V (r) to each position r in the poten-
tial V (r) = Mω2

⊥r2/2. Both the peak chemical potential μpeak

and thein situ density distribution n(r) can be experimentally
measured [6,8,9], from which one deduces the homogeneous
density EoS n(μ). By further using the force balance con-
dition [6] ∇P(r) = −n(r)∇V (r), the homogeneous pressure
EoS P(n) can also be determined.

To compare to the experimental data, for each data at given
magnetic field B, oscillator length az, and total number of
atoms N , we calculate the 3D s-wave scattering length a3D and
then obtain Rs/a2

s using Fig. 1. At this fixed Rs/a2
s , we deter-

mine the homogeneous chemical potential μ/εF as a function
of ln(kF as) using Fig. 2 and then theoretically generate a den-
sity profile for a selected μpeak (that will be tuned to give the
correct total number of atoms N). For more details, see Ap-
pendix C 1. In this way, actually, we performed a theoretical
simulation under the conditions corresponding to one exper-
imental data point. We finally plot the observable of interest,
such as the chemical potential, the pressure or the breathing
mode frequency, as a function of ln(kF as) at a given N/N2D.
In other words, we follow exactly the same way as in the
experiments to present and characterize our numerical results.

A. Equation of state

In Fig. 3, we show the experimental data for the peak
chemical potential μpeak, measured at different magnetic fields
(i.e., a3D) and hence at different ln(kF as) [9,44]. Our predic-
tions for the peak chemical potential, calculated under the
same experimental condition, are plotted by the black solid
line. We find a good agreement between theory and experi-
ment at ln(kF as) > 0. In contrast, due to the large effective
range of interactions in the experiment (i.e., k2

F Rs � −1.2
at N � N2D [9]), the zero-range predictions from AFQMC
appear to strongly overestimate the chemical potential. This
overestimation can partly be removed by using an effective
energy-dependent a2D, a clever idea first adopted by Turlapov
and coworkers [6]. The use of a2D partly accounts for the
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FIG. 3. Chemical potential with the two-body bound-state con-
tribution subtracted, as a function of ln(kF as ) at the number of
atoms N = N2D. The predictions of AFQMC (i.e., for zero effective
range) [30] and our theory with a realistic effective range as in the
experiment [9] are shown by orange dashed line and black solid
line, respectively, and are compared to the experimental data for
μpeak (blue circles) measured at N � N2D [9,44]. The inset shows
the chemical potential as a function of ln(kF a2D), where a2D is the
effective scattering length adopted in the experiment [9].

confinement-induced effective range in the experiment and
leads to a better agreement between AFQMC results and
experimental data. As we can see from the inset and also Fig. 1
of Ref. [9], however, there is still a residual discrepancy, which
can hardly be understood by possible systematic effects such
as finite temperature [45] and the failure of a 2D model due
to a finite filling factor N/N2D (see, i.e., Appendixes A 1 and
A 2)

In Fig. 4, we present the comparison between our pre-
dictions and the experimental data [6,7] for pressure at the
trap center. In this case, we have N � 0.35N2D and therefore
the effect of the effective range may become weaker. Nev-
ertheless, we can see clearly that in the strongly interacting
regime [i.e., 0 < ln(kF as) < 2], the experimental data lie sys-
tematically below the zero-range results from AFQMC. The
model Hamiltonian with a finite effective range should be used
to quantitatively understand the experimental measurement.
We note that, in harmonic traps the pressure at the center is
fixed by the force balance condition to P = Mω2

⊥N/(2π ) [7].
Using the peak density of an ideal trapped Fermi gas nHO

F =
Mω⊥

√
N/(π h̄) [5], we find that the peak density n ≡ n(r =

0) can be written in terms of the pressure at the trap center, i.e.,
n/nHO

F = [P/(nεF /2)]−1/2. This provides an alternative way
to illustrate the data, as shown in the inset.

