
PHYSICAL REVIEW A 101, 043604 (2020)

Collisions of solitary waves in condensates beyond mean-field theory
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Bright solitary waves in a Bose-Einstein condensate contain thousands of identical atoms held together despite
their only weakly attractive contact interactions. They nonetheless behave like a compound object, staying whole
in collisions, with their collision properties strongly affected by intersoliton quantum coherence. We show that
separate solitary waves decohere due to phase diffusion, dependent on their effective ambient temperature, after
which their initial mean-field relative phases are no longer well defined or relevant for collisions. In this situation,
collisions occur predominantly repulsively and can no longer be described within mean-field theory. When
considering the timescales involved in recent solitary wave experiments where nonequilibrium phenomena play
an important role, these features could explain the predominantly repulsive collision dynamics observed in most
condensate soliton train experiments.
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I. INTRODUCTION

Dilute alkali-metal gas Bose-Einstein condensates (BECs)
can usually be well understood using a simplified model for
atomic collisions based on contact interactions and further
employing a product mean-field ansatz where all particles
reside in the same single particle state to vastly simplify the
quantum many-body physics [1,2].

Here we explore why the mean-field approach breaks down
in collisions of bright matter-wave solitary waves [1,3,4],
which are self-localized nonlinear wave packets containing
thousands of condensate atoms. Bright solitary matter waves
in Bose-Einstein condensates have now been created in a
variety of experiments [4–18], for fundamental studies and
applications in interferometry. We use “solitary wave” here
to imply that the three-dimensional character of the wave
function was still relevant in all these experiments. In the
remainder of the article, we shall also use the shorthand “soli-
ton.” In many of these experiments, trains of 3–15 solitons are
created at once [6,8,9,18,19], so that subsequently interactions
or collisions between them become relevant. In mean-field
theory, these should be akin to collisions of solitons in non-
linear optics, which were well understood earlier [20]. Those
results predict effectively attractive interactions for solitons
with a mean-field relative phase of ϕ = 0 and effectively
repulsive interactions for out of phase solitons with ϕ = π .

Some early doubts were cast on these simple rules by a set
of multisoliton experiments (MSE), frequently commencing
from explosively heated initial states. These indicated al-
most exclusively repulsive collisions [6,8,9]. However, a more
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controlled two-soliton experiment (TSE) shows collisions in
apparent agreement with mean-field theory [10,21]. While
the MSE results could imply a robust creation of relative π

phases between all adjacent solitons [22], the creation of such
a pattern cannot be accounted for by theory [23–25]. Rather,
studies beyond mean-field theory reported dramatic modifica-
tions of soliton interactions by quantum effects [23,26].

Here we extend and consolidate the results of [23,26], by
identifying the two essential physical mechanisms that dy-
namically invalidate mean-field theory. These are first phase
diffusion [27] or loss of coherence between colliding solitons
and second atom transfer between solitons during a collision,
akin to atom tunneling in bosonic Josephon junction (BJJ)
[28]. The resultant picture provides more consistency with
earlier experimental results than mean-field theory.

We find that phase diffusion must lead to fragmentation
of a train of solitons, which consequently exhibits more
repulsive collision trajectories than it would otherwise. At
zero temperature, the timescale for this fragmentation may
be rather long, of the order of seconds. However, we show
that fragmentation is significantly accelerated by thermal or
uncondensed atoms, and thus can occur on ms timescales for
strongly heated condensates.

This article is organized as follows. In Sec. II, we first
review soliton collisions in mean-field theory and provide a
brief overview of existing experiments on soliton trains and
collisions. In Sec. III, we introduce the employed beyond-
mean-field techniques. Using these techniques, we then first
consider the fragmentation of noninteracting solitons in
Sec. IV, and then move to the interplay of fragmentation and
soliton collisions in Sec. V. This section separately considers
collisions before fragmentation, Sec. V A, after fragmenta-
tion, Sec. V B, and the interplay with atom transfer during
a collision, Sec. V C; see also Appendix B. We discuss the
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relevance of broken many-body integrability during colli-
sions in Sec. VI and the dependence on collision velocity in
Sec. VII. We then move to a discussion of nonzero temper-
ature and the ramifications of our results in the context of
recent experiments in Sec. VIII. Finally, in Sec. IX, we briefly
compare the methods employed here, before concluding.

II. MEAN-FIELD SOLITON COLLISIONS

Let us first review soliton collisions in mean field theory.
We consider a Bose gas with the second quantized Hamilto-
nian

Ĥ =
∫

d3r
{
�̂†(r)

[
− h̄2

2m
∇2 + 1

2
mω2

⊥r2
⊥

]
�̂(r)

+ U3d

2
�̂†(r)�̂†(r)�̂(r)�̂(r)

}
, (1)

where the atomic field operator �̂(r) destroys an atom of
mass m at location r. The atoms experience 3D s-wave
collisions with interaction strength U3d = 4π h̄2as/m, where
as is the scattering length. The latter is controllable via a
Feshbach resonance and assumed to be tuned to attractive
interactions as < 0 to enable bright solitons. Finally atoms are
considered free along the direction x, but tightly trapped with
trap-frequency ω⊥ in the transverse directions r⊥ = [y, z]T .

In the simplest mean-field treatment of (1), atomic
quantum fluctuations are neglected and the field operator
is replaced by the mean-field condensate wave function
φ(r) = 〈�̂(r)〉.

We will be exclusively interested in the quasi-one-
dimensional (1D) scenario, where the Bose gas is more tightly
confined along transverse coordinates r⊥ than in the longi-
tudinal one x. We then implement the usual 1D reduction,
where the 3D mean-field wave function is written as φ(r, t ) =
φ(x, t )η(r⊥), with η(r⊥) = exp [−r2

⊥/(2σ 2
⊥)]/(σ⊥

√
π ), thus

assuming transversally the BEC remains in the trap ground
state with width σ⊥ = √

h̄/(mω⊥), using the transverse oscil-
lator frequency ω⊥. Then we can derive the quasi-1D Gross-
Pitaevskii equation (GPE) for the evolution of the longitudinal
mean-field φ(x, t ) using standard methods as

ih̄
∂

∂t
φ(x, t ) =

[
− h̄2

2m

∂2

∂x2
+ U0|φ(x, t )|2

]
φ(x, t ), (2)

where U0 = U3d/(2πσ 2
⊥) is the effective interaction strength.

Importantly, this does not imply that microscopic collisions
are constrained to 1D.

