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High-order harmonic generation (HHG) is a manifestation of the strongly nonlinear response of matter to
intense laser fields and has, as the basis for coherent XUV sources, a variety of applications. Recently, HHG
from atoms in a phase and polarization structured laser was demonstrated and interpreted based on the transverse
electric-field component of the driving pulse. Here, we point out that as dictated by Maxwell equations, such
fields have a longitudinal component which in general has a fundamental influence on the charge dynamics. For
instance, its interplay with the transversal field component enables endowing the emitted radiation locally with
circular polarization and a defined polarity. It is shown that the time-dependent Stokes parameters defining the
polarization state of HHG can be tuned by varying the waist of the driving field, which in turn changes the ratio
between the longitudinal and transverse electric-field components of the driving laser. In addition, employing
a multipole expansion of the produced harmonics exposes the specific multipolar character and the relation to
the spatial structure of the driving field polarization states. The scheme proposed here allows a full polarization
control of the emitted harmonics by only one driving laser. A tighter focusing of the driving pulse renders
possible the emission of harmonics with both even and odd spatial symmetry. The underlying mechanism is due
to the fundamental interplay between the transverse and longitudinal components of the laser’s electromagnetic
vector potential. The ratio between those components is controllable by just focusing the laser spot, pointing to
an accessible tool for polarization and polarity control of the high-order harmonics.

DOI: 10.1103/PhysRevA.101.043409

I. INTRODUCTION

High-order harmonic generation (HHG) due to highly non-
linear light-matter interactions [1] paved the way for new
types of XUV sources and ultrafast (attosecond) spectroscopy
[2,3]. In recent years, driving with phase (optical vortices)
or polarization structured (vector beams) fields has attracted
much attention [4–12], as the driving field characteristics
allow one to modulate the properties of the generated har-
monics. A particularly interesting driving field is the radially
polarized vector beam (RVB). Such RVBs can be tightly
focused [13] and are attractive for a number of applications,
including ultrafast diffraction [14] or lithography [15,16].
RVBs are in general inherently nontransverse [17] and may
have a strong longitudinal electric-field component [18] for a
tightly focused beam (cf. Appendix). This property is reflected
in a new form of light-matter interaction [19], and hence
features in HHG akin to the nontransverse RVB are to be
expected, a case not yet clarified. Another key point is that
the longitudinal and transversal electric fields E (z)

RVB and E (ρ)
RVB

oscillate with a phase difference of π/2. Hence, for a tightly
focused RVB, one can find positions in the beam spot with
prevalent (local) circular polarization when E (ρ)

RVB and E (z)
RVB

are of the same magnitude, a fact pointing to a possible
polarization shaping of the HHG in a target driven by RVB.
Indeed, the results presented here for HHG in a RVB-driven
atomic ensemble confirm the fundamental importance of the
interplay between the transverse and longitudinal components
of RVB, an effect tunable by the laser focusing that changes
the ratio between the two component amplitudes. By doing
so the circular polarization of HHG and in fact the spatially

dependent Stokes parameters can be tuned. Other effective
methods for circularly polarized HHG [20,21] use, for in-
stance, bichromatic elliptically polarized pump beams [22] or
counter-rotating few-cycle laser fields [23]. Distinctive fea-
tures of our HHs are their spatially multipolar character in ad-
dition to their polarization states. The symmetries of our HHs
are analyzed below using a vectorial multipole expansion.
Structures in the spectrum appear due to the transversal (even-
symmetry) and the longitudinal (odd-symmetry) components
of the driving field. Hence, the focused RVBs provide a
frequency-dependent tool for generating odd and even (X)UV
harmonics.

II. THEORETICAL MODEL

The vector and the scalar potentials of the harmonics at
the detector position rd which are produced by an elementary
(atomic) emitter at the position ri are inferred from the laser-
driven charge (ρi) and current (ji) density distributions as

Ai(rd, t ) = μ0/(4π )
∫

dr′ ji(r′, tR)/|rd − ri − r′|

and

�i(rd, t ) = 1/(4πε0)
∫

dr′ ρi(r′, tR)/|rd − ri − r′|,

where tR = t − |rd − ri − r′|/c is the retarded time, and
ri is the axial distance to the incident vector-beam opti-
cal axis (which sets the z axis of the global coordinate
system). ji(r, t ) and ρi(r, t ) of the individual atoms fol-
low from a numerical propagation of the time-dependent
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three-dimensional Schrödinger equation [24] involving the
time-dependent Hamiltonian (we use atomic units for the
quantum dynamics)

Ĥi(t ) = [ p̂ − ARVB(r − ri, t )]2/2 + V (ri ).

