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We analyze the Hamiltonian of a charged particle in a strong external infrared laser pulse including nondipole
effects to first order in 1/c. We consider the corresponding classical equations of motions in the high-intensity,
long-wavelength limit and identify for linearly polarized fields an accurate nondipole strong-field-approximation
Hamiltonian. This Hamiltonian is expressed in a mixed gauge with separate light-matter interaction terms
depending either on coordinate or momentum operators. It can be transformed into a nondipole velocity gauge
and nondipole length gauge version. The associated beyond dipole Volkov states are given. Implications for
laser-assisted scattering, strong-field ionization, laser-assisted photoeletric effect, and attosecond streaking are
outlined.
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I. INTRODUCTION

In the electric dipole approximation, the spatial variation
of the external radiation field is neglected over the extent of
the atomic or molecular quantum system. If photon absorption
is considered in the linear regime, mathematically, then this
simplification corresponds to replacing the propagation factor
of light exp(ikL · r) by unity. Here kL is the wave vector spec-
ifying the laser propagation direction and with a magnitude
of kL = ω/c, where ω is the angular frequency of the laser
radiation and c is the speed of light. In the interaction with
atoms and molecules, the initial state is described by a wave
function, which is confined in space. If the spatial confinement
of this initial state is such that effectively ikL · r � 1, then the
dipole approximation is accurate. Corrections can be identi-
fied by considering a first-order expansion exp(ikL · r) � 1 +
ikL · r, where the second term includes corrections of order
1/c and gives the electric quadrupole and magnetic dipole
terms. It is clear that the dipole approximation breaks down
in the high-frequency regime. For a recent example reveal-
ing nondipole effects in ionization in the perturbative XUV
regime, see Ref. [1]. A typical signature of the breakdown
of the dipole approximation is the lack of forward-backward
symmetry with respect to the laser propagation direction; see
also Ref. [2].

In a strong-field nonperturbative setting, nondipole ef-
fects were studied in connection with high-intensity, high-
frequency ionization and the phenomenon of stabilization;
see, e.g., Refs. [3–9]. The importance of the nondipole effects
contained in the diamagnetic term proportional to the square
of the vector potential in comparison to those contained in the
term linear in the vector potential and the momentum operator
was pointed out in connection with studies on high-intensity
simulated Compton scattering [10] and Raman scattering [11].
General constraints on the applicability of the electric dipole
approximation with respect to frequency and intensity were
described in Refs. [12,13]. In these latter works, it was pointed
out that the electric dipole approximation not only breaks
down for high frequency but also for low frequency in the

high-intensity regime. In simple terms this breakdown occurs
because the laser-induced velocity, v, associated with the
quiver motion scales as E0/ω, with E0 the field strength.
This scaling means that in the limit of low frequency and
high intensity, v/c can become nonnegligible and magnetic
effects, expressed classical through the Lorentz force, can
become important. The importance of nondipole effects in
this limit was, e.g., stressed in connection with experimental
work reporting an asymmetry of the electron momentum
distribution at midinfrared wavelengths and intensities around
1014 W/cm2 [14]. Such an asymmetry is a clear indication
of a breakdown of the electric dipole approximation and had
been observed before at near-infrared wavelengths [15]. Very
recently, shifts along the laser propagation direction were
found and analyzed in combined experimental and theoretical
work [16,17]. These findings of nondipole effects in strong-
field physics at infrared frequencies have renewed theoretical
interest, and nondipole effects in this regime have, e.g., been
considered in Refs. [18–30].

In this paper, we will be concerned with nondipole mag-
netic field effects of the order of v/c. We will consider the
Hamiltonian for a charged particle in a molecular or atomic
potential and an external field that is expanded to first order in
kL · r. A consideration of the classical equations of motion and
incorporation of typical strong-field-approximation ideas will
lead to a nondipole strong-field-approximation Hamiltonian.
This Hamiltonian separates position and momentum operators
and was considered earlier at high frequency and high inten-
sity without detailed classical justification [3,4,7]. With this
Hamiltonian at hand, nondipole Volkov states are considered
and nondipole effects for laser-assisted scattering, strong-field
ionization, laser-assisted photoelectric effects, and attosecond
streaking are considered.