For attractive interactions U0 < 0, the GPE (2) has sta-
tionary soliton solutions φ(x, t ) = φsol(x) exp [−iμt/h̄] with
a spatial profile as sketched in Fig. 1,

φsol(x) = N sech(x/ξ ), (3)

where μ = −mN2
solU

2
0 /8/h̄2 is the chemical potential if the

soliton contains Nsol atoms, ensured by the normalization
factor N = √

2|μ|/U0. The width of the soliton is set by the
healing length ξ =

√
h̄2/(2m|μ|). While the solution (3) is

strictly valid for a 1D system only, it aptly describes bright
condensate solitons in realistic 3D experiments as long as
the transverse trapping ω⊥ is sufficiently tight [29] and Nsol
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FIG. 1. Sketch of colliding soliton pair with mean-field wave
function (4). During the collision, the separation d (t ) and velocity
v(t ) evolve in time. We also sketch two causes for the breakdown
of mean-field theory: phase diffusion due to atom-atom interactions
within a soliton χ and atom transfer between solitons J , when they
are in close proximity.

remains safely away from the critical atom number Ncrit for
3D collapse [8], which we do not discuss here. To study
soliton collisions, we now move to a mean-field wave function
containing a pair of solitons

φ(x, t ) = L(x, t )eik(t )x + eiϕ(t )R(x, t )e−ik(t )x, (4)

with left and right soliton shapes L(x, t ) = φsol[x + d (t )/2]
and R(x, t ) = φsol[x − d (t )/2]. The two solitons are thus sep-
arated by a distance d . We also allow a wave number k arising
from symmetric soliton motion. The ansatz (4) is sketched
in Fig. 1. For a simplified description, we can use a time-
dependent variational principle from the Lagrangian based on
(1) [20,22] to derive the effective kinetic equations of motion

∂2

∂t2
ϕ(t ) = 8 exp [−d (t )] sin [ϕ(t )], (5)

∂2

∂t2
d (t ) = −8 exp [−d (t )] cos [ϕ(t )], (6)

for the time evolving soliton separation d (t ), velocity v(t ) =
h̄k(t )/m, and relative phase ϕ(t ), still based on mean-field
theory. We write (5) and (6) for dimensionless variables with
ξ = 1, h̄ = 1, and m = 1. Clearly, for ϕ(t = 0) = 0 (π ), the
relative phase does not evolve. We further see that a relative
phase ϕ = 0 yields attractive and ϕ = π repulsive behavior
[20,22].

We illustrate in Fig. 2 that the effective kinetic equations
(5) and (6) indeed correctly reproduce soliton dynamics pre-
dicted by the GPE (2).

Experiments with soliton trains and collisions

While Eq. (6) was largely verified in nonlinear optics
relatively soon after its prediction [30], it is still not fully
clear to what extent or under which conditions it describes
matter-wave solitons.

Soon after the first creation of single matter-wave solitons
[5], experiments began to investigate trains or collections
of multiple solitons [6,8] that appear when the interactions
within a large 1D BEC cloud are suddenly changed from
repulsive to attractive using a Feshbach resonance. This led
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FIG. 2. Review of soliton collisions in mean-field theory for
initial relative phase ϕ of (a) ϕ = 0, (b) ϕ = π/2, (c) ϕ = 3π/2, and
(d) ϕ = π . The color profile is the atomic density |φ(x, t )|2 following
from (2) for the initial state (4) (black, zero; bright, high). Overlaid
dashed teal lines are trajectories based on (6).

to condensate collapse with strong loss of atoms and heat-
ing, with remnant atoms forming a train of solitons. Both
experiments saw indirect evidence for dominantly repulsive
interactions between neighboring solitons in the train: (i) the
total remnant atom number after the collapse was still higher
than the critical atom number Ncrit [31] for further collapse,
(ii) soliton trajectories, within limited experimental resolu-
tion, were typically repulsive, and (iii) almost all solitons
survive collisions, which is not the case when interactions
are attractive due to further 3D collapse [32,33]. A relative
soliton phase of π between neighbors would explain this
behavior [4,22,34] as discussed in Sec. II, but such a phase
pattern should not actually arise, according to theory [23–25].
A striking counterexample is the repulsively interacting soli-
ton trains with two and four members in [8], for which
symmetry requires a phase π = 0 between the central two
solitons.

To address these questions, among others, further exper-
iments were recently performed in the Rice group, track-
ing soliton collisions using in situ observation. In one case,
Ref. [10], a condensate was split into two pieces, which were
subsequently transformed into solitons in a fairly controlled
process, which however took much longer than generating
solitons through condensate collapse. We refer to Ref. [10]
as the two-soliton experiment (TSE) later. More recently,
another soliton train was studied resulting from modulational
instability [9], in a multisoliton experiment (MSE). In contrast
to earlier MSEs [6,8], a violent initial 3D collapse of the
entire cloud into essentially one single high density spike was
avoided. The TSE demonstrated that multiple collisions of one
soliton pair can be described by the GPE or Eq. (6), provided
that their relative phase is in fact inferred indirectly from the
first of those collisions. The MSE, in turn, again found neces-
sarily repulsive interactions between all neighboring solitons
of trains with up to 10 (even) members, since their number

remained constant despite the fact that attractive interactions
should have resulted in 3D collapse.

It will be important for this article that none of the ex-
periments discussed were in a genuinely 1D regime where
one can view also microscopic collisions between atoms as
constrained to one dimension. Rather they all fall into the
quasi-1D regime, where the BEC system can be reliably math-
ematically modeled taking into account only one dimension
in the trap, but microscopic atomic collisions would still
significantly involve three dimensions.

In the following we combine earlier indications of beyond
mean-field effects in soliton collisions [23,26] to develop a
more comprehensive picture that can reconcile most experi-
mental results above and additionally are suggestive of further
quantum dynamical effects, such as entanglement generation,
as a subject for future experiments.

III. BEYOND MEAN-FIELD THEORIES

As discussed above, there are experimental and theoretical
indications that collisions of bright matter wave solitons may
be a case where mean-field theory suffers not only a quantita-
tive but a qualitative breakdown. In this section we now briefly
summarize three different beyond mean-field models that can
explore this aspect.

A. Two-mode model

One way to go beyond the meanfield expression (4) is with
a simple two-mode model (TMM) for the field operator

�̂(x) = L(x)â + R(x)b̂, (7)

where the left and right “soliton mode functions” L(x) =
L(x)/

√
Nsol and R(x) = R(x)/

√
Nsol are now normalized to

one instead of Nsol but retain the shape of the soliton. The
operator â destroys a boson in the left soliton and b̂ does the
same for the right soliton; they act on Fock states | n, m 〉,
where n (m) is the number of atoms in the left (right) soliton.
Thus atomic spatial degrees of freedom are constrained to
reside in either the left or right soliton mode. In principle,
the TMM can straightforwardly be extended to describe the
problem in three spatial dimensions, by augmenting to modes
L(x), R(x) to 3D functions, assuming the same simplified
transverse shape as discussed in Sec. II.

We now allow number fluctuations and, through these,
varying phase relations. In a Fock state | n, m 〉 the relative
phase between solitons is undefined, while in a two-mode
coherent state

|α, β〉 = |α〉 ⊗ |β〉, (8)

with |α〉 = e− |α|2
2

∑∞
n=0

αn√
n!

|n〉, the relative phase is ϕ =
arg[α] − arg[β]. This two-mode coherent state has an uncer-
tain total atom number.

