
PHYSICAL REVIEW A 101, 043418 (2020)

Exact results for persistent currents of two bosons in a ring lattice
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We study the ground state of two interacting bosonic particles confined in a ring-shaped lattice potential and
subjected to a synthetic magnetic flux. The system is described by the Bose-Hubbard model and solved exactly
through a plane-wave Ansatz of the wave function. We obtain energies and correlation functions of the system
both for repulsive and attractive interactions. In contrast with the one-dimensional continuous theory described
by the Lieb-Liniger model, in the lattice case we prove that the center of mass of the two particles is coupled
with its relative coordinate. Distinctive features clearly emerge in the persistent current of the system. While
for repulsive bosons the persistent current displays a periodicity given by the standard flux quantum for any
interaction strength, in the attractive case the flux quantum becomes fractionalized in a manner that depends on
the interaction. We also study the density after a long time expansion of the system. Our results can be used to
benchmark approximate schemes for the many-body problem such as the density matrix renormalization group
or other variational schemes.
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I. INTRODUCTION

Bosonic particles confined in a ring geometry can be real-
ized with different quantum technological platforms, ranging
from superconducting circuits [1] to circuit quantum elec-
trodynamics (QED) [2], and to cold atoms [3–8]. There are
many reasons explaining the relevance of such systems for the
physics community. First, the periodic boundary conditions
provide a textbook route to emulate quantum systems with
strict translational symmetry and to simplify the access to the
large number of particles (N) regime of the system (thermo-
dynamic limit) [9]. On the other hand, systems with closed
spatial architectures provide the simplest instance of quantum
circuits that are able to sustain nontrivial current states that can
be used in quantum technology to construct quantum devices
and quantum sensors with enhanced performances [10,11].
Here, we focus on the persistent currents, which are bosonic
current states originating from the coherence of the system
[12–15]. Such specific current states of thermodynamic nature
can be imparted to the bosons by a real or synthetic magnetic
field [16]. Persistent currents have been of defining impor-
tance in mesoscopic physics [17]. Recently, persistent currents
have been attracting upsurged interest, especially in the cold-
atom community as they grant an enhanced flexibility and
control over the physical conditions of the system [18–33].

Bose statistics enables a multiparticle interaction that can
make interacting bosonic systems difficult to handle. In this
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respect, it is instructive to consider the interplay between the
Bose gas field theory (pointlike interaction) and the Bose-
Hubbard model, providing two celebrated schemes describing
many-body bosonic theories. The homogeneous Bose gas in
one spatial dimension, described by the Lieb-Liniger model,
is a continuous field theory that is integrable by Bethe Ansatz:
The many-body scattering can be factorized in two-particle
scatterings where the scattering is “nondiffractive” [34]. In
contrast, the Bose-Hubbard model, introduced by Haldane as
a lattice regularization of the Bose-gas field theory, is not
integrable and the scattering is diffractive [35–37]. The two
theories are equivalent in a dilute limit of very few particles
per lattice site. In such a limit, in which multiple occupancy
is loosely speaking demoted, the Bose-Hubbard dynamics
becomes integrable. Such considerations can be expressed
quantitatively through coordinate Bethe Ansatz. Indeed, it was
demonstrated that the Bose-Hubbard model cannot be solved
by coordinate Bethe Ansatz if there exists a probability of
having more than two particles at the same site [36]. Thus, the
two-particle Bose-Hubbard model is analytically accessible.
Despite the simplicity of the system, the N = 2 Bose-Hubbard
model (2BHM) has been demonstrated to provide a very
useful case study to decode some of the general features of the
many-body theory. Recently, the 2BHM has been employed to
answer relevant questions concerning cold atoms confined in
optical lattices [38–41]. Dynamical effects of bosonic pairs in
a one-dimensional lattice, both in the attractive and repulsive
case, have been also analyzed [42].

In this work, we will employ the 2BHM to the persistent
currents in a ring-shaped lattice potential by exact means.