Here, p̂ is the momentum operator, and we assume the target
as a gas of hydrogenic atoms, meaning V (r) = −1/r is the
Coulomb potential. The vector potential of RVB is taken
as a Bessel mode [19] so that a proper description of the
electric longitudinal component is included automatically;
using Laguerre-Gaussian modes (cf. Appendix) leads to the
same conclusions drawn below. The total vector and scalar
potentials at the detector positioned at rd are the sum of the
vector fields produced by the individual emitters

A(rd, t ) =
∑

i

Ai(rd, t ) and �(rd, t ) =
∑

i

�i(rd, t ).

The electromagnetic fields read

E(rd, t ) = −∂t A(rd, t ) − ∇rd�(rd, t )

and

B(rd, t ) = ∇rd × A(rd, t ).

We confirmed our scheme is equivalent to using Jefimenko’s
equations [25,26]. Phase-mismatch effects may arise from
dipole phase dependencies on the intensity, Gouy phase vari-
ation around the focal plane, and dispersion effects in the
neutral gas or in plasma. For optimal phase matching (phase
mismatch of the nth harmonic kn → 0) the gas jet is placed be-
hind the RVB focal plane [27,28]. Further, our HHG process is
carrier-envelope-phase insensitive [29]. To focus on HHG, we
assume a low-density target and suppress further discussions
of optical refraction and propagation effects.

III. POLARIZATION CONTROL OF HHG

The opening angle α of the Bessel cone sets the spatial
extent in the focal plane [cf. Fig. 1(b)] and the ratio between
the peak longitudinal (on the optical axis) and transversal
components (at the axial distance ρmax). Both components are
important for the predicted effects. Increasing α tightens the
spot size (meaning ρmax shrinks). The spatial inhomogeneity
causes the Stokes parameters to become space dependent.
Due to cylindrical symmetry, it is sufficient to investigate
the Stokes parameters in the x-z plane with the standard
definitions [30]: S1 and S2 describe linear polarizations in the
directions êx, êz and (êx ± êz )/

√
2 while S3 signifies circular

polarization in the local plane. Figure 1(c) shows the Poincaré
sphere depending on focusing (or on the opening angle α) at
an axial distance of 0.5 μm with astonishing implications. For
a weak focusing (α = 26◦), we find that the polarization is
nearly linear, characterized by S1 ≈ 1. Tightening the beam
spot moves the Poincaré vector towards the poles, indicating
circular polarization. Furthermore, the vector always points
on the meridian spanned by S1 and S3, signaling that linear
polarization in the directions (êx ± êz )/

√
2 is suppressed. The

polarization landscape in the focal plane is rather involved [cf.
Fig. 1(d)]: Depending on the axial distance, we find a variation
of the polarization state. While around the optical axis (where
the longitudinal component dominates) the polarization points
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FIG. 1. High-order harmonic generation driven by an intense
radially polarized laser. (a) Schematic view of the HHG process:
An intense, radially polarized fs IR field is focused on a hydrogenic
gas jet that responds with high-order harmonic emission. The ra-
diated field possesses an inhomogeneous distribution of the Stokes
parameters S1,2,3. (b) Blue curve: Incoming beam opening angle α

dependence of the ratio of its on-axis longitudinal component E (z)
RVB

to its transverse component E (ρ )
RVB (at ρmax). Beam waist variation is

shown by the red curve. (c) Poincaré sphere for different α’s at an
axial distance of 0.5 μm. (d) Color map of polarization landscape
in the focal plane z = 0 for α = 30◦. (e) Spatial dependencies of
the normalized Stokes parameter Si/S0 (i = 1, 2, 3) corresponding
to RVB with α = 30◦.

in the z direction (Stokes parameter S1 ≈ −1), we find a
transition region where E (ρ)

RVB ≈ E (z)
RVB. The polarization state

is circular because both components oscillate with a phase
difference of π/2. Around ρmax, the transversal component
dominates, resulting in linear polarization perpendicular to
the optical axis, meaning S1 ≈ +1. Our strongest focusing
(at α = 35◦) corresponds to a full width at half maximum
(FWHM) of 1.2 μm which is 1.5λ. Current focusing tech-
niques are capable of generating vector beams with such a
tight focus (even subdiffraction focusing is possible) [31].

