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Particle-wave duality has allowed physicists to establish atomic interferometers as celebrated complements to
their optical counterparts in a broad range of quantum devices. In particular, interactions give rise to multiparticle
correlations unavailable in linear interferometers. Here, we show that interactions lead to dynamical quantum
phase transitions (DQPTs) between NOON states in an atomic interferometer. These transition points result from
zeros of the Loschmidt echo, which approach the real axis of the complex time plane in the large-particle-number
limit, and signify pair condensates, another type of exotic quantum states featured with prevailing two-body
correlations. Such DQPTs thus provide us with a new angle to understand many-body states emergent from
quantum nonequilibrium dynamics. Our work also suggests interacting atomic interferometers as a new tool for
creating highly entangled states to beat the standard quantum limit.
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I. INTRODUCTION

Applications of atomic interferometers span a wide spec-
trum of problems, ranging from measuring the gravitational
acceleration and the fine-structure constant to detecting gravi-
tational waves [1–5]. Ultracold atoms prompt a precise control
of atomic interferometers, including realizing highly tunable
atomic beam splitters [6–10] and accessing an atomic Hong-
Ou-Mandel interferometer using optical tweezers [11–14].
Whereas mutual interactions between particles may induce
decoherence [15–17], they could also generate squeezing and
multiparticle correlations unattainable in linear interferome-
ters [18].

Dynamical quantum phase transition (DQPT) [19–22] has
recently invoked enthusiasm in multiple disciplines. A partic-
ular type of Loschmidt echo, |G(t )|2 = |〈ψ (0)|e− i

h̄ Ĥt |ψ (0)〉|2,
where |ψ (0)〉 is the initial state, is considered as the temporal
analog of the partition function. When |ψ (0)〉 is an equal
superposition of all energy eigenstates, |G(t )|2 is exactly the
partition function with an imaginary temperature T = 1

ikBt . t is
therefore identified as the tuning parameter analogous to the
temperature in phase transitions at equilibrium. When G(t ) =
0, the dynamic free energy λ(t ) = − 1

N ln |G(t )|2, which is the
rate function of the probability of the system’s returning to its
initial state, manifests nonanalyticities and defines a critical
time tc. N is the number of degrees of freedom. Similar to
conventional phase transitions triggered by Lee-Yang zeros
or Fisher zeros in the complex plane of certain parameters or
the temperature [23,24], DQPTs can also be understood from
zeros of G(t ) in the complex plane by extending the real time
t to the complex domain, t → z ≡ t + iτ . With increasing N ,
discrete zeros merge to continuous manifolds and eventually
touch the real t axis, making physical observables nonana-
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lytic. Whereas observations of DQPTs have been reported in
certain spin systems, showing deep connections with equilib-
rium quantum phase transition and order parameter dynamics
[19,25–30], this novel concept well deserves both theoretical
and experimental studies in a much broader range of systems.

In this paper, we show that interacting interferometers
host DQPTs between highly entangled quantum states. Start-
ing from a Fock state, pair condensates, which are featured
with a vanishing one-body correlation and prevailing two-
body correlations [31–33], arise in nonequilibrium quantum
dynamics. In the large-N limit, their appearance at critical
times, tc, are triggered by zeros of G(z) in the complex time
plane that approach the real axis, signifying DQPTs at which
the many-body wave function becomes orthogonal to the
initial state [19,25,27–30,34–36]. tc characterizes transitions
between NOON states, a particular type of Schrödinger’s cat
state formed by two Fock states. Such dynamically generated
NOON states are much more stable than those at equilibrium.
The energy mismatch between the two single-particle states
only needs to be suppressed as a power law of N , unlike
the equilibrium case, where the energy mismatch has to be
exponentially small.

Moreover, NOON states arise from an intriguing interplay
between interactions and the symmetry. When the Hamil-
tonian remains unchanged after swapping the two single-
particle states, the dynamical phase induced by interactions
directly leads to a superposition of the initial state and its
counterpart created by the symmetry operator, say |N, 0〉
and |0, N〉. Therefore, the NOON states are protected by
the symmetry in the sense that any perturbations respecting
this symmetry are no longer important. For instance, adding
weak multiparticle interactions to the ordinary two-particle
interactions does not affect any qualitative results. Thus, our
scheme applies to a large class of models and suggests a new
mechanism to access highly entangled states, which could be
used to beat the standard quantum limit and improve quantum
sensing [37–40].
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II. HAMILTONIAN

We consider N bosonic atoms in an interferometer consist-
ing of two quantum states. The Hamiltonian reads

Ĥ = −J (â†
1â2 + â†

2â1) + g
(
n̂2

1 + n̂2
2

) + 2g12n̂1n̂2, (1)

where J > 0 is the the coupling strength between the two
quantum states, â†

i is the creation operator in the ith state,
and n̂i = â†

i âi. g and g12 are the intra- and interstate inter-
actions, respectively. This Hamiltonian remains unchanged
with two modes swapped. If we consider two spatial modes,
this is the inversion symmetry. Though our results apply to
generic models respecting this symmetry, we focus on two-
particle interactions to concretize discussions. Multiparticle
interactions, which may arise from multiband effects [41], are
discussed in Appendix F.