II. RESULTS AND DISCUSSION

A. Nondipole Hamiltonian

Consider a particle with charge q (an electron has charge
q = −|e|) in an external field described by the vector potential
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A(r, t ) and vanishing scalar potential. Let the field be ellipti-
cally polarized in the yz plane and let the propagation direction
be along the x direction such that the vector potential can be
expressed as a function of η = ωt − ωx/c, where ω is the
angular frequency and c is the speed of light

A(r, t ) = A0(η)

⎛
⎝ 0

ε cos(η)
sin(η)

⎞
⎠, (1)

where A0(η) is an envelope function describing the temporal
and spatial shape of the pulse. The parameter ε ∈ [0; 1] de-
scribes the degree of polarization of the pulse. For example,
if ε = 0 or ε = 1, then the pulse is linearly or circularly
polarized, respectively. The amplitude of the vector poten-
tial envelope function relates to the intensity through the
Poyntings vector and therefore depends on the ellipticity. In
atomic units one could use for the vector potential amplitude
(
√

I/ω)/
√

1 + ε2, where I is the intensity.
In the nondipole approximation, the center of mass and

relative motions do not decouple. We consider a case where
a light particle, say, an electron, moves in the potential of a
much heavier particle—a nucleus. In this case it is accurate to
assume that the center of mass stays at rest and all the momen-
tum is absorbed by the lighter particle. The Hamiltonian for
this latter particle of mass m for a vanishing scalar potential
is obtained by minimal coupling, p → p − qA(η), and given
explicitly by

H (t ) = [p − qA(η)]2

2m
+ V (r), (2)

where V (r) is the atomic or molecular potential. A Tay-
lor expansion of the vector potential Eq. (1) to first or-
der in 1/c gives the vector potential A(01)(η) = A(η)|η=ωt −
(ωx/c)∂ηA(η)|η=ωt . We introduce the following notation:

A(01)(η) = A(0)(t ) + A(1)(η), (3)

with the familiar dipole term

A(0)(t ) = A0(t )

⎛
⎝ 0

ε cos(ωt )
sin(ωt )

⎞
⎠ (4)

and with a term that depends linearly on the coordinate in the
propagation direction

A(1)(η) = A(1)
c (η) + A(1)

e (η), (5)

where the first term with subscript c comes from the carrier
variation of A(η),

A(1)
c (η) = A0(t )

⎛
⎝ 0

εx(ω/c) sin(ωt )
−x(ω/c) cos(ωt )

⎞
⎠, (6)

and the second term with subscript e in Eq. (5) comes from
the variation of the envelope,

A(1)
e (η) = −[∂ηA0(η)|η=ωt ]

⎛
⎝ 0

εx(ω/c) cos(ωt )
x(ω/c) sin(ωt )

⎞
⎠. (7)

As soon as the pulse contains more than, say, 6 or 7 cycles,
the contribution to A(1)(η) due to the variation of the envelope

[Eq. (7)] is much smaller than the contribution from Eq. (6)
[31]. This is the situation we will focus on in this work, and
we refer to this regime as the long-pulse limit, even though
the pulse may only contain, say, 10 cycles. Inserting Eq. (3)
into Eq. (2), keeping terms up to and including 1/c, working
in the Coulomb gauge and suppressing the arguments of H ,
A(0), A(1) and V for notational convenience, leads to

H = [p − qA(0)]2

2m
− q

m
A(1) · p + q2

m
A(0) · A(1) + V. (8)

We verify the relation A(1) = (x/c)E (0), with E (0) =
−∂t A(0) and the Hamiltonian in Eq. (8) can be expressed as

H = [p − qA(0)]2

2m
+ x

c

(
q2

m
A(0) − q

m
p
)

· E (0) + V, (9)

which is the form recently considered in strong-field appli-
cations [26,27,29]. Effects of changing the carrier envelope
phase, φCEP, can easily be addressed by the substitution
ωt → ωt + φCEP in the expressions for the vector potential.