2469-9926/2020/101(4)/043418(8) 043418-1 ©2020 American Physical Society

https://orcid.org/0000-0003-0742-6015
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.043418&domain=pdf&date_stamp=2020-04-27
https://doi.org/10.1103/PhysRevA.101.043418


POLO, NALDESI, MINGUZZI, AND AMICO PHYSICAL REVIEW A 101, 043418 (2020)

To this end, we use the exact expression of the two-body
wave function in the presence of an external gauge field.
We calculate relevant observables and correlation functions
characterizing the system. We discuss the differences between
our results and those coming from the continuous Bose gas
field theory.

The article is outlined as follows: in Sec. II, we present the
model system together with the expressions for the exact spec-
trum and correlation functions, in Secs. III and IV, we discuss
the results for positive and negative interactions, respectively,
and finally in Sec. V, we draw our conclusions.

II. MODEL SYSTEM AND OBSERVABLES

We model the system of interacting bosons trapped in a
L-site lattice ring under the presence of the synthetic gauge
field using the Bose Hubbard model:

H (�,U ) = K (�) + V (U ),

K (�) = −J0

L∑
j=1

(ei2π�/L b†jb j+1 + H.c.),

V (U ) = +U

2

L∑
j=1

n j (n j − 1), (1)

where b j is the bosonic annihilation operator and n j = b†jb j

is the local number operator for the site j. The parameters U
and J0 account for the strength of the on-site interactions and
tunneling amplitude, respectively, and � is a synthetic gauge
field that can be generated in different ways [16,43], for ex-
ample, stirring the condensate on a ring of radius R = La/2π ,
with a the lattice spacing. Here, the effect of the synthetic field
is taken into account through the Peierls substitution leading
to the exponential term in Eq. (1) (see Appendix A for a more
detailed derivation). We assume that the size of the system is
sufficiently large such that the Peierls substitution becomes
well defined [44].

In the next sections, we will discuss the properties of the
system for both positive and negative interactions U . Since
V (−U ) = −V (U ) and K(�) = −K(� + L/2), the following
symmetries connect the two cases:

H (�,U ) = K (� + L/2) − V (−U ) (2)

= −H (� + L/2,−U ); (3)

in addition,

H (�,U ) = −H (�,−U ). (4)

The current operator, which is the most relevant observable to
describe persistent currents, in dimensionless units reads

I (�) ≡ −∂Ĥ

∂�
= i

2πJ0

L

∑
j

(e2π i�/Lb†jb j+1 − H.c.). (5)

The persistent current can also be obtained through thermo-
dynamic potentials and, in particular, at zero temperature it is
given by

〈I (�)〉 = − ∂E

∂�
, (6)

where E is the ground-state energy of the system.

A classic result in the field was obtained by Leggett [45].
By resorting to the analogy of particles moving in a magnetic
field and using the Bloch theorem for particles in a periodic
potential, it can be demonstrated that the energy of the many-
body system displays a periodicity in � that is fixed by the
elementary flux quantum of the system. Therefore, due to
Eq. (6), the persistent current is also a periodic function of
� with the same periodicity. This result holds for any local
two-body interaction that allows for a center-of-mass and
relative coordinate decoupling [45]. In the next sections, the
Leggett results will be analyzed for the 2BHM.

In the limit of small filling fractions ν = N/L = D�, with
D = N/(L�) being the density and � being the lattice spac-
ing, the one-dimensional Bose-Hubbard model can be mapped
into the integrable Bose gas field theory or, in first quantiza-
tion, the Lieb-Liniger model [46,47]. The latter describes a
continuum model of bosons of mass m in one dimension with
contact delta interactions v(x − x′) = gδ(x − x′). Note that
for our particular purposes, we consider a superfluid regime
(un-commensurate N/L). In particular, here we keep the
dimensionless coupling strength of the Lieb-Liniger model,
γ = mg/h̄2D constant.