Even for fixed total atom number Ntot we can assign a
well-defined relative phase between left and right soliton,
using a relative coherent state in the even or odd soliton pair
|Ntot,±〉 ≡ [(â ± b̂)/

√
2]Ntot/

√
Ntot!|0〉.

Inserting (7) into (1), assuming real mode functions with a
narrow Gaussian shape along transverse directions, we obtain

043604-3



APARNA SREEDHARAN et al. PHYSICAL REVIEW A 101, 043604 (2020)

the TMM Hamiltonian

Ĥ = ω(â†â + b̂†b̂) + χ

2
(â†â†ââ + b̂†b̂†b̂b̂)

+ J (b̂†â + â†b̂) + Ū (4â†âb̂†b̂ + â†â†b̂b̂ + b̂†b̂†ââ)

+ 2J̄ (â†â + b̂†b̂ − 1)(b̂†â + â†b̂), (9)

with coefficients

ω =
∫

dx L̄(x)

[
− h̄2

2m

∂2

∂x2

]
L̄(x), (10a)

χ = U0

∫
dx L̄(x)4 = −mU 2

0 Nsol

6h̄3 , (10b)

J (d ) =
∫

dx L̄(x)

[
− h̄2

2m

∂2

∂x2

]
R̄(x), (10c)

Ū (d ) = U0

2

∫
dx L̄(x)2R̄(x)2, (10d)

J̄ (d ) = U0

2

∫
dx L̄(x)3R̄(x). (10e)

We indicated with an argument d whether a coefficient
depends on the distance between the left and right soliton
modes. The TMM will be useful in Sec. IV to elucidate the
basic physics underlying the predictions of the more involved
quantum many-body theories discussed further below.

For large d , when J, Ū , J̄ → 0, the TMM can be analyti-
cally solved, as shown in Sec. IV. In the more general case, we
will numerically solve the time-dependent Schrödinger equa-
tion for | �(t ) 〉, coupled to Eq. (6) via d (t ). The coefficients J ,
Ū , and J̄ in Eq. (9) then vary in time, due to their dependence
on the soliton separation d (t ). We used | α, β 〉 as initial state
when comparing with TWA (see Sec. III C) and | Ntot,± 〉 for
comparisons with MCTDHB (see Sec. III B).

B. Multiconfigurational time-dependent Hartree
for bosons (MCTDHB)

The TMM is made more sophisticated in MCTDHB [35]
with two orbitals. In essence the latter allows a combination
of the mean-field and the two-mode approach. It allows the
bosons to condense into two orbitals, as the quantum field
operator is again expanded as

�̂(x, t ) = φ+(x, t )ĉ(t ) + φ−(x, t )d̂ (t ). (11)

This includes the ansatz (7) but importantly now contains
two orbitals φ±(x, t ) that can self-consistently evolve in time.
Their evolution and that of the Fock states onto which ĉ, d̂ act
is determined from a time-dependent many-body variational
principle [35]. In contrast, in the TMM, the time dependence
of L, R is fixed a priori.

Initially, the orbitals are taken as the symmetric or anti-
symmetric linear combination of the soliton modes φ±(x, t ) =
[L̄(x) ± R̄(x)]/

√
2. Depending on the initial relative phase

ϕ between the solitons, either is initially fully occupied.
Since MCTDHB operates with a fixed total atom number, the
corresponding initial state in the two-mode model is | Ntot,± 〉.

We refer to the original article [35] for the equations of
motion and the extensive literature for details. The method
has proven particularly useful to study scenarios involving

dynamical condensate fragmentation [36–40], scenarios gen-
erating entanglement [41–44], and few-body dynamics [45].
Here we use the open-MCTDHB package [46].

Important approximations contained in the ansatz (11) are
the reduction from three spatial dimensions to one, with
the same argumentation as in Sec. II, and the reduction of
the many-mode quantum field problem to the substantially
simplified two-mode constraint.

C. Truncated Wigner approximation (TWA)

We finally drop the two-mode constraint, moving to an
(approximate) multimode quantum field theory. An effective
approximation technique for those is the truncated Wigner
framework [47–50], where the quantum many-body state is
represented by an ensemble of stochastic trajectories. In TWA
we solve the same equation of motion as for mean-field theory
(2), albeit with random noise added to the initial state

φ(x, 0) = φ0(x) +
∑

�

η�u�(x)√
2 tanh

(
ε�

2kBT

) , (12)

with φ0(x) the mean-field soliton pair (4). The index � num-
bers a plane-wave basis u�(x) = eik�x/

√
V with normaliza-

tion volume V; then ε� = h̄2k2
� /(2m). The η� are complex

Gaussian noises with unit variance and correlations η�η j = 0,
η∗

�η j = δ� j and T is the system temperature. Overlines indi-
cate stochastic averages. The TWA described here is known to
give good results for decoherence phenomena [51,52] as long
as the noise amplitude added is dominated by the mean field
[53–56], but it would usually fail to capture, e.g., quantum
revivals [51,52] such as those exhibited by the model (9) at
later times.

Quantum correlations are extracted according to

〈�̂†(x′)�̂(x)〉 = φ∗(x′)φ(x) − 1
2δc(x, x′), (13)

where δc(x, x′) = ∑
� u�(x)u∗

� (x′) is a restricted basis commu-
tator [56]. Our TWA calculations and TMM solutions employ
the XMDS package [57,58]. We will later use TWA for
comparison with MCTDHB, simulation of experiments and
for the incorporation of finite temperature.

The truncated Wigner method derives its name from the
truncation of the evolution equation for the distribution func-
tion of stochastic trajectories, in order to bring that into the
form of a Fokker-Planck equation [47]. This approximation
is motivated by practicalities and its physical implications
often far from obvious. Later work has, however, shown that
the approximation will be good for short times (where it is
again not a priori obvious how short) [53] and as long as
most modes of the quantum field are highly occupied [48,49].
In practice this means that the noise amplitude added in
(12) ought to be small compared to the mean-field amplitude
|φ0(x)| [54–56].

D. Coherence and fragmentation

Within all three many-body models, we are mainly inter-
ested in the resultant coherence and fragmentation dynamics.
To identify the condensate in a quantum-field setting, we
use the Penrose-Onsager criterion [1,59,60], that the largest
eigenvalue of the one-body density matrix (OBDM) is the
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FIG. 3. Fragmentation of far separated BEC solitons. We show
the relative occupation λ of all system orbitals at zero temperature
in TWA (black dotted), MCTDHB (blue and red dashed), and two-
mode model (blue and red solid). For MCTDHB and two-mode
model there are only two orbitals by construction, for TWA two
dominate. Initially we have a pure BEC of two solitons since λ = 1
for one orbital. It then fragments around tfrag as defined in the text,
indicated by the vertical magenta dot-dashed line. The nonlinear
parameter, see Eq. (10b), is χ = −6.6 × 10−4. Vertical red-dashed
lines are the times for which we plot snapshots of the Q function
in Fig. 4.

condensate occupation, with OBDM

�(x, x′) = 〈�̂†(x′)�̂(x)〉. (14)

The eigenvalues λ j are then obtained from∫
dx′�(x, x′)χ j (x′) = Nλ jχ j (x′), where χ j (x) is the

corresponding single particle orbital and N = 2Nsol. If
two λ j are of order unity, the system is called fragmented
[1]. In the TWA the OBDM is given by (13), and in
MCTDHB by �(x, x′) = ∑

kq〈Ô†
k Ôq〉φ∗

k (x′, t )φq(x, t ) [61],

using k, q ∈ {+,−} and Ô+ = ĉ, Ô− = d̂; see (11).
For the TMM, we can ignore the frozen spatial structure

and focus on the mode space OBDM

� =
[〈â†â〉 〈b̂†â〉
〈â†b̂〉 〈b̂†b̂〉

]
. (15)

We denote the two eigenvalues of � with λ+ (the larger one)
and λ− (the smaller ones), in the following.