For illustrations we run numerical simulations employing
a four-cycle-long IR (800-nm) radial vector beam with a
sin2 envelope and with a peak intensity at ρmax fixed at
1.60 × 1014 W/cm2, independent of opening angle α. The
first four panels of Fig. 2 present the angular profiles of
the Poynting vector of two chosen harmonics for different
focusings of the incident beam. The far-field Poynting vector
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FIG. 2. (a)–(d) Angular intensity profiles showing the absolute
value of the Poynting vector of two different harmonics (13 and
17) for two different laser focusings (upper row α = 26◦; lower row
α = 34◦). (e) demonstrates the progress of divergency by increasing
the harmonic order. (f) shows the longitudinal field of the 17th
harmonic for two different focusing setups of the incident RVB. The
quantity S	=1

1 = +1 corresponds to the extended Stokes parameter
for cylindrical beams and reveals pure radial polarization [32].

exhibits a radial symmetry and a dark spot in the area around
the optical axis, which can be explained by the diminishing
intensity of the corresponding magnetic field when decreasing
the axial distance. The polarization state is fully radial as
inferred from calculating the extended (normalized) Stokes
parameters S	=1

i for cylindrical beams [32]: Numerically, we
found that S	=1

1 = +1 for all harmonics while the other two
vanish. The influence of tightening the driving RVB focus is
demonstrated in Figs. 2(c) and 2(d)]. It can be concluded that
the intensity of the outer area decreases for a larger opening
angle α. Figures 2(e) and 2(f) present the diffraction properties
of the HHG process: Increasing the considered harmonic
order, we find a tighter radiated beam spot since the axial
distance to the intensity peak is lowered. However, the most
exciting development is due to the longitudinal component
of the emitted electric far field. As shown in Fig. 2(f), a
sharper focus leads to a strongly pronounced on-axis field with

−π/2 −π/4 0 π/4 π/2
−1.0

−0.5

0.0

0.5

1.0 (a)

FIG. 3. Polarization landscape of emitted radiation for an inci-
dent RVB opening angle α = 30◦. (a) Angular-dependent Stokes
parameters of the electric first harmonic order at a sphere with
radius rd = 0.5 mm. (b), (c) Time-dependent spectrum and third
Stokes parameter of the electric far field emitted in the asymptotic
direction ϑ = 8◦, recorded at rd = 0.5 mm. (d), (e) (Normalized)
Stokes parameters of the 13th and 17th harmonics as a function of
divergence angle.

significant consequences for the polarization characteristics
of the radiation. Figure 3 reveals the polarization structure of
the emitted radiation, evidencing that the relation between the
longitudinal and transverse field components of the driving
field is transferred into the emitted higher-frequency fields.
Due to cylindrical symmetry we confine the study of the
polarization characteristics to the x-z plane. At first, we
introduce the polar angle ϑ as the angle between the z axis
and the asymptotic direction of the detector position rd. In
Fig. 3(a), we present the four Stokes parameters, evaluated
for the radiated Ex(rd , t ) and Ez(rd , t ) as a function of the
polar angle for an observer distance rd = 0.5 mm. Noticeably,
the polarization state changes continuously between linear (in
z, ±45◦, and x directions) and circular. Due to symmetry,
the radiation along the z axis can only be z polarized. A
remarkable difference is the occurrence of the second Stokes
parameter, which is absent in the incident RVB. Already at
this stage, it is clear that (local) circular polarization can be
observed in the far field as a result of the coherent superposi-
tion of the emission of the individual radiators. At ϑ = ±8◦
we find highly distinctive circular polarization as evidenced
by the (normalized) Stokes parameter S3 = 0.99. The Stokes
parameters nicely reflect the radial symmetry: The circular
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polarization changes its sign since under Ex(−ϑ ) = −Ex(ϑ )
while Ez(−ϑ ) = Ez(ϑ ) which corresponds to a phase jump of
π and reverses the direction. Hence, S3 is an odd function.
Note that S1 + S2 + S3 = S0, meaning the emission is fully
polarized.