In both Figs. 3 and 4, the agreement between theory and
experiment becomes worse at small kF as, suggesting the
inadequacy of our theory towards the limit of a Bose-Einstein
condensate (BEC). This is because, experimentally, the BEC
regime is reached by changing a3D instead of kF . For a small
positive a3D the system is better viewed as a quasi-2D weakly
interacting BEC, with a 2D scattering length a(m)

2D determined
from the 3D molecular scattering length a(m)

3D � 0.6a3D [46]

FIG. 4. Pressure as a function of ln(kF as ) at N = 0.35N2D. We
use blue circles and red squares to show the experimental data
from Refs. [6,7] with N � 0.35N2D, respectively. The predictions of
AFQMC [30] at zero range and our theory at finite range are shown
by orange dashed line and black solid line, respectively. Towards the
weakly interacting limit, the finite-temperature effect may become
sizable and up-shift the pressure data [6]. The inset shows the peak
density (in units of nHO

F ) as a function of ln(kHO
F as ), where nHO

F and
kHO

F = (2πnHO
F )

1/2
are the peak density and wave vector of an ideal

Fermi gas in traps.

and with an effective range R(m)
s ∼ −a2

z . Our two-channel
model cannot fully recover this interaction-driven BEC limit.
For more details, we refer to Appendix A.

B. Breathing mode and quantum anomaly

We now turn to consider the breathing mode frequency,
which was recently measured in two experiments at N ∼
0.2N2D [16,17], as shown in Fig. 5 by green circles and blue
squares. Theoretically, the zero-temperature breathing mode
frequency can be conveniently calculated by using the sum-
rule approach [47,48]

h̄2ω2
B = −2〈r2〉

[
d〈r2〉
d (ω2

⊥)

]−1

, (5)

where 〈r2〉 = N−1
∫

d2r[r2n(r)] is the squared radius of the
Fermi cloud at a given trapping frequency ω⊥. In the clas-
sical treatment, a 2D Fermi gas is scale-invariant [49] and
acquires a polytropic density EoS, μ(n) ∝ n2. As a result, the
mode frequency is pinned to 2ω⊥, regardless of temperature
and interactions [49]. The deviation of the breathing mode
frequency away from 2ω⊥ can be viewed as a quantum
anomaly [25,26], arising from strong quantum pair fluctua-
tions in two dimensions [50].

As readily seen from Fig. 5, the observed quantum
anomaly in the two experiments is far below the prediction
from AFQMC for zero-range interactions with a single 2D
scattering length [51]. It can only be understood when we use
the proposed minimal model for 2D ultracold fermions and
take into account the realistic finite effective range at N ∼
0.2N2D. The quantitative difference between our theory and
experiment at 0 < ln(kHO

F as) < 1 could be caused by the finite
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FIG. 5. Breathing mode frequency of 2D strongly interacting
fermions as a function of the interaction parameter ln (kHO

F as ), at
different total number of atoms N/N2D → 0 (AFQMC [51], orange
dashed line), 0.02 (red dot-dashed line), and 0.2 (black solid line) as
in two recent experiments by Holten et al. [16] at 0.10–0.18TF and
N/N2D � 0.2 (green circles) and Peppler et al. [17] at 0.14–0.22TF

and at N/N2D � 0.267 (blue squares). We show also the GPF predic-
tion in the dotted line.

temperature in the two experiments, which is in the range
[0.10–0.22]TF . For a detailed discussion, see Appendix C 3.

It turns out that the breathing mode frequency or quan-
tum anomaly depends sensitively on the effective range. The
zero-range result of AFQMC can hardly be asymptotically
approached, even if we decrease the number of atoms down
to just a few percent of N2D (see the red dot-dashed line at
N = 0.02N2D). In this case, however, the deviation from the
classical limit of 2ω⊥ is very significant and its experimental
confirmation is a clear manifestation of quantum anomaly
in cold atoms [50,52]. This can be seen more clearly from
a colorful contour plot of the breathing mode frequency, as
functions of ln(kHO

F as) and N/N2D, as shown in Appendix C 2.