IV. SOLITON PAIR FRAGMENTATION
DUE TO PHASE DIFFUSION

We now initially consider the beyond mean-field evolution
of two solitons far separated from each other so that they can
be considered noninteracting. They are initialized as part of
one coherent, nonfragmented BEC. We show in Fig. 3 the
eigenvalues of the OBDM predicted by all three methods
discussed above.

By the indicated time, tfrag, the eigenvalues λ+ and λ−
have clearly become comparable and the system is thus frag-
mented. We formally call the system fragmented after tfrag,
when |λ+(tfrag) − λ−(tfrag)| ≡ �λ = 0.2. The choice of �λ is
somewhat arbitrary. We cannot chose �λ = 0, since we later
show cases where the λ± are never quite equal, yet get very
close and should still indicate fragmentation.

FIG. 4. Phase diffusion for the same case as in Fig. 3, at times
indicated there as red-dashed vertical lines. We plot the Husimi
Q function Q(α) of a single soliton’s internal state [62]; see text.
(black, zero; bright, high) (a) Initially, t = 0, this corresponds to a
coherent state. For later times as indicated in (b), (c), and (d), the Q
function shows shearing (Kerr squeezing) and eventually indicates a
completely undefined soliton phase ϕL .

All three methods agree on the fragmentation timescale
defined above. Quantitative differences are expected, due to
the varying numbers of modes and constraints on these among
the methods. The origin of fragmentation is best understood
in the TMM. The coefficients J , Ū , and J̄ in (9) depend on
the overlap of L̄(x) and R̄(x) and thus on d . For large soliton
separations d , all these vanish, and only the first line in (9)
remains. The dynamics can then be determined analytically

| �(t ) 〉 =
∑
nm

cnm(t )| nm 〉,

cnm(t ) = cnm(0)e−i{E0(n+m)+ χ

2 [n(n−1)+m(m−1)]}t/h̄, (16)

where the coefficients cnm(0) are set by the two-mode coher-
ent initial state (8) with amplitude α, β = √

Nsol. From (16)
we obtain the eigenvalues of (15) as

λ± = 1 ± e2Nsol[cos(χt/h̄)−1]

2
≈ 1 ± e−(t/tfrag )2

2
, (17)

where the expression after ≈ is valid for short times. The
fragmentation timescale tfrag = h̄/(

√
Nsol|χ |) is corroborated

by the more involved quantum many-body methods TWA and
MCTDHB in Fig. 3. For the TWA results in Fig. 3, we can
see the emergence of several additional significantly occupied
orbitals beyond the first two.

Note that the Hamiltonian (9) for large d reduces to Ĥ =
χ

2 (â†â†ââ + b̂†b̂†b̂b̂), after we adjust the zero of energy such
that the term ∼ω can be ignored. This just corresponds to two
independent nonlinear Kerr oscillators and the dynamics just
discussed thus is well known and referred to as Kerr squeezing
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[62–64] or phase diffusion [27]. Phase diffusion refers to an
initially fixed condensate mean phase becoming ill defined
due to diffusion over all angles.

We visualize phase diffusion for the reduced state of just
one (the left) soliton in Fig. 4, using the Husimi Q function
Q(α) = |〈α | � 〉|/π that quantifies the overlap of an arbitrary
state | �(t ) 〉 with a coherent state | α 〉. In the space α ∈ C,
farther from the origin corresponds to larger atom number n
in the left soliton, and the argument of α indicates the soliton
phase ϕL. We show Q(α) at several characteristic snapshots,
indicated in Fig. 3 by vertical red dashed lines. Initially, the
state of atom number within one of the solitons itself is a
coherent state, with a 2D Gaussian as Q function. It then
shears, since the angular phase evolution due to nonlinear
interactions scales as ϕL ∼ χn(n − 1)t with the atom number,
and is thus faster for α farther away from the origin. During
this initial period, see, e.g., t = 2, the dynamics is also called
Kerr squeezing. At later times, the phase of a single soliton
becomes progressively undefined. Hence the relative phase
between two solitons will be even less well defined. At that
stage, there also is complete fragmentation.

Phase diffusion in the context of BEC solitons was ex-
plored before [65,66]. It has been linked to fragmentation in
the context of soliton interferometry [67]. Here we clearly
identify it as the root physical cause of soliton train fragmen-
tation, first reported in [26]. Most importantly, this enables us
to make analytic predictions for the fragmentation timescale
tfrag in (17) and will in the future allow assessments of how
fragmentation would depend on the number statistics of the
initial state.

V. SOLITON COLLISIONS

We now consider the effect of the fragmentation dis-
cussed above on the collisions of condensate solitons. We
want to distinguish two cases: collisions occurring before
fragmentation and after fragmentation. To this end, initially
unfragmented solitons separated by a distance dini are given an
initial velocity vini towards each other such that their expected
collision time is approximately tcoll = |dini/(2vini )|. We show
in Figs. 5 and 6 the atom density in a colliding soliton pair
from MCTDHB (Sec. III B) as color shade, compared with
the collision trajectory based on the kinetic equation (6) as
overlayed dashed teal line. Since (6) is based on the GPE (2),
we are thus directly comparing mean field with beyond-mean-
field collisions.

In both figures, the collision velocity is adjusted to vini =
0.2. We then employ dini = 8 in Fig. 5, yielding an expected
collision time tcoll = 20, which is before the expected frag-
mentation time of tfrag = 60 for far separated solitons, based
on Eq. (17). In contrast, for Fig. 6, dini is changed to dini = 32;
hence tcoll = 80 becomes larger than tfrag.