The time-dependent buildup of the Stokes parameters
[33,34] (via a wavelet Fourier transform) are presented in
Figs. 3(b) and 3(c). We choose the asymptotic direction of the
radiation along θ = 8◦ for an observer at the distance rd =
0.5 mm (maximal degree of circular polarization). The time-
dependent spectrum of the electric far field gives information
about the duration of the emitted light pulse, which is in the
fs regime. Furthermore, we find a symmetrical buildup and
decay of the intensity (S0) and the circular Stokes parameter
(S3). As already indicated in Fig. 3(a), S0 and S3 are virtually
equal in the whole time frame, meaning that the radiation is
always circularly polarized in this direction. We checked that
S1 and S2 (not shown for brevity) are smaller than 0.05 at all
times and frequencies, and hence the (circular) polarization
degree is persistently >0.99.

A key finding is the possibility to endow the higher-
frequency regime with circular polarization, as shown in
Figs. 3(e) and 3(f) for the spatially dependent Stokes parame-
ters of the 13th and 17th harmonics for a varying divergence
angle. In general, this behavior of S1, S2, and S3 persists for
higher-order harmonics in the (X)UV frequency regime. On
axis, the harmonics are strict linearly polarized, characterized
by S1 = −1. The reason is the strong longitudinal component,
which is discussed in Fig. 2. Increasing the axis distance
results in the buildup of S3 while S1 decays. Reminiscent of
the incident vector beam, as presented in Fig. 1(e), S3 decays
again while S1 changes its sign and approaches unity. Hence,
the polarization state changes from linear (in the z direction) to
circular (relative to the x-z plane) to linear (in the x direction),
meaning a transition into radial polarization when considering
the whole beam spot. A high degree of ellipticity is around the
maximum of the energy flux (Poynting vector), as indicated by
the black dashed curve.

IV. MULTIPOLAR HHG

For insight into the polarity of the harmonics, we expand
the electric far field in vector spherical harmonics on a sphere
with radius robs,

E(robs, t ) =
∑
L,M

a(r)
L,M(t )Y L,M + a(1)

L,M(t )�L,M + a(2)
L,M(t )�L,M

(for conventions, cf. Ref. [35]). All harmonics are independent
of the azimuthal angle ϕ due to symmetry. Therefore, all coef-
ficients with M �= 0 disappear (double checked numerically).
As indicated by Fig. 4(a), for a small opening angle α, mean-
ing a wide focusing, the transverse component E (ρ)

RVB of the
incident RVB is dominating the light-matter interaction with
the result that the irradiated atomic layer emits radiation char-
acterized by even multipoles. For n > 10 we find harmonic
orders where the quadrupole (e.g., n = 13 and 15) or even the
hexadecapole (e.g., n = 19) are the leading multipole terms.
The classical cutoff at h̄ωcutoff = 3.17Upond (black arrow) is
well reproduced as the harmonic yield decreases abruptly for
n > 30.
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FIG. 4. Harmonic spectrum of the radiation produced by an
incident RVB in dependence on the opening angle α. The angular
momentum-dependent multipole coefficients a(r)

L,0, as introduced in
the text, characterize the multipolarity of the emitted harmonics of
order n.

Note, atoms around the optical axis are exposed to E (z)
RVB,

and the dipole moment oscillates in the z direction. Thus, this
part of the radiation is dominated by the dipolar coefficients
as for conventional HHG. For the total HHG signal also the
transverse component is decisive, which oscillates with a π/2
phase difference. Figure 4(b) evidences that a stronger focus-
ing (α = 30◦) boosts the dipole coefficient a(r)

1,0 drastically to
a level close to the even coefficients. An even stronger focus-
ing (α = 35◦ in which case E (z)

RVB > E (ρ)
RVB) has a substantial

impact on the harmonic spectrum [Fig. 4(c)]: Although the
lower-order harmonics (n < 10) are still dominated by the
even multipole coefficients a(r)