The Hamiltonian can be rewritten as

Ĥ = −J (â†
1â2 + â†

2â1) + Ū

2
(n̂1 + n̂2)2 + U

4
(n̂1 − n̂2)2, (2)

where Ū = g + g12, U = 2(g − g12). Due to the conservation
of the total particle number N = n1 + n2, Ū only contributes
a trivial total phase of the wave function in the dynamics.
We thus focus on interaction effects caused by U . Though
this Hamiltonian has been well studied [15,18,42–46], our
results, including zeros of G(z) in the complex time plane,
DQPTs, symmetry-protected NOON states, and pair con-
densates, elude the literature. We solidify the discussion for
repulsive interactions, U > 0. Attractive interactions lead to
similar results (Appendix B).

III. ZEROS IN THE COMPLEX PLANE

We consider an initial state, |ψ (0)〉 = |N, 0〉 = 1√
N!

â†N
1 |0〉.

The dynamical evolution, |ψ (t )〉 = e− i
h̄ Ĥt |ψ (0)〉, is computed

by expanding |ψ (0)〉 using exact eigenstates of Ĥ . Whereas
this can be done for any parameter, we consider UN2 � J .
This energy scale separation leads to a time scale separation,

T ≡ π h̄

J
� t∗ ≡ π h̄

U
, (3)

which allows us to access quantum dynamical evolutions
exhibiting extraordinary features. When U vanishes, the quan-
tum dynamics is governed by

â†
1 → cos

Jt

h̄
â†

1 + i sin
Jt

h̄
â†

2, (4a)

â†
2 → i sin

Jt

h̄
â†

1 + cos
Jt

h̄
â†

2. (4b)

Thus, |ψo(t )〉 = 1√
N!

(cos(Jt/h̄)â†
1 + i sin(Jt/h̄)â†

2 )N |0〉,
where the superscript o represents the result of a
noninteracting system. Extending t to the complex plane,
we find that all zeros of G(z) are located on the real axis with
multiplicity N . When z = t o

k ≡ (k + 1/2)T , where k is an
integer, the quantum state becomes |0, N〉 = 1√

N!
â†N

2 |0〉, and
G(t o

k ) = 0. One can view each identical boson as a spin-1/2.
All spin-1/2’s initially at the north pole of the Bloch sphere
move to the south pole at the same times t o

k , leading to a
vanishing G(z).

As shown in Fig. 1(c), a weak interaction satisfying
UN2 � J has negligible effects at small times. A given mul-
tiple zero with multiplicity N splits into N simple zeros, all
of which are close to zeros of noninteracting systems. Indeed,
|ψ (t )〉 is very similar to that of a noninteracting case, as shown
in Figs. 2(a)–2(d). For instance, at time t = t o ± T/4, |ψ (t )〉
is well represented by 1√

2N N!
(â†

1 ± iâ†
2 )N |0〉, corresponding

to a binomial distribution when expanded by Fock states
|l〉 ≡ |N/2 + l, N/2 − l〉. To simplify notations, we consider
even N here. See Appendix C for results for odd N . How-
ever, at large times, even a weak interaction has profound
effects. As shown in Fig. 1(a), the separation between differ-
ent zeros of G(z) becomes amplified greatly. Near t∗, these
zeros deviate greatly from those of noninteracting systems.
Whereas such zeros have finite imaginary parts, they intrin-
sically affect physical observables on the real-time axis, as
shown later.

IV. DYNAMICALLY GENERATED ENTANGLED STATES

We evaluate s-body correlation functions on the real-time
axis, gs = 〈ψ (t )|â†s

1 âs
2|ψ (t )〉, s ∈ Z+. At t = 0, the Fock

state has vanishing gs for any s. As time goes on, gs in-
creases as a result of tunnelings between the two quantum
states. When U = 0, the dynamics is fully captured by Rabi
oscillations. When U 
= 0, Fig. 1(b) shows that the one-body
correlation function, g1(t ), decays due to interaction-induced
decoherence. However, normalized two-body and N-body
correlation functions, 4g2(t )

N (N−1) and 2gN (t )
N! , reach their maxima

around t = t∗. In the vicinity of t∗, both |g2| and |gN | oscillate
with a period T/2. This indicates the rise of highly entangled
states with multiparticle correlations. As shown in Figs. 2(e)–
2(h), the four states showing up alternatively near t∗ are well
captured by

t̃0 = kT, |C−〉 = â†N
1 − iâ†N

2√
2N!