The parameters of the lattice and continuous theories
are related by U = g/� and J0 = h̄2/2m�2, yielding γ =
ν−1(U/J0). Hence, by increasing the number of lattice sites L
at fixed particle number N , the interaction to the tunnel energy
ratio U/J0 should be decreased in order for the Bose gas limit
to be achieved. We note that, since the continuous rotational
symmetry of the Lieb-Liniger model is reduced to a discrete
one, in the lattice the current operator is generically distinct
from the angular momentum. In particular, I (�) in Eq. (5)
does not commute with the Hamiltonian in Eq. (1) [interaction
term V (U )]. In a dynamical protocol, therefore, the current
would not be conserved [48]. Nevertheless, 〈I (�)〉 will be
denoted as the “persistent current” in analogy of the current
states of the continuous theory (see also [49]). Important
insights on the current states of the system can be obtained
by the current’s fluctuations,

�I (�) =
√

〈I (�)2〉 − 〈I (�)〉2. (7)

In cold-atom settings, the current state manifests itself in
the time-of-flight expansion (TOF) images, i.e., the particle
density after the condensate is released from the confining
potential. The long time density pattern can be calculated
through the momentum distribution at the instant at which the
trap is opened, according to

n(k) = |w(k)|2
∑

j,l

eik·(x j−xl )〈b†jbl〉, (8)

where x j is the position of the lattice sites in the plane of
the ring and w(k) are the Fourier transforms of the Wannier
functions.

In the following, we will obtain exact expressions both for
the spectrum and correlation functions of the 2BHM, granting
us access to the relevant observables describing the persistent
currents of the system.

The Bose-Hubbard model in the two-particle sector

While not true for general N , the Bose-Hubbard model in
the N = 2 sector is exactly solvable à la coordinate Bethe
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Ansatz [42]. As we shall see, this approach allows us to deal
with the persistent current of the system exactly, in the case
in which the ring is exposed to an effective magnetic field. A
general two-boson state can be written as

|φ〉 =
L∑

j,k=1

φ jk b̂†j b̂
†
k|0〉, (9)

with the two-particle coefficients φ jk being symmetric under
the exchange of j and k and normalized such that 〈φ|φ〉 = 1.
The Schrödinger equation H |φ〉 = E |φ〉 reads

Fjk = (E − Uδ jk )φ jk, (10)

where it is given by Fjk
.= −J (φ j+1,k + φ j,k+1) −

J∗(φ j−1,k + φ j,k−1).
The solution of Eq. (10) is obtained with a plane-wave

Ansatz for φ jk , which is certainly correct in the noninteracting
limit U = 0 [50]:

φ jk = [a12ei(p1 j+p2k) + a21ei(p1k+p2 j)]ϑ ( j − k)

+ [a12ei(p1k+p2 j) + a21ei(p1 j+p2k)]ϑ (k − j), (11)

where pi are the wave vectors of each particle, where wave
vectors and the coordinate are for simplicity written in units
of 1/a and a, respectively, and ϑ (x) corresponds to the Heavy-
side step function.

Equation (10) for j �= k is solved using

E = 〈φ|Ĥ |φ〉 = −2J0(cos p1 + cos p2)

= −4J0 cos

(
P

2
+ 2π�

L

)
cos (p), (12)

where we introduced the center-of-mass and relative coordi-
nates for both space and momentum coordinates:

X = j + k

2
x = j − k, (13)

P = p1 + p2 p = p1 − p2

2
. (14)

This allows us to rewrite Eq. (11) as

φXx = a12eiPX

(
eip|x| + a21

a12
e−ip|x|

)
. (15)

The plane-wave Ansatz (11) is exact also for interacting
particles since for U �= 0 the effect of the interaction can be
recasted into the scattering between the two sectors, j > k and
j < k, in which the particles are noninteracting. Indeed, by
introducing (15) into Eq. (10) for j = k, the ratio between the
coefficients, y(P, p)

.= a21
a12

, can be obtained as a phase shift of
the wave function:

y(P, p) = −
U
4J0

− i cos
(

P
2 − 2π�

L

)
sin(p) − 2 cos(p) sin

(
P
2 − π�

L

)
sin

(
π�
L

)
U
4J0

+ i cos
(

P
2 − 2π�

L

)
sin(p) − 2 cos(p) sin

(
P
2 − π�

L

)
sin

(
π�
L

) , |y(P, p)| = 1. (16)

The allowed values of the momenta are fixed by the bound-
ary conditions. If not otherwise stated, we assume periodic
boundary conditions,

φ j,1 = φ j,L+1, (17)

leading to the following equations for the center of mass and
relative momenta:

Pn = 2πn

L
; (−1)neipL = y(Pn, p), (18)

with n = {1, · · · , L}. Note that in a finite ring the center-of-
mass momentum takes discrete values, therefore we explicitly
show that using the subscript n.