The Hamiltonians of Eqs. (8) and (9) contain terms that
depend on the product of x and pz. This product complicates
the practical numerical solution of the corresponding time-
dependent Schrödinger equation (TDSE). For example, the
TDSE cannot be readily propagated with the standard split-
step fast Fourier method [32], which relies on propagating
operators that are solely functions of spatial coordinates in
coordinate space and operators that are solely functions of mo-
mentum coordinates in momentum space. An elegant solution
to this problem was recently considered in Ref. [27] by appli-
cation of a unitary operator involving a product between coor-
dinate and momentum operators. However, the dependence of
this unitary operator on the generator of translations, the mo-
mentum operator p, leads to a time-dependent displacement of
the spatial coordinate of the potential, which complicates the
propagation of the TDSE and would be advantageous to avoid.
It would be convenient to introduce accurate approximations
that bring the Hamiltonian on a form, which does not mix the
operators and avoids an introduction of a time dependence of
the atomic or molecular potential. This is what we seek to do
in the following.

B. Classical equations of motion

To proceed it is helpful to consider the classical equations
of motions corresponding to the Hamiltonians in Eqs. (2) and
(8). Hamilton’s classical equations of motion give of course
the same result as a direct consideration of the Lorentz force.
Keeping full retardation, the equation of motion reads

mr̈ = q(E + ṙ × B) − ∇V, (10)

with B = ∇ × A and E = −∂t A and A given by Eq. (1).
The result reads to leading order in 1/c

mr̈ = q(E (01) + ṙ × B(1) ) − ∇V, (11)

with E (01) = −∂t A(01) the electric field corresponding to the
leading order in 1/c expansion A(01) given by Eq. (3) and
B(1) = ∇ × A(1) = B(1)

c + B(1)
e the spatially independent B-

field component obtained from the vector potential in Eq. (5)
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given explicitly by

B(1)
c = A0(t )

⎛
⎝ 0

(ω/c) cos(ωt )
ε(ω/c) sin(ωt )

⎞
⎠ (12)

and

B(1)
e = −(∂ηA0(η)|η=ωt )

⎛
⎝ 0

−(ω/c) sin(ωt )
ε(ω/c) cos(ωt )

⎞
⎠. (13)

Introducing ideas from strong-field physics

Much of strong-field physics has been explained by consid-
ering the motion of electrons in the continuum and by either
neglecting the effect of the potential V , as in the simple man
model [33–37] or treating it perturbatively along the trajecto-
ries induced by the external field (see, e.g., Refs. [38,39]). We
are interested in a regime where the laser intensity is large and
the frequency is small. It makes sense to consider the effect of
the B-field component along the E -field-induced motion; i.e.,
we are led to the consideration of the approximate equations
of motion,

mẍ = q
(
ẏB(1)

z − żB(1)
y

)
, (14)

mÿ = q
(−∂t A

(0)
y

)
, (15)

mz̈ = q
(−∂t A

(0)
z

)
, (16)

where we consider the dominant dipole part of the E -field and
express the force in terms of the relevant vector potential. The
y and z components of Eqs. (15) and (16) are readily integrated
to give the laser-induced velocity in the polarization plane,
ẏ = (−q/m)A(0)

y and ż = (−q/m)A(0)
z , i.e.,

ṙ = ṙD = (−q/m)A(0). (17)

A subscript D indicates that the velocity is obtained from the
dipole field alone. To proceed, we consider the long-pulse
limit, where the contribution from Eq. (13) can be neglected
compared with the contribution from Eq. (12). Inserting the
expression of Eq. (17) into Eq. (14) gives the following
equation of motion in the pulse propagation direction:

mẍ = q
(
ẏDB(1)

z − żDB(1)
y

)
[1 − δ(ε, 1)]. (18)

On the right-hand side of Eq. (18), we multiply by the
factor [1 − δ(ε, 1)], which, as explained below, is inserted
to remind us that the considered force in this approximation
and long-pulse limit is zero for circularly polarized fields,
ε = 1. This can be verified in the long-pulse limit by the
expressions for the velocities and B-field components given
above. Physically, the absence of such a force for circularly
polarized light can easily be understood by noting that for
circularly polarized light the direction of the vector potential
is perpendicular to the electric field direction. Hence, the B
field and the vector potential are parallel or antiparallel and
since the laser-induced dipole velocity is proportional to the
vector potential [see Eq. (17)], the Lorentz force associated
with the laser-induced dipole motion in circularly polarized
field is vanishing in the present approach for the long-pulse

limit due to the vanishing cross products between parallel
vectors.