V. CONCLUSION

We established a minimal model to describe ultracold
interacting fermions confined in two dimensions and solved
it accurately at zero temperature with the help of existing
AFQMC results. We showed that the confinement-induced
effective range of interactions has to be included to understand
the recent measurements on quantum anomaly in a qualitative
manner and on equation of state at the quantitative level. Our
results pave the way to investigate the crucial role played by
effective range in other two-dimensional quantum many-body
systems.
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APPENDIX A: APPLICABILITY OF OUR
EFFECTIVE THEORY

To develop an effective theory for a quasi-2D interacting
Fermi gas, it is useful to emphasize that, in cold-atom ex-
periments, the BEC-BCS crossover is driven by tuning the
strength of the interatomic interaction, i.e., the 3D scattering
length a3D. In the absence of the tight harmonic trapping
potential along the z direction, the system is a Fermi superfluid
on the BCS side with a3D < 0 or in the crossover regime
with a3D → ±∞, and is a weakly interacting BEC with a
molecular scattering length a(m)

3D � 0.6a3D in the limit a3D →
0+ [46]. Upon imposing the tight confinement, the former
becomes a 2D Fermi superfluid with an effective range Rs ∼
−O(a2

z ), while the latter also correspondingly turns into a
weakly interacting 2D BEC with range R(m)

s ∼ −O(a2
z ). This

is shown in the sketched phase diagram Fig. 6, where the two
regimes are divided by a solid boundary line.

As we discuss in detail in the main text, the 2D Fermi
superfluid with effective range can be described by a two-
channel 2D model Hamiltonian, see Eq. (3) in the main
text. However, this model Hamiltonian cannot be used to
accurately describe the weakly interacting regime of a 2D
BEC. This is apparent if we consider the BEC limit of the
two-channel 2D model Hamiltonian. We would then obtain a
weakly interacting 2D BEC with zero range of interactions,
instead of a 2D BEC with a finite range R(m)

s ∼ −O(a2
z ). The

finite range Rs in our fermionic two-channel 2D model will
make the 2D molecular scattering length a(m)

2D smaller, but it
will not induce a finite range at the order of a2

z . In other words,
we need to introduce at least two different microscopic model
Hamiltonians to describe the strongly interacting 2D Fermi
superfluid with effective range [see the area below the solid
boundary line in Eq. (6)] and the weakly interacting 2D BEC

FIG. 6. A sketched phase diagram of a quasi-2D interacting
Fermi gas, as functions of 2D scattering length as and density n2D.
The vertical dot-dashed line shows as, at which the 3D scattering
length diverges a3D → ∞. The horizontal line is the 2D threshold
density, above which the system can no longer be described by a 2D
model. In the dilute limit, as shown by the gray area in the plot, a 2D
model with a single 2D scattering length as might be sufficient.
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with effective range (the area above the solid boundary line),
respectively.

We note that this is also true in the dilute limit (n2D → 0
or kF → 0), where one may wish to apply the single-channel
model with a single 2D scattering length as. In the BEC
limit, it is known that the binding energy differs largely from
the anticipated value of h̄2/(Ma2

s ). The molecular scattering
length from the single-channel model is a(m)

2D � 0.56as [29]
and is different from the result

a(m)
2D = a(m)

z

√
π

B exp

[
−

√
π

2

a(m)
z

a(m)
3D

]
, (A1)

following the picture of a weakly interacting quasi-2D BEC
in a tight harmonic trapping potential with a 3D scattering
length a(m)

3D [22]. Here we defined a(m)
z ≡

√
h̄2/(2Mωz ) and

a(m)
3D � 0.6a3D.

At the 2D density n2D ∼ O(a−2
z ) or the Fermi wave vec-

tor kF ∼ O(a−1
z ), we may use the criterion kF a3D ∼ 1 or

az/a3D ∼ 1 to locate the boundary between the two regimes.
Therefore, we find that,

[ln kF as]c ∼ ln

[√
π

B e−√
π/2

]
� −0.6. (A2)

This threshold value qualitatively explains why in Figs. 3
and 4 of the main text, the agreement between the theory and
experiment becomes worse at small kF as.

1. Dependence on N/N2D

Strictly speaking, any 2D model is valid in the dilute limit
only, with N � N2D. However, we may use the 2D model up
to N ∼ N2D if the correction due to the quasi-2D configuration
is small. Here we check this idea within the mean-field
framework, using the full mean-field solutions at the 3D-2D-
dimensional crossover in Ref. [33] as a benchmark.