The relative momentum p depends on U/J0 and � ex-
plicitly, and can be either real or complex valued giving rise
to scattering or bound states, respectively. With the chosen
periodic boundary conditions, the center-of-mass momentum
P does not depend directly on � or on U/J . Alternatively,
with the twisted boundary conditions φ j,1 = ei�φ j,L+1, � can
be gauged away from the scattering matrix. In this case, �

would have shifted the center of mass P (see Appendix B).
Correlation functions. In the following we calculate the

one-body (two-point) and two-body (four-point) correlations
that are needed to map out the observables of the system. The
two-point correlation function is

C1b
r = 〈b†l bl+r〉 =

∑
m

φ∗
l,mφm,l+r . (19)

Resorting to the translational invariance of the system, we can
set l = 0 and m > 0. We obtain

C1b
r = 2N 2 eiP r

2

[
1

2
csc(p)(sin(p(L + r + 1) − ψ )

+ sin(p(L − r − 1) − ψ ) − sin(p(1 + r) − ψ )

+ sin(p(1 − r) + ψ ) + sin(p + pr) − sin(p − pr))

+ (L − r) cos(pr) + r cos(pr − ψ )

]
, (20)

where ψ
.= ξ12 − ξ21 with ξi, j given by a12 = N e−iξ12 and

a21 = N e−iξ21 (note that, by construction, |a21/a12|2 = 1).
The density-density correlations 〈nlnl+r〉 are

Cd
r = 〈nlnl+r〉 = |φl,l+r |2

= 2N 2[1 + Re(eiψ−2ipr )]. (21)

The connected correlation, 〈nl nl+r〉 − 〈n0n0〉, can be calcu-
lated by subtracting (N/L)2 from the density-density corre-
lation (21).

Both C1b
r and Cd

r depend on p explicitly. Therefore, the
actual behavior of such quantities is substantially affected by
whether the particles are attractive or repulsive.

For attractive interactions, the lowest energy eigenstate
for each center-of-mass wave vector has a complex-valued
relative momentum, such that p = iα, which leads to an
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FIG. 1. Energy spectrum of the model for a ring lattice of L = 51 sites in units of J0. (a) and (b) U = 5 (first row); (d) and (e) U = −5
(second row). In panels (a) and (d) the flux is set to 2π�/L = 0.5 while in panels (b) and (e) it is set to 2π�/L = 0.25L. In panels (c) and
(f) we plot the energy of the ground state as a function of the flux, shifted by its value at � = 0 and rescaled by a factor of 103, for different
values of the interaction strength as indicated in the figure. (f) Also shown is each corresponding first excited state using a dashed line.

exponential decay in the correlation functions:

Cd,BOUND
r = 2N 2[1 + e−2αr cos(ψ )]. (22)

We define the scale at which the correlations decay as ξ =
1/α. This quantity defines the characteristic length of the
bound state.

Finally, we calculate the pair correlation function:

Cp
l, j = 〈b†l b†l b jb j〉 = φ∗

l,lφ j, j

= 2N 2(cos (rP/2) − i sin (rP/2)). (23)

We note that this quantity does not depend on p and therefore
does not distinguish between bound and scattering states.

III. RESULTS FOR REPULSIVE INTERACTIONS

In this section we obtain the exact spectrum of the Hamil-
tonian and the persistent currents for positive U , thus general-
izing the results obtained in Ref. [42] at � = 0.