For linear polarization the situation is quite opposite. In
this case, the vector potential and the E field are parallel or
antiparallel and therefore the vector potential, and hence the
laser-induced dipole velocity [see Eq. (17)], is perpendicular
to the B field, which maximizes the cross product of the
Lorentz force.

To see clearly that the nondipole term induces a radiation
pressurelike force in the propagation direction, we note that
the right-hand side of Eq. (18) can be rewritten to give

mẍ = (q2/2mc)∂t [(A(0) )2][1 − δ(ε, 1)], (19)

which clearly displays the positive sign of the force in the
propagation direction. Equation (19) can be integrated to give
a positive velocity in the propagation direction,

ẋ = q2

2m2c
(A(0) )2[1 − δ(ε, 1)]. (20)

The integration of Eqs. (14)–(16) with ṙD from Eq. (17) ac-
counts for the effect of the B field along the trajectory induced
by the laser in the polarization direction (plane) corresponding
to the equations of motion,

mr̈ = q{(−∂t A(0) ) + ṙD × B(1)[1 − δ(ε, 1)]}. (21)

To conclude this section, we note that the idea of account-
ing for the Lorentz force along the trajectory induced by the
dipole motion leads to the equations of motion in Eq. (21). We
also note that in the long-pulse limit, this contribution to the
nondipole effects is a decreasing function of the ellipticity of
light. For circularly polarized light, there is no Lorentz force
in the long-pulse limit with this approach. In linearly polarized
fields, this contribution to the nondipole effects is maximized,
since in this case the laser-induced motion is perpendicular to
the direction of the magnetic field. These observations stress
the sensitivity of nondipole effects to the polarization of the
driving light.

C. Illustrative calculations

We saw in Sec. II B that the nondipole effects captured
by accounting for the Lorentz force only along the laser-
induced dipole trajectory is maximized for linearly polarized
light in the long-pulse limit. We therefore expect the present
strong-field-inspired approach to be most accurate for linearly
polarized fields. For this reason, we will focus on linearly
polarized light in the illustrations given in this section. We
have performed several other simulations with polarizations
from linear to circular by increasing ε and as expected the
quality of the approximation decreases with increasing ε.

Figure 1 shows an example for an electron for a set of
laser parameters similar to those used in a recent experi-
ment reporting nondipole effects in the photoelectron mo-
mentum distribution with intense long-wavelength light [14]
(see the caption of Fig. 1 for laser parameters). The excursion
perpendicular to the polarization direction in the nondipole-
induced figure-of-eight motion of the free electron is � 1
for the chosen parameters and hence marks the onset of
low-frequency nondipole effects [12,13]. In the experiments
of Refs. [14–17] nondipole effects were identified by a shift
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FIG. 1. (a) Position in atomic units (a.u.) of an electron in the
laser polarization direction as a function of time, t in a.u., (b) position
of an electron in a.u. in the laser propagation direction as a function
of time, (c) velocity of an electron in a.u. in the laser polarization
direction as a function of time, (d) velocity of an electron in a.u. in
the laser propagation direction as a function of time. The wavelength
of the laser field is λ = 3.4 μm and the intensity is 1 × 1014 W/cm2.
The propagation time in a.u. corresponds to 10.5 cycles of the
field. The intensity corresponds to an intensity of 0.0028 a.u. The
long dashed (red) curves show the results considering the effect
of the B field along the trajectory induced along the polarization
direction corresponding to Eq. (21), the full (blue) curves show the
results obtained by including nondipole effect to leading order in 1/c
Eq. (11) but without the effect of the potential V , the dotted (yellow)
curves show the result with full inclusion of nondipole effects, i.e.,
with full spatial dependence in E and B fields, Eq. (10), but without
the potential V .