|0〉,

t̃1 = kT + T

4
, |P−〉 =

N∑
n=0

iN−n − in+1

pn
â†n

1 â†N−n
2 |0〉,

t̃2 = kT + 2T

4
, |C+〉 = â†N

1 + iâ†N
2

i1−N
√

2N!
|0〉,

t̃3 = kT + 3T

4
, |P+〉 =

N∑
n=0

iN−n + in+1

i1−N pn
â†n

1 â†N−n
2 |0〉, (5)

where t̃ = t − t∗ and pn = n!(N − n)!
√

2N+1

N! . |C±〉 are NOON
states with vanishing gs<N and |gN | = N!/2. We have verified
that any gs<N does vanish when NOON states arise. For clarity
of the plots, g2<s<N values are not shown in Fig. 1.

|P±〉 are called pair condensates, since their one-body
correction function g1 vanishes, and their two-body corre-
lation function g2 is of the order of N2. Correspondingly,
their two-body reduced density matrix, 〈a†2

i a2
j〉, has only

one macroscopic eigenvalue proportional to N2. Therefore,
|P±〉 and |C±〉 have distinct properties. Equation (4), which
can be regarded as a rotation of the quantization of axis,
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FIG. 1. Dynamics of eight bosons for U/J = 0.001. (a) Each blue dot represents a simple zero of G(z) in the complex plane, where
z is the complex time z = t + iτ . (b) Normalized s-body correlations 2|g1|

N ,
4|g2 |

N (N−1) ,
2|gN |

N! as functions of the real time t . Enlarged regimes
of (a) and (b) near (c, d) t = 0 and (e, f) t∗. Each red circle in (c) and (e) is a zero of G(z) of the noninteracting systems described by
z = (k + 1/2)T, k ∈ Z. Each of them has multiplicity 8. The legend in (b) also applies to (d) and (f).

swaps |P±〉 and |C±〉. There are always two types of such
different entangled states in any reference frame. As shown
later, when studying |G(t )|2 = |〈ψ (0)|e− i

h̄ Ĥt |ψ (0)〉|2, which
characterizes the quantum memory of the initial state, the
chosen |ψ (0)〉 fixes the quantization axis such that |P±〉 in
Eq. (5) becomes orthogonal to |ψ (0)〉 when N → ∞.

The energy spectrum in the limit UN2 � J (Appendix A),
which is written as

En = An + Bn2, n = 0, 1, . . . , N, (6)

B = −U

2
, A = UN

2
+ 2J, r ≡ A

B
. (7)
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FIG. 2. (a–d) The wave function expanded by Fock states
|ψ (t )〉 = ∑

ψl | N
2 + l, N

2 − l〉 at four times: t = 0, T/4, 2T/4, and
3T/4. (e–h) Results at four times near t∗. Numbers above bars
represent relative phases of ψl . All parameters are identical to those
in Fig. 1.

For any initial state |ψ (0)〉 = ∑N
n=0 cn|En〉, the wave function

at a later time is given by |ψ (t )〉 = ∑N
n=0 cne− i

h̄ Ent |En〉. Tun-
ing J and U , when r = rm is satisfied, where rm = 4m + 2 or
4m, m ∈ Z, |C±〉 can be easily identified. If r = 4m, we obtain

|ψ (t∗)〉 =
N∑

n=0

cne− i
h̄ Ent∗ |En〉 =

N∑
n=0

cn
1 − i(−1)n

√
2

|En〉. (8)

Because of the aforementioned symmetry of H in Eq. (2), the
energy eigenstates have a well-defined parity,

P̂|En〉 = (−1)n|En〉, (9)

where P̂ is the inversion operator, P̂|n1, n2〉 = |n2, n1〉, and
[Ĥ , P̂] = 0. Using Eqs. (8) and (9), we conclude that
|ψ (t∗)〉 = (|ψ (0)〉 − iP̂|ψ (0)〉)/

√
2. Whereas this result is

valid for any initial state, the initial state we chose gives rise
to |C−〉 emerging at t = t∗. Meanwhile, interaction effects
are negligible on the short time scale of a few T s. The time
evolution on this time scale is well captured by Eq. (4) if we
replace t with t − t∗. Applying this transformation to |C−〉,
it is straightforward to show that the other three states in
Eq. (5) show up at corresponding times. If r = 4m + 2, the
same discussion applies and the four states, |C+〉, |P+〉, |C−〉,
and |P−〉, show up at times t̃0, t̃1, t̃2, and t̃3 in Eq. (5). It
is also noteworthy that, for odd particle numbers, the pair
condensates are described by another type of wave function
∼∑

l ψ ′
l â

†2l
1 â†N−2l

2 |0〉 (Appendix C).
When r 
= rm, Eq. (8) cannot be satisfied. Nevertheless, the

states near t = t∗ are well approximated by NOON states in
the weakly interacting regime. We calculate the fidelity,

P(t ) = max(|〈C+|ψ (t )〉|2, |〈C−|ψ (t )〉|2). (10)
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FIG. 3. (a) Zeros of G(z) near t∗ for N = 40 particles (t̃ ≡ t −
t∗). (b) Distances between the real-time axis and the nearest zeros
around t∗ as a function of 1/N . The solid blue line is the analytical
result from Eq. (14) and red circles are numerical results. (c) Rate
function λ(t ). (d) λ(t ) near t̃c. UN2/J = 0.01 has been used.