A. Energy spectrum

We start by analyzing the spectrum and the ground-state
energy of the system. We note that there are two main bands
in the system [see Figs. 1(a) and 1(b)]. The lowest band is
characterized by real rapidities and therefore corresponds to
scattering states. On top of it, we find a distinct band of bound
states with complex rapidities. The two bands are separated
by a finite gap, formed by the energy eigenstates with the
largest energy eigenvalue for each center-of-mass momentum
Pn. Figure 1(c) shows the ground-state energy of the system
as a function of the induced flux �. Note that the interactions
change the ground state independently of the magnetic field
[42].

B. Persistent currents

The ground-state persistent current displays the character-
istic sawtooth dependence on the synthetic magnetic field. The
jumps of the persistent currents (from clockwise to anticlock-
wise) and the slope of the sawtooth are determined by the flux
quantum of the system [45]. In the repulsive case, the current
jumps occur at values that are independent of the particle
number and interaction strength [see Fig. 2(a)]. Moreover,
the slopes of the sawtooth behavior of the current are also
independent of the interaction U . This scenario indicates that
the flux quantum is a fixed quantity (independent of N and U ).

FIG. 2. Current (upper row) and its fluctuations (lower row) as
a function of � for different values of the interaction strength in
dimensionless units [see Eqs. (5) and (7)]. (Left panels) Repulsive
interactions. (Right panels) Attractive interactions.
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FIG. 3. Time-of-flight density plots are displayed in (a), (b), (d), and (e) for a chain of L = 11 sites. (c) and (f) The TOF central peak
width σ , and the TOF central value nk (k = 0), respectively. Top panels show the repulsively interacting case with U = 5 and lower panels the
attractively interacting one with U = −5. Density plots correspond to (a) � = 0.0, (b) � = 0.8, (d) � = 0.0, and (e) � = 0.8. To highlight
the TOF features we set |w(k)|2 = 1 in (a) and (b) and (d) and (e). The dispersion of the interference pattern (c), with σ 2 = ∫

dk k2n(k), is
calculated with the rescaled Wannier function |w(k)|2 = exp ((k2

x + k2
y )/(L/2)2) and it is normalized by σ (� = 0).

At 2π�/L = 1/2 where the jump in the current occurs,
the fluctuation �I reaches its maximum value. Note that at
this particular point the ground state of the system will be
degenerate with the first excited state [45] and thus, the current
state is no longer a well-defined one, or in other words it does
not possess a good associated quantum number. Therefore, a
frequency of 2π�/L = 1/2 is the ideal candidate to create a
superposition among two current states, corresponding to the
0 − th and 1 − st energy minima, which can be achieved by
an infinitesimal perturbation breaking the rotation symmetry
that would open the degeneracy point.

The current states in the system arise in the long-time
expansion of the density of the cold-atom gas after releasing
the confining potential. For � = 0, the interference pattern
displays a marked peak at k = 0. For � larger than the
first degeneracy point in the ground-state energy, 〈nk(0)〉 is
depressed, with a characteristic ring-shape symmetry [see
Figs. 3(a)–3(c)]. It has been demonstrated that the radius of
such a ring-shape feature in the expansion increases with �

in quantized steps [51] thus, we calculate the TOF disper-
sion σ 2 = ∫

dk k2n(k) to characterize such a characteristic
increase [see Fig. 3(c)].

IV. RESULTS FOR ATTRACTIVE INTERACTIONS

In this section we consider the case U < 0 and present the
excitation spectrum and the ground-state persistent current as
a function the frequency �.

A. Energy spectrum

We first focus on the energy spectrum of the two-particle
system [see Figs. 1(d) and 1(e)]. The results at � = 0, are in
agreement with the N-particle case obtained through the study
of the dynamical structure factor [52].

For nonzero � the spectrum is displaced, with a maximum
displacement given by the maximum momentum allowed by
the lattice. This is due to the specific coupling between the
center of mass and rotation. In Fig. 1(d) we show the spectrum
for attractively interacting bosons at a rotation frequency
2π�/L = 1/2, corresponding to half of the periodicity ex-
pected for noninteracting or repulsively interacting particles.
For completeness, in Fig. 1(e) we show an example where a
large momenta 2π�/L = L/4 is induced, which corresponds
to a quarter of the maximum angular momenta allowed by the
periodicity imposed by the lattice. In addition, � changes the
magnitude of the relative momenta, which is directly related
to the characteristics of the bound states, e.g., the decay
length in the density-density correlation function. In our lat-
tice system, this coupling between the relative and center-of-
mass momenta (disappearing in the continuous Lieb-Lineger
case) has substantial implications on the dynamics of the
system.