A. Before fragmentation

Let us consider collisions before fragmentation first. We
see in Figs. 5(a) and 5(c) that quantum many-body theory and
mean-field theory agree on the character of collisions in this
case. Most notably the initial relative phase controls whether
interactions are attractive or repulsive. Note that the color

FIG. 5. Collision and coherence dynamics in controlled soliton
collisions before fragmentation, tcoll < tfrag. The initial relative phases
between solitons, ϕ, are indicated. (a),(c) Total atomic density (black,
zero; bright, high) from MCTDHB and expected mean-field trajec-
tories based on Eqs. (2) and (6) (dashed teal line). (b),(d) The two
largest orbital populations λ(t ) from MCTDHB (dashed) and the two
mode model (7) (solid). For the latter we used a time-dependent
soliton separation d (t ), which is inferred from the MCTDH peak
densities. (e),(g) Precollision atom number probabilities ρn in the left
soliton from the TMM at the times ta indicated by (�) in (b),(d); the
total number is fixed at 2000, with on average 1000 in each soliton.
(f),(h) The same after the collision, at times tb in (b),(d). The figure
uses dimensionless units as discussed in Appendix A.

shading indicates the total or mean atomic density from MCT-
DHB, which contains contributions from all orbitals present
in (11) and depends on the quantum state. Collisions actually
occur slightly earlier than the estimate tcoll = |dini/(2vini )|,
due to the finite range of intersoliton interactions. The post-
collision deviations of the trajectories visible in panel (a) are
commented upon in Sec. V C.

In addition to the atom density and hence trajectories,
MCTDHB also provides us with the time evolution of the
eigenvalues of the OBDM λ±, shown in panels (b) and (d).
We compare these with the λ± obtained from the TMM dis-
cussed in Sec. III A, with trajectories d (t ) adjusted to those in
MCTDHB. It is apparent that collisions indeed occur prior to
fragmentation and the two models yield similar OBDM eigen-
values. The TMM now additionally allows us to inspect the
atom number distribution in the left soliton ρn = ∑

m |cnm|2;
see Sec. IV.
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FIG. 6. Collision and coherence dynamics in controlled soliton
collisions after fragmentation, tcoll > tfrag. Panel layout and curves as
in Fig. 5. Magenta lines and axes in panels (f),(h) additionally show
the dependence of postcollision velocity v = p+/m on atom number
per soliton; see Sec. V D and Appendix B.

We show this distribution in Figs. 5(e)–5(h) at the times
indicated by (�) in panels (b) and (d), which are chosen just
before and just after the collision. Outside of the time window
[ta, tb], the number distribution is essentially conserved. The
early snapshots at ta in panels (e) and (g) thus approximately
show the Gaussian ρn for the initial relative coherent state
|Ntot,±〉. However, during closest approach, near tcoll atom
transfer terms containing the operator b̂†â + â†b̂ become large
in (9) (terms ∼J, J̄). Atoms can thus make transfers from
one soliton to the other. This intermittent bosonic Josephson
junction (BJJ) [28] causes a widening of the number distri-
bution for the initial phase ϕ = 0; see panel (f). This wider
number distribution then accelerates the phase diffusion effect
discussed in Sec. IV and causes subsequent fragmentation
already around tfrag = 15, where without the collisions it
would have only happened at tfrag ≈ 60. Note, however, that
the TMM results for the ϕ = 0 may not be reliable, since
exactly at the moment of collision the two chosen modes cease
to be orthogonal. However, this is not a problem shared by
MCTDH, which qualitatively agrees on an increase of the
degree of fragmentation following the collision, albeit less
severe. We thus conclude that attractive collisions will cause
earlier subsequent fragmentation.

In contrast, the number distribution is not significantly
widened in the repulsively interacting case in panel (h), due
to much weaker tunneling. Note that this is not alone due to
the minimal separation being larger in the repulsive case than
in the attractive case: interaction terms become almost as large
as in the ϕ = 0 case anyway. Thus the ϕ = π phase relation
must be less conducive to atom transfer.

B. After fragmentation

We now move to collisions after fragmentation, tcoll > tfrag.
In that case almost no initial phase dependence of collision
kinematics remains in the mean atomic density provided by
MCTDHB; see Figs. 6(a) and 6(c). Mean collision trajectories
always seem to have repulsive character, fairly regardless of
the initial relative phase between the solitons. It has been
shown in [68], however, that an “always repulsive” appear-
ance of the MCTDHB total atomic density may be misleading.
The authors of Ref. [68] include all available information on
the many-body wave function to predict the atom density for
single realizations of the many-atom probability distribution
for fragmented collisions, instead of the mean density that one
would obtain by averaging many such realizations. Following
these many-body collisions in time, one identifies collision
trajectories akin to mean-field ones, with seemingly random
phases from realization to realization, including some attrac-
tive collisions.

We see the same behavior in TWA collisions from a fully
fragmented state. Also there, single trajectories are a random
mix, exhibiting collisions that match the mean-field picture for
all relative phase angles ϕ ∈ [0, 2π ) between solitons. A ma-
jority of these collisions have a repulsive “appearance”; thus
a density average over all such trajectories yields a repulsive
mean trajectory. Features of both simulation techniques are
consistent with the picture in Sec. IV: after complete phase
diffusion, all relative phases between the two solitons are part
of the two soliton quantum state, so an individual collision
may appear repulsive with some probability and with another
attractive.

C. Collisions with number change

Besides the apparent indifference of mean collisions to the
initial intersoliton phase, a second prominent feature of Fig. 6
is that MCTDHB predicts collisions to be superelastic, with
solitons gaining kinetic energy in the collision, while total
energy is conserved. This feature was also visible in panel (a)
of Fig. 5. To understand possible physical reasons for this,
we first multiplied the right-hand side (RHS) of the soliton
kinetic equation (6) used for the TMM with a scale factor f (t ),
phenomenologically adjusted to give trajectories in agreement
with MCTDHB, i.e., speeding up in the collision. We can then
get a first idea of the source of additional kinetic energy by
inspecting the different contributions to the total energy

Etot = 〈Ĥ〉 + Ekin, (18)

within the corresponding TMM in Fig. 7.
We can obtain 〈Ĥ〉 from (9), while the joint kinetic energy

of both solitons, each with velocity ḋ (t )/2, is

Ekin = 2 × 1

2
mNsol

(
ḋ (t )

2

)2

. (19)
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FIG. 7. Conversion of mean interaction energy into kinetic en-
ergy during a soliton collision, using TMM with soliton distance
d (t ) taken from MCTDHB. We show the total energy Etot, Eq. (18)
(black dot-dashed), the kinetic energy, Eq. (19) (solid red) Ekin, the
soliton self-interaction energy (dotted blue) E0, Eq. (20), and inter-
soliton interaction energy (dashed magenta) Ess, defined in the text.
(a),(b) Collision before fragmentation with (a) ϕ = 0 and (b) ϕ = π .
(c),(d) Collision after fragmentation with (c) ϕ = 0 and (d) ϕ = π . In
(c),(d), black (•) show Etot if we do not include an increase in kinetic
energy.

We then further split 〈Ĥ〉 into a contribution internal to the
solitons

E0 = 〈ω(â†â + b̂†b̂) + χ

2
(â†â†ââ + b̂†b̂†b̂b̂)〉 (20)

and a soliton-soliton interaction energy Ess [all other terms of
(9)]. For large separations d (t ), we must have Ess → 0.