Near t∗, we obtain (Appendix E)

P(t ) ≈
√

1

1 + N2

4

(
π
2 − U

2h̄ t
)2

×
∑

k

∣∣∣∣∣exp

(
− 1

2
N + i

(
π
2 − U

2h̄ t
)(

kπ

2
− πN

4
− Jt

h̄

)2)∣∣∣∣∣
2

.

(11)

Near t∗, P(t ) consists of Gaussian peaks centered at a series
of discrete times with a separation of T/2. Since the width
of these peaks is about h̄√

NJ
, only one peak contributes to

P(t ) significantly at any t in the large-N limit. P(t ) reaches

its maximum at t∗′ = k0π h̄
2J − πNh̄

4J , and

max[P(t )] =
(

1 +
(

NπUd

8J

)2)−1/2

, (12)

where k0 is the integer nearest to 2J
U + N

2 , k0 ≡ Int( 2J
U +

N
2 ), and d ≡ | 2J

U + N
2 − k0| � 1

2 . When r = rm, previous re-
sults are recovered because 2J

U + N
2 = − rm

2 is an integer
and max[P(t )] = 1. For generic r 
= rm, the lower bound of
max[P(t )] is written as (1 + ( πNU

16J )2)−1/2. Thus, in the weakly
interacting limit, NOON states well represent |ψ (t∗′)〉. Away
from t = t∗, we have numerically computed the overlaps be-
tween |ψ (t )〉 and the four states in Eq. (5), and these overlaps
reach their maxima near t∗ (Appendix D).

V. DQPT IN THE LARGE-N LIMIT

On the short time scale of a few T s, the dynamics near t∗
is well captured by Eq. (4) with the substitution t̃ = t − t∗.
Zeros of G(z) are obtained analytically. For instance, when
r = 4m,

G(z) = 1√
2

((
cos

J (z − t∗)

h̄

)N

− i

(
i sin

J (z − t∗)

h̄

)N)
.

(13)
Figure 3(a) shows that real parts of these zeros are given
by Rez = t∗ + ( π

4 + m
2 π ) h̄

J , m ∈ Z, i.e., they are aligned in
vertical lines in the complex plane. When N is odd, some
zeros reside on the real axis (Appendix C). However, for a
generic finite N , all zeros are away from the real axis. With
increasing N , zeros become denser and gradually approach the
real axis. The distance between the real axis and the nearest
zero is bounded by

� = 1

2
arccosh

1∣∣ cos π
2N

∣∣ . (14)
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FIG. 4. (a, b) Zeros of G(z) in the complex plane of time for seven particles and the corresponding normalized correlation functions. (d–g)
The wave functions at four times picked up from (a). (c) The rate function λ−(t ). (h, i) Details of λ−(t ) near tc. The open circle in (h) represents
the discontinuity of λ−(t ) at t̃c1, where it approaches ∞. In all panels U and J are fine-tuned such that |ψ (t∗)〉 = |C−〉.
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In the large-N limit, � ≈ π
4N . This scaling behavior is veri-

fied by numerical calculations, as shown in Fig. 3(b). When
N → ∞, straight lines formed by continuous zeros intersect
with the real axis and lead to a vanishing G(z) in the real
axis. Correspondingly, λ(t ) becomes nonanalytic, signifying
DQPTs. As shown in Figs. 3(c) and 3(d), near the transi-
tion point, λ(t ) = ln 2 − 2 J

h̄ |t̃ − t̃c| when N → ∞, where t̃c =
( π

4 + m
2 π ) h̄

J . Comparing DQPT points and the times given in
Eq. (5), we conclude that pair condensates, |P±〉, reside at
DQPT points and characterize the DQPT between two types
of NOON states, |C±〉. This is also shown in Figs. 1(e) and
1(f). Zeros of G(z) near t∗ are aligned in a vertical line,
directly corresponding to maximized g2.

VI. EFFECTS OF PERTURBATIONS

Whereas essentially all parameters in Eq. (2) can be fine-
tuned, it is useful to consider the effects of perturbations.
We consider two types of important perturbations. (a) With
increasing U , Eq. (6) includes high-order terms ns>2. (b) An
energy mismatch �(n1 − n2) breaks the inversion symmetry.

Considering (a), the lowest-order contribution is a cu-
bic term and we have En = An + Bn2 + Cn3, where Cn3 =
−n3U 2/(8J ). The wave function is written as

|ψ (t )〉 =
n∑

n=0

cne− i
h̄ (An+Bn2− U2

8J n3 )t , (15)

where cn = ( 2
πN )

1
4 e− 1

N (n− N
2 − U

16J N2 )2
. If U 2

8J n3t∗ � 1, then the
extra phase introduced by the cubic term is negligible within
the time scale that is relevant to the emergent NOON states
and DQPTs. Since cn is a Gaussian with a width

√
N , which

provides a natural cutoff of n in the sum in Eq. (15), we
replace n in the above inequality with

√
N and obtain UN

3
2 �

J . Thus, when UN2 � J is satisfied, all these corrections
are negligible. Similar conclusions apply to ns>2 caused by
multibody interactions (Appendix F).