1,0, from n > 15 the harmonics
are strongly dipolar. Moreover, the whole HH cutoff is shifted
by more than 20 orders, which can be explained by the larger
classical cutoff corresponding to the incident longitudinal
component E (z)

RVB. Astonishingly, we can produce (higher-
order) harmonics with both parities by merely adjusting the
waist of the driving pulse. The even multipole harmonics
are a result of the radially polarized transverse electric-field
component E (ρ)

RVB revealing mirror reflection symmetry. In
contrast, the linearly polarized E (z)

RVB produces odd multipole
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harmonics, comparable to conventional atomic HHG. A third
unusual attribute is the shift of the cutoff frequency by focus-
ing, provided the peak intensity of the RVB spot area is kept
fixed.

HHG multipolarity is relevant to spectroscopy as, depend-
ing on polarity, HHs induce transitions with different propen-
sity rules. The electric field of an emitted harmonic of order q
can be expressed as

Eq(r, t ) =
∑

L

a(r),q
L0 (r)Y LMe−iωqt . (1)

A numerical analysis of the radiated vector potential A(r, t )
reveals that it is approximately solenoidal. This is useful
insofar as the coupling of A(r, t ) to the charge current density
of a finite-size sample can be unitarily transformed to the
following form (r j is the position of the electron),

Ĥq
int (t ) = Hinte

−iωqt =
∑
L, j

a(r),q
L,0 (r j )(r j · Y L,0)e−iωqt . (2)

For a demonstration, let us consider an isotropic system
amenable to an effective single-particle description. The
ground-state single-particle orbital can thus be written as
�i(r, t ) = Ri(r)Y0,0(�r) with orbital energy Ei. A transition
to an excited state, presented by

� f (r, t ) = R f (r)Y	 f ,0(�r )

with orbital energy E f , is governed by the matrix element

〈� f |Hint|�i〉 ∝ 1√
4π

∑
	 f

∑
L

√
(2	 f + 1)(2L + 1)

×A	 f L

(
	 f L 0
0 0 0

)2

, (3)

where

A	 f ,L =
∫ ∞

0
dr r3a(r),q

L,0 (r)R f (r)Ri(r).

The final orbital angular momentum quantum number 	 f

fulfills the condition 	 f = L. As a consequence, the leading
multipole coefficient aq

L,0 characterizes the atomic transition.
Considering the result presented in Fig. 4(c), the electric fields
of the lower HHs (harmonic order n < 15) would initiate an
even multipole transition (nis → n f s or nis → n f d). Choos-
ing instead higher-order harmonics (n > 20) would result in
dipole transitions, i.e., nis → n f p.

V. CONCLUSIONS

HHG by focused radially polarized vector fields is dom-
inated by the interplay between the longitudinal and the
transversal laser components which oscillate with a π/2
phase difference and amplitudes that depend on focusing.
Extreme focusing poses a challenge to experiments as the
gradient of the longitudinal component along the optical axis
becomes steeper. However, the predicted effects are strongest
when the longitudinal and transversal components are of
comparable strengths. In addition, when averaging over the
atom distributions the atoms right on the optical axis have a
smaller weight. Harmonics akin to RVB exhibit a local cir-
cular polarization perpendicular to the focal plane, meaning

that circular polarized HHGs are producible and tunable by
varying the beam waist. The discussed circular polarization
relates to the transverse spin angular momentum, discussed
Ref. [36]. Furthermore, multipolar, even, and odd harmonics
are generated. The predicted effects highlight the potential of
using structured laser pulses with inherent longitudinal field
components for nonlinear processes in matter.
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APPENDIX: DESCRIPTION VIA LG MODES

The vector potential of a Laguerre-Gaussian (LG) mode
with |m| = 1 and p = 0 is given in cylindrical coordinates r =
{ρ, ϕ, z} by [37]

Am,σ
LG (r, t ) = êσ A0NLG

w0

w(z)

√
2ρ

w(z)
e− ρ2

w2 (z)

× ei qρ2

2R(z) +imϕ+iζ (z)ei(qz−ωt ) + c.c. (A1)

Here, σ indicates the polarization state with the corresponding
vector êσ = eiσϕ (1, iσ, 0)T /

√
2. The beam width is w(z) =

w0

√
1 + (z/zR)2, where w0 is the beam waist while zR = qw2

0
is the Rayleigh length for a wave number q = ω/c. The
function R(z) is the wave-front radius of curvature, given
by R(z) = z[1 + (zR/z)2], and ζ (z) = −2 tan−1(z/zR) is the
Gouy phase. The normalization constant NLG = √

2e was
chosen in a way that Am,σ

LG (ρmax, z, t ) = A0, where at ρmax the
peak amplitude can be found.