We plot all energy contributions in Fig. 7, setting the
initial value of E0 to zero, to ease the comparison of tem-
poral changes. We see in panels (c) and (d) of Fig. 7 that
the drop in internal soliton energy, E0, provides the extra
kinetic energy found after collisions. We identify the atomic
transfer between the solitons discussed earlier as cause for
this, due to interactions of the form Ĵ (d )(b̂†â + â†b̂). Here
the coefficient Ĵ (d ) depends on the overlap of the left and
right soliton modes, and is relevant only briefly around the
moment of collision. As shown in Figs. 6(b) and 6(d), the
term causes significant restoration of phase coherence, with
an accompanying widening of the atom number distribution
ρn in each soliton, Figs. 6(f) and 6(h). This is in accordance
with number and phase being conjugate variables.

Since the internal energy per soliton E0 ≈ χ
∑

n ρnn2 is
negative and nonlinearly dependent on atom number, an in-
crease of the atom number uncertainty and thus widening
of the distribution ρn causes an internal energy drop �E0 ≈
χ

∑
n �ρnn2, where �ρn is the difference between the num-

ber distributions before and after the collision. We find that
this can quantitatively explain the gain in kinetic energy as
shown in Figs. 7(c) and 7(d), up to a minor mismatch.

This minor mismatch is not surprising since we combine
information from two independent methods (MCTDHB and
TMM) that are not expected to be consistent in this combina-

FIG. 8. Momenta involved in a collision with exchange of atoms.
The incoming solitons on the left of the graph contain Nsol atoms,
with momentum ±p0, respectively. If a atoms transfer from one
soliton to the other, the larger one must move slower after the
collision to conserve the total momentum. This is the case in a single
realization of the quantum many-body superposition state.

tion. The point we stress is that if solitons gain kinetic energy,
the drop in internal energy is partially balanced in contrast
to elastically colliding solitons, as seen by comparing black
lines and black dots in Figs. 7(c) and 7(d). The explanation
works less well for panel (a). However, in that case the TMM
is expected to break down at the moment of the collision, since
the two modes become identical in that effectively attractive
case.

D. Momentum balance in collisions with number change

However, now that we have linked the increase in postcol-
lision mean kinetic energy of solitons with atoms transferring
from one soliton to the other, we must consider the impli-
cations of this picture, when taking into account momentum
conservation. To this end we refer to Fig. 8. For simplicity
of the following argument, assume an equal number of atoms,
Nsol, are contained in the two incoming solitons with momenta
p0 and −p0 per atom sketched in Fig. 8; thus the initial total
net momentum is zero.

At the moment of collision, due to close proximity of
solitons, atom transfer from one to the other is likely. Let
us assume a atoms are transferred from the left to the right
soliton. If we denote the outgoing momenta per atom by p+
and −p−, conservation of momentum gives

(Nsol + a)p+ − (Nsol − a)p− = 0, (21)

which for a > 0 already clearly requires |p−| > |p+| as
sketched in the figure.

An additional constraint arises from energy conservation

Nsol
p2

0

m
+ χN2

sol = (Nsol + a)
p2

+
2m

+ χ
(Nsol + a)2

2

+ (Nsol − a)
p2

−
2m

+ χ
(Nsol − a)2

2
. (22)

Equations (21) and (22) can be solved to yield momenta of
atoms in outgoing solitons p± as a function of their initial
constituent number Nsol, the number of atoms transferred in
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the collision a, initial momentum per atom p0, and Hamilto-
nian parameters m, χ . We find

|p+| =
√

a − Nsol

√
a2mχ − p2

0Nsol√
aNsol + N2

sol

. (23)

The resultant velocity v(n) = p+/m as a function of soliton
constituent number n = Nsol + a is shown as magenta lines in
Figs. 6(f) and 6(h).

Importantly, v(n) is not symmetric about Nsol and nonlin-
ear, such that if we calculate the mean outgoing kinetic energy
Ēkin as the average of kinetic energies Ekin[v(n)] = mv(n)2/2
over the distribution of atom numbers in the soliton Ēkin =∑

n ρnEkin[v(n)], the result can be larger than the ingoing
kinetic energy and agrees quite closely with the MCTDHB
proposal. On average, we can view this kinetic-energy gain
as fueled by a drop in the internal soliton energy due to a
widening of ρn. Of course, note that the average atom transfer
a must be zero by symmetry; thus if transfer of a atoms occurs
with some probability, the same is true for −a.

In the discussion of Sec. V D so far, we have neglected
the initial atom number unncertainty required to implement
a defined intersoliton phase. Based on Figs. 6(e)–6(h), these
are small compared to fluctuations generated through atom
transfer.

We thus propose the following: in the superelastic cases,
the MCTDHB method provides a variationally optimized
approximation within its two-mode constraint, to describe an
entangling quantum many-body collision beyond its reach:
according to the arguments above, we would conclude that the
postcollision soliton state for the two solitons is mesoscopi-
cally entangled, with a superposition of solitons of different
constituent numbers located at different positions, since they
have moved with different velocities. Schematically we can
write this state as

|�pc〉 =
∑

ns

cns |ns, v(ns)〉L

⊗ |2Nsol − ns, v(2Nsol − ns)〉R, (24)

where |n, v〉 indicate the constituent number n and velocity v

(hence also position) of the left and right soliton separately
and cns are complex coefficients.

Of course, this also implies that the TMM and MCTDHB,
which have provided this picture, cannot be valid for times
much after the collision since their restriction to a single
spatial mode or orbital per soliton precludes the description
of an entangled state of position such as (24). For that one
orbital per soliton and per contributing velocity class would
be required. However, the two physical causes of this final
state, phase diffusion before collisions and atom transfer at the
moment of collision, both occur during the time in which the
models are expected to be valid for the effectively repulsive
collisions. We thus expect our conclusions to persist quali-
tatively, unless some essential conservation law was broken
by the approximations in the methods discussed in Sec. III.
One such conservation law would be provided by microscopic
momentum conservation in a strictly 1D setting, but not in 3D
as discussed in the next section.

The state (24) is motivated by the processes discussed with
evidence provided by the effective models used here. Once
allowing significant non-mean-field effects, other possibilities
that those models could not have hinted at are for example the
emission of atoms as radiation from the solitons [69].

The schematic (24) constitutes the many-body generaliza-
tion of semiclassical results [70] and is also reminiscent of the
collision induced two species Bell states proposed in [71] and
entanglement generation involving dark [72] or dark-bright
solitons [44].

VI. INTEGRABILITY BREAKING

Let us now discuss the connection of the previous section
with the absence of many-body integrability of the underlying
model. In a more extremely 1D scenario, where individual
atomic collisions can also be restricted to the single dimension
x, a 1D variant of the Hamiltonian (1) would become that of
the Lieb-Liniger-McGuire (LL) model [73,74]. This model is
integrable with an exact many-body solution, which contains
the feature that the set of individual atomic momenta is
conserved [73,75,76]. Intuitively, in a setting such as Fig. 8,
the atoms within a soliton copropagate in the incoming state,
all with individual momenta either p0, if they are in the left
soliton, or −p0 if they are in the right one. The binary delta
function interaction potential δ(x1 − x2) between atoms 1 and
2 then can change the momentum of the atom pair only as in
(p0,−p0) → (−p0, p0), i.e., a completely elastic momentum
flip collision. This would preclude atom transfer processes
as described in Sec. V D, since the momenta would always
remain distributed at N/2 atoms with p0 and N/2 atoms
with −p0.