For symmetry-breaking terms in (b), our calculation shows
that a finite � suppresses gN by a factor

gN

g0
N

= 1 −
(

�2N

2J2
+ U�N (N − 1)

16J2

)
, (16)

where g0
N = N!/2 is the N-body correlation function of a

NOON state. Thus, when

8�2N + �UN (N − 1) � 16J2 (17)

all characteristic features of NOON states are retained.
We compare Eq. (17) to the criterion for a stable NOON

state at equilibrium [47], where a finite � strongly suppresses
the superposition of |N, 0〉 and |0, N〉, as a large N amplifies
the energy penalty. Meanwhile, the effective tunneling be-
tween |N, 0〉 and |0, N〉 is exponentially small, as it requires N
steps of single-particle tunneling to couple them. �N � Je−N

is then required, i.e., an exponentially small � with increasing
N . Here, such a constraint does not apply in nonequilibrium
dynamics. Equation (17) shows that, with increasing N , �

only needs to be suppressed as a power law. The dynamically
generated NOON states are much more stable than their
counterparts at equilibrium. Thus, our results suggest a new

route to access NOON states that can be potentially used in
precision measurements.

VII. EXPERIMENTAL REALIZATIONS AND
CONCLUSIONS

Whereas our results apply to generic atomic interferom-
eters with any particle number, we comment on possible
sceneries directly related to current experiments. Optical
tweezers have recently been used to create an atomic Hong-
Ou-Mandel interferometer [13]. Each single tweezer corre-
sponds to a quantum state in Eq. (2), and both interaction
U and tunneling J can be tuned. Trapping multiple atoms
is also possible [48,49]. Using realistic experimental param-
eters, J/2π = 262(4) Hz, in [13], when U/J = 0.022 and
N = 8, NOON states and DQPTs emerge around a critical
time of about 86 ms (Appendix G). Besides optical tweezers,
other systems ranging from double-well optical lattices to
mesoscopic traps [50–53], in which the total particle number
can be controlled precisely, are also suitable for testing our
theoretical results. In addition, H in Eq. (2) can be mapped to
a spin-1/2 model with all-to-all interactions [54], which offers
another realization of our schemes in spin systems.

We have studied DQPTs in interacting atomic interferom-
eters and shown that dynamically generated entangled states
have deep connections with zeros of the Loschmidt echo in
the complex plane. DQPTs provide us with a new angle for
understanding nonequilibrium dynamics. We hope that our
work will stimulate more interest in using interacting inter-
ferometers to explore DQPTs and to produce novel entangled
quantum states.
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APPENDIX A: EIGENSTATES AND ENERGY SPECTRUM
OF THE HAMILTONIAN

We consider the Hamiltonian Ĥ = −J (â†
1â2 + â†

2â1) +
Ū
2 (n̂1 + n̂2)2 + U

4 (n̂1 − n̂2)2 + �(n̂1 − n̂2). When U = � =
0, the eigenenergies E0

n and eigenstates |E0
n 〉 are

E0
n = 2J

(
n − N

2

)
, (A1)

∣∣E0
n

〉 = 1√
n!(N − n)!

(
â†

1 + â†
2√

2

)N−n( â†
1 − â†

2√
2

)n

|0〉. (A2)

When U,� � J , the first- and second-order corrections to the
eigenenergies are

E1
n = U

4
(2nN − 2n2 + N ), (A3)

E2
n = U 2

32J
(2n − N )(N − 1 + 2Nn − 2n2) + �2

2J
(2n − N ).

(A4)
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The eigenstates are

|En〉 = ∣∣E0
n

〉 − �

2J

√
(n + 1)(N − n)

∣∣E0
n+1

〉
+ �

2J

√
n(N − n + 1)

∣∣E0
n−1

〉 + O(�3)

− U

4

√
(N − n)(N − n − 1)(n + 1)(n + 2)

4J

∣∣E0
n+2

〉
+ U

4

√
(n − 1)n(N − n + 1)(N − n + 2)

4J

∣∣E0
n−2

〉
.

(A5)

APPENDIX B: ATTRACTIVE INTERACTIONS

As discussed in the text, when U > 0, t∗ = π h̄
U , and rm =

4m, |C−〉, |P−〉, |C+〉, and |P+〉 show up in order starting from
t∗. In contrast, rm = 4m + 2, |C+〉, |P+〉, |C−〉, and |P−〉 show
up in order starting from t∗.