In Fig. 7, we report the 2D number density n2D as a func-
tion of the chemical potential μ, at az/a3D = −0.5 [Fig. 7(a)]
and az/a3D = 0 [Fig. 7(b)], predicted by mean-field theory for
different microscopic models. The black solid lines are the
full solution (i.e., the benchmark results) by fully considering
the tight harmonic trapping potential along the z axis (with
the energy scale h̄ωz), while the predictions of our effective
two-channel 2D model are shown by green stars. Here we
anticipate the minimum chemical potential is given by μm =
h̄ωz/2 − εB/2, where the two-body binding energy εB is set
by az/a3D, and the condition N ∼ N2D roughly corresponds to
μ ∼ 1.5h̄ωz.

We find that there is a fairly good agreement between
the full solution and the approximate solution from the ef-
fective two-channel 2D model. In particular, at az/a3D = 0
and μ = 1.5h̄ωz, the relative error due to the use of effective
two-channel 2D model is about 10%. This means that at
the 2D BEC-BCS crossover regime (which corresponds to
az/a3D = 0), the relative error in the chemical potential shown
in Fig. 3 of the main text is about 10%, due to the imperfect
2D condition N ∼ N2D. This gives an absolute error in the
chemical potential ∼0.03εF .

FIG. 7. The 2D number density n2D as a function of the chemical
potential μ, at (a) az/a3D = −0.5 and (b) az/a3D = 0, predicted
by mean-field theories. The insets highlight the areas with small
chemical potential or density. Here the black solid lines are from the
mean-field calculations, fully taking into account the tight harmonic
trapping potential (i.e., n(full)

2D (μ) [33]) and the symbol green stars are
the mean-field results obtained by using our effective theory [i.e.,
n(2c)

2D (μ) from the two-channel 2D model Hamiltonian in Eq. (3) in
the main text]. We report also the the mean-field results of the single-
channel model, n(sc)

2D (μ) = M(μ − μm )/h̄2, in red dashed lines. In
(b), the blue dot-dashed line shows the result 1.1n(full)

2D (μ).

2. Finite-temperature correction to equation of state

In the main text, we focus on the zero-temperature case
and neglect any temperature dependence of the equations of
state. This sounds reasonable, as the typical temperature in the
experiments is about 0.05–0.1TF [6,9] and we anticipate the
finite-temperature correction is small. Theoretically, however,
a finite-temperature 2D interacting Fermi gas is very difficult
to handle and we can hardly have solid results on the finite-
temperature effect. One exception is the recent theoretical
breakthrough in the constrained-path auxiliary-field quantum
Monte Carlo (AFQMC) method [45]. The finite-temperature
generalization leads to the accurate determination of the
chemical potential at ln(kF as) ∼ 4 for temperatures up to
0.125TF . The finite-temperature correction to the chemical
potential is indeed found to be small, with �μ ∼ 0.02εF at
T = 0.125TF [45]. We anticipate that the finite-temperature
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correction at other interaction parameters (i.e., ln(kF as) ∈
[0, 4]) is similar.

APPENDIX B: CHOICE OF THE β FUNCTION

To obtain the correlation energy �Ec beyond the GPF
approximation, a beta function β = �Ec/�EGPF is introduced
in the main text, where �EGPF ≡ EGPF − EMF. There are
different ways to choose the beta function. However, as a
result of the smallness of the beyond-GPF correlation energy,
different choices may only lead to negligible corrections to
the equation of state. To show this, let us consider two dif-
ferent choices: (1) the beta function depends on the two-body
binding energy, i.e., εB/εF , which is a function of ln(kF as)
and k2

F Rs. This choice is used in the main text. (2) On the
other hand, we may assume that the beta function depends
on ln(kF as) only. This choice neglects the dependence on the
effective range and should be worse than the first choice.

In Fig. 8, we show the energy, as a result of the two
different choices of the beta function, at different values Rs/a2

s
(or at different az/a3D). The energy differences between the
two choices are highlighted in the insets. They are indeed very
small, at the order of 0.001εF . Therefore, we believe that our
results on the chemical potential, pressure equation of state,
and breathing mode frequency depend very weakly on the
choice of the beta function.