A doubling of the periodicity occurs in the lowest energy
brand of the spectrum. This behavior, that should be con-
trasted with the repulsive case, has clear implications on the
periodicity of the persistent current [53].
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Figure 1(e) shows the ground-state energy of the system as
a function of the frequency of rotation. Note that the change
of parabola corresponds to the degeneracy point between the
two lowest energy eigenstates of the system. Contrary to
the predictions of the Lieb-Liniger model, the doubling of
periodicity in the lattice does depend on the strength of the
interactions.

B. Persistent current

For attractive interactions, the ground-state persistent cur-
rent also displays the characteristic sawtooth dependence on
the effective magnetic field [31,45]. Compared with the posi-
tive U case, the persistent current exhibits a fine structure. In
fact, it has been recently shown through numerical simulations
of the attractive BHM that the current has a N periodicity
dependence [53]. In addition, the slope of the sawtooth de-
pends on U . This scenario implies that the flux quantum is
reduced by bound states in which more particles can share
the same amount of magnetic flux [see Fig. 2(b)], indicating
fractionalization of angular momentum per particle [53]. In
this case, the composition of the bound states is a variable
quantity depending on the interaction. As a consequence, the
response to the magnetic field can be different for different
interactions.

For attractive interactions, the current fluctuations follow
the � periodicity of the current. In comparison with the
repulsive case, �I (�) are much more pronounced. Such a
distinctive feature is an expression of the different impact that
the nonconservation of current has for repulsive and attrac-
tive interaction: Going from positive to negative U , multiple
occupancy of the lattice sites is more and more probable and
therefore the effect of the current’s nonconservation increases
accordingly.

Because of the different nature of coherence of attracting
bosons, the TOF interference fringes display marked differ-
ences from those obtained in the repulsive case. For both � =
0 and � �= 0, we observe a broad peak centered around k =
0. Remarkably, the information on the current states is still
encoded in the TOF as shown in Figs. 3(d)–3(f). In particular,
in Fig. 3(f) we calculate the central peak nk (k = 0), which dis-
plays clear jumps between different plateaus, directly showing
the fractionalization of the angular momentum.

V. CONCLUSIONS

In this paper we study the exact ground-state properties of
the Bose-Hubbard model for two interacting bosons moving
in a ring-shaped potential pierced by an effective magnetic
field. In this case, the wave function can be expressed as a
suitable combination of plane waves á la coordinate Bethe
Ansatz. Our analysis shows that the interaction can couple the
center of mass of the particles and their relative coordinate.
This characteristic trait of the lattice system, that is lost in the
continuous (integrable) Bose gas or Lieb-Lineger theory, leads
to striking consequences in the structure of the ground state,
particularly for attractive interactions. In the language of the
Bethe Ansatz, while for repulsive interactions the ground state
of the system is made of scattering states with real rapidities,
for negative U the ground state is a bound state with complex

rapidities with a two-string structure. In the latter case, it
was demonstrated that the bound states describe the quantum
analog of bright solitons [52]. We note that for sufficiently
large interactions these bound states are protected by a finite
energy gap. This feature is lost in the continuous case.

We note that the center-of-mass and relative coordinate
coupling has mild consequences on the persistent current
for repulsive interactions indicating that the two coordinates
cannot be resolved in scattering states. In the case of attractive
interactions, instead, the � periodicity of the ground-state
energy and therefore the � dependence of the persistent cur-
rent is affected by the total number of particles, i.e., doubled
in this case (the general N dependence has been studied in
[53]). This effect is a manifestation of the formation of a
composite particle made out of two bosons. Because of the
nontrivial dynamics of the relative coordinate, a more subtle
effect emerges. Indeed, the � periodicity of the ground-state
energy does depend on the interaction. This scenario indicates
that the aforementioned composite object can respond as a
particle with a variable mass depending on the interaction.
Therefore, the flux quantum for attractive bosons is also a
variable quantity that depends on the interaction.