Here we discuss U < 0 and t∗ = π h̄
|U | . (i) rm = 4m,

|C+〉, |P+〉, |C−〉, and |P−〉 show up in order starting
from t∗, and G(z) = 1√

2
((cos J (z − t∗)/h̄)N + i(i sin J (z −

t∗)/h̄)N ). (ii) rm = 4m + 2, |C−〉, |P−〉, |C+〉, and |P+〉 show
up in order starting from t∗, and G(z) = 1√

2
((cos J (z −

t∗)/h̄)N − i(i sin J (z − t∗)/h̄)N ).
If rm is not an even integer, Eq. (11) can be generalized to

P(t ) ≈
√

1

1 + N2

4

(
π
2 − |U |

2h̄ t
)2

×
∑

k

∣∣∣∣ exp

(
− 1

2
N + i U

|U |
(

π
2 − |U |

2h̄ t
)

×
(

kπ

2
− πN

4
− Jt

h̄

)2)∣∣∣∣
2

.

(B1)

APPENDIX C: RESULTS FOR AN ODD NUMBER OF
PARTICLES

The zeros of G(z) = 1√
2
((cos J (z − t∗)/h̄)N ± i(i sin J (z −

t∗)/h̄)N ) are written as

Re
J (z − t∗)

h̄
= π

4
+ l

2
π, l ∈ Z, (C1)

Im
J (z − t∗)

h̄
= 1

2
arccosh

1∣∣ cos π
( 1+2k∓1/2

N − 1
2

)∣∣
× sgn sin π

(
1 + 2k ∓ 1/2

N
− 1

2

)
,

k = 1, 2, . . . , N. (C2)

For a finite even N , zeros have finite imaginary parts. For a
finite odd N , some zeros reside on the real-time axis, as shown
in Fig. 4.

In the large-N limit, (i) if N is even, limN→∞ λ(t ) =
−2 ln[max(| cos Jt̃/h̄|, | sin Jt̃/h̄|)], which is analyzed in the
text; and (ii) if N is odd, λ±(t ) = − 1

N ln( 1
2 | cosN Jt̃/h̄ ±

sinN Jt̃/h̄|2). The sign ± is determined by the sign before i

in G(t ) and whether N = 4p + 1 or 4p + 3, p ∈ Z. λ±(t ) is
nonanalytic at t̃c = h̄

J ( π
4 + k π

2 ), k ∈ Z, when N → ∞. Espe-
cially, limN→∞ λ−(t ) = −2 ln[max(| cos Jt̃/h̄|, | sin Jt̃/h̄|)]
except at t̃c1 = h̄

J ( π
4 + kπ ), k ∈ Z. As shown in Fig. 4(d),

λ−(t ) diverges at t̃c1 for any finite odd N . Similar conclusions
apply to λ+(t ).

The emerged pair condensates near t∗ for odd N are also
different from those for even N . Using Eq. (5), for N = 2m +
1, m ∈ Z, we obtain

|P−〉 =
N∑

n=0

iN−n − in+1

pn
â†n

1 â†N−n
2 |0〉

=
N∑

n=0

in+1((−1)m+n − 1)

pn
â†n

1 â†N−n
2 |0〉, (C3)

|P+〉 =
N∑

n=0

iN−n + in+1

pn
â†n

1 â†N−n
2 |0〉

=
N∑

n=0

in+1((−1)m+n + 1)

pn
â†n

1 â†N−n
2 |0〉. (C4)

Thus, some Fock states are suppressed by the factor
(−1)m+n − 1. For instance, when N = 7, |P−〉 only contains
|0, 7〉, |2, 5〉, |4, 3〉, |6, 1〉. Apparently both the one-body
correction g1 and G(t ) = 〈7, 0|P−〉 vanish.

APPENDIX D: OVERLAPS BETWEEN |ψ(t )〉 AND |C±〉, |P±〉
Away from t∗, there is no simple analytical expression

for the overlap between |ψ (t )〉 and the NOON states or pair
condensates. We thus evaluate such overlaps numerically, as
shown in Fig. 5. Near t∗ = π h̄

U , the four states defined in Eq.
(5) show up alternatively. The overlaps reach maxima near t∗.

APPENDIX E: DETAILED ANALYSES OF
PERTURBATIONS

When � = 0, the initial state |N, 0〉 can be expanded by
energy eigenstates and the coefficients cn are

|cn|2 = |〈En|N, 0〉|2

=
∣∣∣∣∣ 1

2N/2

√
N!

n!(N − n)!

(
1 − (N − 2n)

U (N − 1)

16J

)∣∣∣∣∣
2

≈
√

2

πN
e− 2

N ((n− N
2 )− UN (N−1)

16J )2
. (E1)

Assuming En = Cn3 + Bn2 + An and B < 0, the overlap be-
tween |ψt 〉 and the NOON state (|N, 0〉 + i|0, N〉)/

√
2 is

〈C+|ψ (t )〉 =
N∑

n=0

|cn|2e−i( π
2 n2+nπ )e− i

h̄ Ent

=
∑

m

√
2

πN
e− 2

N m2− iCt
h̄ m3−i( π

2 −H2t )m2+i(G1−π−H1t )m,

(E2)
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FIG. 5. Overlaps between state |ψt 〉 and four entangled states defined in the text as a function of time. We have used N = 8 bosons and
U/J = 0.001.