APPENDIX C: QUANTUM ANOMALY IN
BREATHING MODE

1. Density profiles

The breathing mode frequency is calculated with the sum-
rule approach, using density profiles as the input (for the
purpose of calculating the cloud width). Density profile can
be determined by using the local density approximation, based
on the homogeneous equation of state n(μ) beyond the GPF
approximation for the two-channel 2D model Hamiltonian
(see Fig. 2 in the main text). That is, we assume a local
chemical potential μ(r) = μpeak − V (r) for each position r in
the harmonic trapping potential V (r) = Mω2

⊥r2/2. Here μpeak

is the peak chemical potential. At position r, we then obtain
the local density n(r) = n[μ(r)]. We finally adjust the peak
chemical potential to yield the total number of atoms N , i.e.,
N = ∫

drn(r).
In Fig. 9, we show the density profiles at a different value of

Rs/a2
s , which corresponds to different values of the interaction

strength (i.e., az/a3D). We consider the experimental situation
with number of atoms N = 0.20N2D. With decreasing Rs/a2

s ,
i.e., crossing from the BCS side to the BEC side, the peak
density increases and the cloud radius decreases.

2. N/N2D dependence of the breathing mode frequency

In Fig. 10, we report the breathing mode frequency as
functions of ln(kHO

F as) and of N/N2D, in the form of a contour
plot. The number of atoms N/N2D is shown in the logarith-
mic scale. We note that, a notable quantum anomaly, i.e.,
ωB > 2.1ω⊥, only shows up at N ∼ 0.01N2D for interaction
parameter −1.0 < ln(kHO

F as) < 0.5.

FIG. 8. Energy as a function of ln(kF as ) at different values of
Rs/a2

s = (a) −0.01, (b) −0.2511, and (c) −10, as a result of the
different choices for the beta function β = �Ec/�EGPF: (1) the
beta function depends on εB/εF (thick black lines, labeled as “our
theory”); (2) the beta function depends on ln(kF as ) only (blue thin
lines, labeled as “beyond-GPF2”; (3) we neglect completely the
correlation energy beyond GPF (i.e., red squares, labeled as “GPF”).
The insets show the difference between choices (1) and (2).
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FIG. 9. Zero-temperature density profiles at different values of
Rs/a2

s = −0.02 (red dashed line), −0.20 (black solid line), and
−2.00 (blue dot-dashed line) and at N = 0.20N2D. The correspond-
ing dimensionless interaction parameters are ln(kHO

F as ) � 1.715,
0.551, and −0.654, respectively. Here kHO

F is the Fermi wave vec-
tor of an ideal Fermi gas in harmonic traps. The density and ra-
dius are measured in units of nHO

F = (1/π )
√

N/N2Da−2
z and rHO

F =√
2N (N/N2D)−1/4az, respectively.

3. Finite-temperature effect on the breathing mode frequency

Let us now consider the possible finite-temperature effect
on the breathing mode frequency. The calculation of the
breathing mode of a 2D interacting Fermi gas at a small but
finite temperature is difficult, due to the insufficient knowledge
on the equation of state. To have a rough picture on the
finite-temperature effect, alternatively we may consider the
breathing mode of a one-dimensional (1D) s-wave interacting
Bose gas (which is equivalent to a 1D p-wave interacting
Fermi gas) [48], where the equation of state can be solved
by using thermodynamic Bethe Ansatz.

FIG. 10. Contour plot of the breathing mode frequency of 2D
strongly interacting fermions, as functions of the interaction pa-
rameter ln(kHO

F as ) and of the total number of atoms N/N2D (in the
logarithmic scale), predicted by our two-channel 2D model beyond
GPF.

As shown in Fig. 4(b) of Ref. [48], in the strongly
interacting regime [i.e., the curve with N (a1D/aho)2 = 1],
the breathing mode frequency increases from 1.819ω0 to
1.844ω0, when the temperature of the system increases from
0 to 0.2TF . Here ω0 is the trapping frequency. Therefore,
the change in the breathing mode frequency is about 0.025
trapping frequency, when the temperature fluctuates about
0.2TF . We may anticipate the similar temperature effect for
a 2D interacting Fermi gas in the strongly interacting regime.
Thus we estimate that, for the experiments at Heidelberg [16]
and Swinburne Universities [17], a finite temperature in the
range [0.10–0.22]TF may lead to a change in the breathing
mode frequency at about �ωB ∼ 0.02ω⊥.
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