The vector potential of a radial vector beam (RVB) can be
found by a sum of A+1,−1

LG (r, t ) and A−1,+1
LG (r, t ) yielding

ARVB
LG (r, t ) = A0NLG

w0

w(z)

ρ

w(z)
e− ρ2

w2 (z)

× ei qρ2

2R(z) +iζ (z)ei(qz−ωt )êρ + c.c. (A2)

The vector potential is not solenoidal, i.e., via the Lorenz
gauge condition ∇ · ARVB

LG + ∂t�
RVB
LG /c2 = 0 it gives rise to a

electromagnetic scalar potential,

�RVB
LG (r, t ) = A0NLG

ω

q2

w0

R(z)w4(z)
e− ρ2

w2 (z) ei qρ2

2R(z) +iζ (z)

× [qρ2w2(z) + 2iR(z)(ρ2 − w2(z))]

× ei(qz−ωt ) + c.c. (A3)

Finally, the associated electric field can be found by
ERVB

LG (r, t ) = −∂t ARVB
LG (r, t ) − ∇�RVB

LG (r, t ), resulting in both
a transversal and longitudinal field component. The electric
field in the plane z = 0 reads explicitly

ERVB
LG,ρ = E0NLG

ρ

q2w5
0

e
− ρ2

w2
0
[
4ρ2 − 8w2

0 + q2w4
0

]
sin(ωt ),

ERVB
LG,ϕ = 0,

ERVB
LG,z = 2E0NLG

1

q3w7
0

e
− ρ2

w2
0 cos(ωt )

× [
2ρ4 + 4w4

0 − q2w6
0 + ρ2w2

0 (q2w2
0 − 8)

]
. (A4)

where E0 = A0ω.

043409-5



JONAS WÄTZEL AND JAMAL BERAKDAR PHYSICAL REVIEW A 101, 043409 (2020)

0.0 0.5 1.0 1.5

−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6

0.0 0.2 0.4 0.6 0.8
−1.0

−0.5

0.0

0.5

1.0(a) (b)

FIG. 5. Comparison between RVBs constructed out of Bessel
(B) modes and LG modes. (a) Transversal and longitudinal fields
in dependence on the axial distance ρ. (b) Spatially dependent
(normalized) Stokes parameters S1 and S3. The opening angle of
α = 30◦ belongs to an LG waist size of w0 = 0.72 μm.

In Fig. 5 we show a comparison between the RVB electric
fields constructed out of Bessel modes [Fig. 5(a)] and LG

modes [Fig. 5(b)] in a focused condition, i.e., α = 30◦, which
corresponds to an LG waist w0 = 0.72 μm. As presented in
Fig. 5(a), the longitudinal and transversal components show
similar trends. While near the optical axis the agreement is
remarkable, larger deviations occur behind the first intensity
maxima. The reason is the exponentially decreasing field
amplitude of the LG mode, while the Bessel beam exhibits
infinity side maxima.

The Stokes parameters in the ρ-z plane of the driving field
are important, shown in Fig. 5(b). Here, LG and Bessel RVBs
show a remarkable agreement: The zone around the optical
axis is (z) linearly polarized (Stokes parameter S1

∼= −1),
while increasing the axial distance yields a region with a pro-
nounced circular polarization (S3

∼= +1). Increasing ρ further
results in in-plane polarization (Stokes parameter S1

∼= +1),
which means the beam is radially polarized in this region.
Similar to Fig. 5(a), LG and Bessel Stokes parameters start to
deviate for ρ > 0.8 μm. Since we consider a small interaction
volume with an effective radius of 1 μm, we expect similar
results as reported in Figs. 2–4 when using LG modes instead
of Bessel modes for the construction of the RVB.
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