where m = n − N
2 + UN2

16J and

H2 = |B|
h̄

− 3CN2U

16h̄J
− 3CN

2h̄
, (E3)

H1 = A

h̄
− |B|N2U

8h̄J
− |B|N

h̄
+ 3CN4U 2

256h̄J2

+ 3CN3U

16h̄J
+ 3CN2

4h̄
, (E4)

G1 = −πN2U

16J
− πN

2
. (E5)

What is required is that the phase contributed by the cubic
term is negligible when t ∼ π h̄

U . Since the width of the Gaus-
sian factor is

√
N , we require that

∣∣∣∣Ct

h̄
m3

∣∣∣∣ =
∣∣∣∣U 2

8J

π

U
N3/2

∣∣∣∣ � 1 ⇒
∣∣∣∣UN3/2

J

∣∣∣∣ � 1, (E6)

where we have used the energy spectrum obtained from
second-order perturbation. The cubic term is then dropped and
we employ the Poisson summation formula to obtain

〈C+|ψ (t )〉 =
∑

k

√
1

1 + i N
2 (G2 − H2t )

× exp

(
− 1

2
N + i(G2 − H2t )

×
(

(2k − 1)π + G1

H1
− t

)2 H2
1

4

)
. (E7)

Similarly, we obtain

〈C−|ψ (t )〉 =
∑

k

√
1

1 + i N
2 (G2 − H2t )

× exp

(
− 1

2
N + i(G2 − H2t )

×
(

(2k)π + G1

H1
− t

)2 H2
1

4

)
. (E8)

When Eq. (E6) is satisfied, H2 ≈ |B|
h̄ ≈ U

2h̄ , H1 ≈ A
h̄ ≈ 2J

h̄ , and
G1 ≈ −πN

2 . We define the probability of finding a NOON
state as P(t ) = max(|〈C+|ψ (t )〉|2, |〈C−|ψ (t )〉|2). Near

t = G2
H2

, P(t ) can be written as

P(t ) ≈
√

1

1 + N2

4

(
π
2 − U

2h̄ t
)2

×
∑

k

∣∣∣∣ exp
(− 1

2
N + i

(
π
2 − U

2h̄ t
)

×
(

kπ h̄

2J
− πNh̄

4J
− t

)2 J2

h̄2

)∣∣∣∣
2

. (E9)

P(t ) consists of multiple Gaussian functions whose peaks
are located at t = kπ h̄

2J − πNh̄
4J , k ∈ Z, and their separation

is π h̄
2J . There is also a factor (1 + N2

4 ( π
2 − U

2h̄ t )2)−1/2, which
suppresses peak heights. If the parameters are fine-tuned
such that an integer k0 satisfies π

2 − U
2h̄ ( k0π h̄

2J − πNh̄
4J ) = 0, then

P(t ) = 1 at t = k0π h̄
2J − πNh̄

4J . We thus obtain a perfect NOON
state. Without fine-tuning the parameters, we consider t = π h̄

U ,
which lies in the middle of two peaks. The two peaks get a
suppression of (1 + ( πNU

16J )2)−1/2. Again, because of Eq. (E6),
this factor is negligible when N is large.

If the energy mismatch � is finite, we separate the eigen-
states into two parts according to their spatial parity:

|En〉 = αn|En〉s + βn|En〉a, (E10)

P̂|Em〉 = αn(−1)n|En〉s + βn(−1)n+1|En〉a. (E11)

The time evolution of the wave function is written
as |N, 0〉 → |ψt 〉 = ∑N

n=0 cnαne−iEnt |En〉s + cnβne−iEnt |En〉a.
From Eq. (A4), we see that, up to the second order of �, the
quadratic term in En remains unchanged. Thus, when t∗ = π h̄

U ,
e−iEnt∗ = 1+i(−1)n√

2
is satisfied, and we obtain

|ψ (t∗)〉 =
N∑

n=0

αncn
1 + i(−1)n

√
2

|En〉s

+ βncn
1 + i(−1)n

√
2

|En〉a

= |cat〉 + |err〉, (E12)

where |err〉 = ∑N
n=0 i

√
2(−1)ncnβn|En〉a is the correction to

the NOON state at t∗, and

gN = 〈ψt∗ |â†N
1 âN

2 |ψt∗ 〉

= g0
N + N!√

2
〈0, N |err〉 + i

N!√
2
〈err|N, 0〉

+ 〈err|â†N
1 âN

2 |err〉. (E13)
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FIG. 6. Zeros of G(z) in the complex plane and normalized correlation functions for two particles in optical tweezers. U/J = 0.22 and
J/2π = 262 Hz.

Using Eq. (A5), we obtain

βn|En〉a = − �

2J

√
(n + 1)(N − n)

∣∣E0
n+1

〉
+ �

2J

√
n(N − n + 1)

∣∣E0
n−1

〉 + O(�3). (E14)

Up to the first order of U and �,

|err〉(1) = �

2J

N∑
n=0

i
√

2
(−1)n+1

2N/2

√
N!

n!(N − n)!
(N − 2n)

∣∣E0
n

〉
.