In a cold-atom setting, such effects are visible through the
time-of-flight expansion of the condensate 〈n(k)〉. While the
current state in repulsive bosons displays the characteristic
ring-shape suppression of the density at k = 0 in 〈n(k)〉,
the persistent current of attractive bosons remains peaked at
k = 0. Despite the seemingly featureless interference, the flux
quantum fractionalization emerges as a quantized dispersion
of the fringe around the peak at k = 0.

Our results can be used as a benchmark for numerical or
other approximated schemes for the many-body problem. In
particular, it would be interesting to study how the structure
of the ground state is modified by the departure from the
integrability.
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APPENDIX A: SYNTHETIC GAUGE FIELD

Synthetic gauge fields can be generated in different ways
[16,43]. Here, we summarize how synthetic gauge fields can
be induced by stirring the condensate. The rotation of the
condensate can be induced by a time-dependent potential
V (x−�t ) moving at an angular velocity �r on a ring of radius
R. The time-dependent Hamiltonian is

H(�, t ) = H0 + V (x−�Rt ), (A1)

where H0 = ∑N
l=0 − h̄2

2m ∇2
l + Ûint , is expressed by the sum

of the kinetic energy and a potential term describing the
atom-atom interactions Ûint. In the following, we assume
that Ûint = U

∑
l,m δ(xl − xm). By changing to the rotating

reference frame with the same frequency �r as the external
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potential, the Hamiltonian is not time dependent:

Hrot = U†(t ) H(�, t ) U (t ) = H0 + V (x) − �rLz, (A2)

where U (t ) = exp[iLz�rt/h̄], and Lz is the z-component an-
gular momentum operator, with z being the coordinate per-
pendicular to the plane of the ring.

In the second quantization, the Hamiltonian above reads

H =
∫

dx�†(x)Hrot�(x), (A3)

where �(x) are bosonic field operators. Using the standard
procedure of completing the squares in the kinetic terms, the
Hamiltonian reads

H =
∫

dx�†(x)

(
N∑

l=0

(−ih̄∇l + A)2

2m
− A2

2m
+ Vp

)
�(x),

(A4)
where 	A = R	Lz is the effective vector potential and we define
Vp = +Uint + V (x).

In a lattice system, the field operators can be expanded
in Wannier functions: �(x) = ∑

l wl (x)al , being al the site
l annihilation bosonic operator. Therefore:

H =
∑
l,m

∫
dxwl (x)

×
[

(−ih̄
∑

l ∇l + A)2

2m
− A2

2m
+ Vp

]
wm(x)a†

l am. (A5)

The vector potential can be gauged away by redefining
the Wannier functions: w̃l (x) = wl (x)eiAxl . This procedure,
known as Peierls substitution, leads to our Hamiltonian in
Eq. (1) with � = �r/(h̄/mR).

APPENDIX B: TWISTED BOUNDARY CONDITIONS

By performing a unitary transformation of the Hamiltonian
given in Eq. (1), in this case a rotation U = e2π i�, we change
from periodic boundary conditions to twisted boundary con-
ditions [54,55]. Such transformation simplifies the system
Hamiltonian to the one obtained for a nonrotating system, i.e.,
with real tunneling amplitudes. Moreover, we also obtain sim-
plified equations for the energy, center of mass, and relative
momenta which now read

ETB = −4J cos

(
PTB

2

)
cos(pTB), (B1)

PTB
n = 2π

L
(n − 2�), (B2)

(−1)neipTBL = yTB
(
PTB

n , pTB
)
, (B3)

with

yTB(P, p) = U − i4J cos
(

P
2

)
sin (p)

U + i4J cos
(

P
2

)
sin (p)

. (B4)

Note that in the previous equations, the induced rotation
determined by the frequency � only appears explicitly in
the center-of-mass coordinate. Nonetheless, both center-of-
mass and relative coordinates are still coupled as can be seen
through the continuity of the energy and implicitly though
yTB(P, p).
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