While this collisionally 1D regime has attracted consider-
able experimental attention [77–79], it is not at all reached
in any of the soliton experiments discussed in this article;
see Sec. II. There, atoms are much more weakly confined
transversely and collisions are thus 3D, significantly breaking
integrability [80]. Also the presence of a harmonic trap in
the longitudinal direction contributes to integrability breaking
[75]. In such a scenario, methods in which many-body integra-
bility is implicitly broken, which applies to all those presented
in our Sec. III, will provide qualitatively more physical results
than an artificially integrable method would. For example,
consider the free expansion of a repulsively interacting quasi-
1D condensate in a wave guide as in the experiment [81]: here
the initial interaction energy is converted into kinetic energy
by collisions, causing the momentum distribution to widen
dynamically. This effect is not captured by the LL model,
but is quantitatively captured by the quasi-1D GPE (2). In
the same sense we believe our methods paint a more physical
picture of quasi-1D solitary wave collisions than the LL model
would, which indeed does not contain atom transfer [66].
Other work dealing with broken integrability in the context of
soliton collisions also reported signs of atom transfer [75,82].

The connection of atom exchange during soliton collisions
and (non)integrability warrants further studies. Experiments
could vary the degree of transverse confinement to enforce
a transition between the regimes, while theory can explicitly
introduce integrability breaking terms as in [75] or [80] to the
models discussed here. Besides these possibilities, the solitary
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wave collision scenario represents a surprisingly daunting
scenario for theory: it would be desirable to employ a full
fledged first-principles simulation that would have to deal
with three spatial dimensions, mesoscopic entanglement, and
thermal noise (see Sec. VIII) all at once. We are not aware of a
formalism that is capable of all these at present. Nonetheless,
we have confidence in our conclusions, since they are based on
two robust features of the underlying physics: (i) phase diffu-
sion that is present in any condensate with number fluctuations
and (ii) Josephson type tunneling that would be present in
any well-defined two-mode system with contact between the
modes. Both occur at times before our approximation methods
cease to be valid.

Finally, the discussion in this section implies that our
methods cannot quantitatively predict the amplitude for the
generation of new momenta as in Sec. V D, since this process
must rely on many-body integrability breaking through the
approximations leading to MCTDHB or the two-mode model,
the nature of which warrants further studies. For a quantitative
prediction, physical integrability breaking terms [75,80] will
be added in the future. Turning the argument around, our
results also present clear evidence that the MCTDHB in one
spatial dimension does not preserve the many-body integra-
bility of the LL model when applied to it.

VII. VELOCITY DEPENDENCE OF ATOM TRANSFER

In Sec. V C we had discussed that atom-transfer during a
collision of solitons can lead to dramatic consequences for the
final many-body quantum state. In the framework of the two-
mode model (7), this transfer is due to nonadiabatic effects
from the temporal change of the Hamiltonian Ĥ in (9). These
changes arise from the coefficients J , J̄ , and D̄ that depend on
soliton separation d (t ).

We thus expect the number distribution in soliton collisions
to significantly depend on the collision velocity. However, for
very slow collisions, we expect the two-mode model quantum
state to adiabatically follow the changes in parameters, and
thus return to the initial state after the collisions, which is what
is seen in Fig. 9(a). For larger velocities, Fig. 9 shows that the
number transfer depends nontrivially on the collision velocity.

FIG. 9. Atom number distribution ρn in a single soliton from the
TMM before the collision (black dashed) and after (green solid). The
scenario is the same as in Fig. 6, except that we vary the velocity of
each soliton v as indicated in the panels. All cases are for repulsive
initial phases ϕ = π and brought to collision at tcoll = 80 or later
(after fragmentation) by adjusting dini.

In principle, we could expect a second regime without a
change in the number distribution: for very fast collisions
the quantum many-body state should stay unchanged, since
a very short collision yields a sudden, impulsive change in
Hamiltonian parameters with equally sudden return to the
initial Hamiltonian. However, we find that, for collisions fast
enough for that, there is sufficient kinetic energy for solitons
to overcome their interactions even in the repulsive case. Since
left and right soliton modes thus overlap at the collisions,
results will be unreliable.

For repulsive collisions before fragmentation, we find no
changes in the number distribution regardless of velocity.

VIII. SOLITON DECOHERENCE AT NONZERO
TEMPERATURE AND DISCUSSION OF EXPERIMENTS

We will now discuss how the predictions of the other
sections are consistent with existing experiments on soliton
trains and their interactions and can further answer a variety
of hitherto open questions.

Our analytical model (17) predicts a fragmentation time
of tfrag = 877 ms for the TSE [10] assuming T ≈ 0 and
Nsol = 28000, as = −0.57a0, and ω⊥ = (2π )254 Hz. This is
substantially beyond the experimentally covered range of col-
lision times tcoll < 30 . . . 320 ms. However, it is comparable
with the initial preparation time tprep, which exceeds 750 ms.
It takes that long in the experiment to adiabatically split the
condensate and then adjust the interaction’s strength from its
initial repulsive value to the final attractive one. Throughout
all this time, phase diffusion will already be active. It is thus
likely that TSE collisions already begin in a phase diffused
and fragmented state. This is consistent with the experimental
observation that collisions are indicative of all phases in
[0, 2π ); see our discussion at the beginning of Sec. V B. Once
in situ observation has collapsed a certain soliton pair onto
a specific relative phase, the subsequent time is too short for
refragmentation and thus further collisions are consistent with
that initially chosen mean-field relative phase.

To investigate the onset of fragmentation and its dynamics,
tfrag should be reduced. Larger solitons or stronger interactions
could be problematic due to losses, but one can employ higher
temperatures or noise, as we show now. Finite temperature
condensates can straightforwardly be modeled using the TWA
[50]. Returning to the scenario of two noncolliding solitons
identical to the one in Fig. 3, we show the temperature depen-
dence of the fragmentation timescale in Fig. 10(a). The data
is fit by tfrag ∼ T −0.44. The additional spread of intersoliton
phases due to the interaction with hotter uncondensed atoms
thus significantly accelerates fragmentation. It is useful that
tfrag spans the full range, from longer than most experiments
(∼1 s) down to shorter than many (∼50 ms), within the rele-
vant temperature range from a few nK to typical condensation
temperatures of a few 100 nK. This opens a convenient win-
dow on the intricate many-body dynamics described in earlier
sections, while still permitting one to avoid fragmentation for
interferometric applications.