(E15)

It is straightforward to verify that 〈0, N |err〉(1), 〈err|(1)|N, 0〉,
and â†N

1 âN
2 |err〉(1) vanish.

Up to the second order of U and �,

|err〉(2) = �

2J

(
�

2J
+ U (N − 1)

16J

)

×
N∑

n=0

i
√

2
(−1)n+1

2N/2

√
N!

n!(N − n)!
(N − 2n)2

∣∣E0
n

〉
.

(E16)

So,

〈0, N |err〉(2) = −i
√

2
�

2J

(
�

2J
+ U (N − 1)

16J

)
N!

(N − 1)!
,

(E17)

〈err|(2)|N, 0〉 = 0. (E18)

Therefore,

gN = 〈ψ (t∗)|â†N
1 âN

2 |ψ (t∗)〉

= i
N!

2
− i

(
�

2J

(
�

2J
+ U (N − 1)

16J

))
N!2

(N − 1)!

= g0
N

(
1 − 2N

(
�

2J

(
�

2J
+ U (N − 1)

16J

)))
. (E19)

APPENDIX F: MULTIBODY INTERACTIONS

Interaction-induced interband couplings may lead to vir-
tual transitions of particles from the lowest-energy band to
higher bands [41]. When the band gap is small compared

to the interaction strength, there exist effective multibody
interactions. As for the three-body interaction, U3(n3

1 + n3
2),

it can be rewritten as U3(n1 + n2)3 − 3U3n1n2(n1 + n2). Be-
cause of the conservation of the total particle number, the
first term is not relevant to the dynamics. The second term
turns the two-body interaction, U , discussed in the text
into U → U + 3U3N and does not change any qualitative
results.

Other multibody interactions do not change our results
either, provided that they respect the inversion symmetry. As
discussed in the text, NOON states emergent in the dynamics
are protected by the inversion symmetry. Any multibody
interactions, Us>2(ns

1 + ns
2), still respect this symmetry. Thus,

the only effect that they have on the dynamics is to add
corrections, ns>2, to the energy spectrum in Eq. (5) in the text.
Any such small corrections would not affect the qualitative
results of the dynamics at short times, similar to the discussion
of Eq. (15) in the text.

APPENDIX G: CORRELATION FUNCTIONS AND ZEROS
OF G(z) IN OPTICAL TWEEZERS

Two coupled optical tweezers have been used to create
an atomic Hong-Ou-Mandel interferometer [12,13]. Starting
from an initial state, |2, 0〉, i.e., two bosons occupying the
same optical tweezer, the time evolution of the correlation
functions can be calculated analytically,

g1 = − 2U√
16J2 + U 2

αβ sin2

√
16J2 + U 2t

2h̄

+ i2αβ sin

√
16J2 + U 2t

2h̄
cos

Ut

2h̄
(G1)

g2 = α4 + β4 − 1

2
+ α2β2 cos

√
16J2 + U 2t

h̄

+ i

(
sin

Ut

2h̄
cos

√
16J2 + U 2t

2h̄

− U√
16J2 + U 2

cos
Ut

2h̄
sin

√
16J2 + U 2t

2h̄

)
, (G2)
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FIG. 7. (a, c, d) Zeros of G(z) in the complex plane and (b, e) normalized correlation functions for eight particles in optical tweezers.
J/2π = 262 Hz. (a, b) For U/J = 0.22 and (c–e) for U/J = 0.022.

where α = 1√
2

√
1 − U√

16J2+U 2 , β = 1√
2

√
1 + U√

16J2+U 2 . If the

parameters are fine-tuned such that
√

16J2+U 2

U = 2k, k ∈ Z, at
t∗ = π h̄

U , we obtain g1 = 0, g2 = i(−1)k , and a small NOON

state |2,0〉+i(−1)k |0,2〉√
2

. Using realistic experimental parameters
in Ref. [13], J/2π = 262(4) Hz and U/J = 0.22(2), the cor-
relation functions and the zeros of G(z) are shown in Fig. 6.
When U � J ,

√
16J2+U 2

U = 2k corresponds to r = rm in the
text. Without fine-tuning the experimental parameters, there
are corrections to the small NOON state at t∗, similar to the
results discussed in the text. It is noteworthy that, starting from
|1, 1〉, the current experiment has shown that a small NOON

state can be produced in a Hong-Ou-Mandel interferometer.
However, this is only true when interactions are ignored. We
have verified that, in the presence of interactions, |1, 1〉 cannot
produce a small NOON state. Instead, |2, 0〉 should be used,
as shown by the previous discussion.

It is possible that optical tweezers could trap multiple
particles. For eight particles, UN2 � J is no longer satisfied
if U/J = 0.22(2). Nevertheless, the qualitative results remain
unchanged. As shown in Fig. 7, g8 is maximized near t∗
while other correlation functions are suppressed. With U/J
decreased down to 0.022, all results in the text are recovered
and the predicted NOON states and DQPTs can be observed
around t = 86 ms.
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