In the light of accelerated fragmentation due to thermal
atoms, let us now also revisit the MSE [9]. We performed a
3D simulation of that experiment, using a single trajectory
of TWA at finite temperature. Column densities as shown in
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FIG. 10. (a) Fragmentation time as a function of temperature
T > 0 from TWA, for soliton parameters matching the multisoliton
experiment [9]. The solid line is the fit tfrag = 0.32 s (T/nK)−0.44.
(b),(c) Normalized column density from single TWA trajectory with
thermal noise matching Teff = 300 nK; see also Supplemental Mate-
rial movies [83] (black, zero; bright, high). Lower effective temper-
atures would not reproduce the initial fluctuations visible in the ex-
periment, (b), nor the time of first formation of solitons in (c). Panel
(d) demonstrates the complete soliton train at later time. An initial
uncondensed component with effective temperature Teff = 300 nK
would cause fragmentation on a 10 ms timescale, according to
panel (a).

Fig. 10, that correspond to an image of the atomic cloud taken
from the side, should roughly agree with those in [9], regard-
ing characteristic features like amplitude of fluctuations or
formation time of solitons. This is only possible by assuming
relatively high initial effective temperatures Teff � 300 nK.
Referring to Fig. 10(a), for which Nsol and U0 are matching
this experiment, we then read off an expected fragmentation
time of the order of tfrag = O(10 ms), compared to tfrag ≈ 2 s
at T = 0, based on Nsol = 40000, as = −0.18a0, and ω⊥ =
(2π )346 Hz. Only under these conditions can the entire soli-
ton train fragment before the moment of first collisions, about
tcoll = 15 ms after soliton formation and tcoll + tform = 25 ms
after experiment initiation. Subsequent collisions would then
be expected to have predominantly repulsive character as
experimentally observed.

A hot initial condensate is an even more appropriate start-
ing point for the earlier experiments that reported mainly
repulsion in soliton trains [6,8], which first went through
collapse instabilities causing substantial nonequilibrium heat-
ing [84–87]. In contrast, accelerated fragmentation due to
environmental noise does not occur during collisions in the
TSE, since soliton creation there initially follows a slow adi-
abatic procedure, with substantially less heating than during a
collapse or instability.

Another prediction of this article that contributes to an
overall picture of predominantly repulsive collisions due to
quantum effects is the acceleration of fragmentation if there
are attractive collisions (possibly initially and rare), as dis-
cussed in Sec. V A. While most of the experiments discussed
would not have had the sensitivity to detect the superelastic
effects predicted in Sec. V C, these should play a role in the
TSE setting [10], and could possibly be observed with minor
improvements of the sensitivity there.

Finally, the dynamic choice of a fixed relative phase in the
TSE would be related to measurement induced collapse of the
many-body wave function, according to the picture here. The
possibility to continuously and nondestructively infer soliton
collisions properties in a setup such as [10] opens the door
wide for explorations of the interplay between the highly
entangling many-body collision dynamics predicted in earlier
sections and continuous, controlled wave-function collapse by
measurements.

IX. COMPARISON OF METHODS

Even though TWA formally should be valid only closer to
a mean-field situation, it agrees with MCTDHB on a large
number of features in postfragmentation soliton collisions: (i)
the fact that these are a mixture of repulsive and attractive
ones, with more repulsive ones, (ii) the qualitative shape of
mean density, and (iii) the re-coherence features evident in
Figs. 6(f) and 6(h). We would like to place this observation in
the context of the discussion in [37,68,88–90].

The present work demonstrates fruitful complementarity
of all three methods employed: thermal effects in Fig. 10 are
naturally treated in the TWA. TWA, however, is troubled by
controlled collisions as in Fig. 6, since it must also include
random velocities and positions of the solitons. The latter
yield an uncertain tcoll, blurring collisions when averaging.
These fluctuations are inherent in the quantum dynamics of
the center-of-mass (c.m.) wave function of solitons [90,91],
but not included in MCTDHB with two orbitals. In contrast
to [90] we consider this a positive feature: the absence of
c.m. diffusion in MCTDHB simplifies studies of collisions.
At the same time agreement where possible between TWA
and MCTDHB and consistency with our physical mechanisms
makes us confident that TWA and MCTDHB have captured
the essential many-body dynamics of phase diffusion or frag-
mentation correctly. To pinpoint the underlying basic physics,
on the other hand, reduction to the simple two-mode model
has been most useful.

X. CONCLUSIONS AND OUTLOOK

We comprehensively consider two crucial beyond-mean-
field features in soliton collisions. The first, phase diffusion,
is clearly linked to the fragmentation of soliton trains reported
in [26]. Phase diffusion occurs whenever the atom number
within one soliton is uncertain. Since we cannot allocate a
well-defined intersoliton phase without allowing an uncer-
tain atom number due to their complementarity, it is thus
unavoidable in principle that fragmentation eventually invali-
dates mean-field theory for soliton collisions. In practice, the
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relevant timescale, which we have evaluated analytically, can
be fairly large at very low temperatures.

We have further shown that the timescale is shortened
significantly through the presence of uncondensed atoms,
whether these arise from nonzero temperature or nonequilib-
rium dynamics. Through this acceleration of fragmentation,
beyond mean-field effects can explain predominantly repul-
sive interactions of solitons in trains generated after some
nonequilibrium instability dynamics [6,8,9]. Nonetheless, we
still expect soliton collisions under more controlled conditions
as in [10] to adhere to mean-field theory.

We have additionally suggested the generation of entangle-
ment between atom-number and postcollisions position and
momentum through soliton collisions involving integrability
breaking features of the underlying 3D physics. These fea-
tures warrant further explorations, using either full-fledged
3D quantum field methods in a top-down approach or by
explicitly including physical processes that break many-body
integrability in effective 1D models.
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APPENDIX A: DIMENSIONLESS UNITS

The 1D GPE (2) can be written in a dimensionless form,
by transforming wave function, space, and time co-ordinates,
respectively, as φ̃ = φ

√
L, x̃ = x

L , and t̃ = t
T , where tilded

quantities are dimensionless. The scales are T = mL2

h̄ and L =
2h̄2

m|U0|Nsol
, where the latter is chosen to yield a dimensionless

soliton size ξ̃ = 1 for our most commonly used parameters.
After untilding all variables except Ũ0 = T

Lh̄U0, the dimen-
sionless GPE is then

i
∂

∂t
φ(x, t ) =

[
−1

2

∂2

∂x2
+ Ũ0|φ(x, t )|2

]
φ(x, t ). (A1)

APPENDIX B: POSTCOLLISION VELOCITY
AFTER ATOM TRANSFER

After solving Eq. (21) and Eq. (22), the outgoing momenta
as a function of Nsol, a, m, and χ are as follows:

|p+| =
√

a − Nsol

√
a2mχ − p2

0Nsol√
aNsol + N2

sol

. (B1)

Thus the resultant velocity takes the form v(n) = p+
m , which is

a function of Nsol. These are shown with the magenta line in
panels (f) and (h) in Fig. 6.
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