of the photoelectron momentum distribution along the prop-
agation direction. In the results shown in the figure, the
trajectories start at the peak of the E -field at the exit point
(0, 0, z0), z0 = Ip/E0 with Ip = 0.5 a.u. for atomic hydrogen
and with zero initial velocity. They propagate for 10.5 cycles
of the field with the Coulomb force neglected. The figure
shows that the results obtained from integrating the equations
of motion with full retardation Eq. (10) (but without V in
this case) and the results obtained by including the effect of
the B field perturbatively along the E -field-induced motion as
in Eq. (21) are identical. In the figure, we also show results
including the effect of retardation to the conventional first
order in ωx/c, i.e., from Eq. (11) again without the force
from the potential V . In this case, we see a deviation from
the exact result and the result of Eq. (21) in the propagation
direction. This poor performance of the equations of motion
corresponding to the 1/c expansion is due to the presence
of the E (01) term in Eq. (11), which includes terms linear in
x. These terms are not small when x is large and leads to a
breakdown of the expansion as expected. It is interesting to
note that the results obtained from Eq. (21) do not suffer from
this shortcoming. Figure 2 shows results as Fig. 1, but for a
higher intensity and the conclusions are the same. Since the
considered parameters are characteristic for the values that can
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FIG. 2. As described in the caption of Fig. 1 but for an intensity
of 3 × 1014 W/cm2, corresponding to 0.0085 a.u.

be explored experimentally, and the agreement between the
exact [of Eq. (10)] and the approximate [of Eq. (21)] treatment
is excellent, we conclude that a perturbative treatment of
the magnetic field along the E -field-induced trajectories is
accurate in the absence of any atomic or molecular potential.
We also conclude that the conventional expansion to 1/c
[Eq. (11)] may be problematic due to a nonvanishing contri-
bution from a force related to the spatial dependence of the
E -field that is not present in the exact treatment and neither in
the approximation of Eq. (21).

To illustrate the effect of an attractive potential on the
classical trajectories, we show results in Fig. 3 for the case of
the presence of an attractive Coulomb potential corresponding
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FIG. 3. As described in the caption of Fig. 1 but now including
the effect of the Coulomb potential in the equations of motion,
i.e., the effect of the force −∇V , with V = −e2/[(4πε0)r]. Com-
pared with the exact result, we see a deviation in the electron
(b) position and (d) velocity along the propagation direction for the
nondipole strong-field-approximation trajectories in the presence of
the Coulomb potential. This deviation is not worse than that of the
standard 1/c expansion.
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FIG. 4. As described in the caption of Fig. 3 but for an intensity
of 3 × 1014 W/cm2, corresponding to 0.0085 a.u.

to ionization of the hydrogen atom. The trajectories are prop-
agated as in Fig. 1 but now including the force terms from the
attractive Coulomb potential on the electron. In the considered
nondipole cases, there is no need to soften the Coulomb
potential since the Lorentz force induces a motion along the
propagation direction x such that the x values are typically
nonvanishing at the instants when z = 0, i.e., the trajectories
do not probe the singularity at the origin to the same extent
as in the dipole case for linearly polarized light. While the
dynamics along the polarization direction is very accurately
captured by a perturbative treatment of the effect of the B-
field, a deviation sets in at around t ∼ 2000 a.u. corresponding
to ∼4 cycles in the position and velocity in the propagation di-
rection. However, the perturbative treatment of the B field still
captures the overall evolution of the position and the velocity.
In fact, the performance of the approximation of Eq. (21)
is not worse than the conventional 1/c expansion approach
corresponding to Eq. (11). Compared with the potential-free
case of Fig. 1, we note that the Coulomb potential can shift the
effect of the radiation pressure and induce a net velocity and
motion in the direction opposite to the propagation direction.
This effect of the Coulomb potential was also found in other
recent works [16,17,23] and pointed out by one of us some
time ago (see Fig. 1 and the accompanying discussion in
Ref. [40]). In Fig. 4, we show results as in Fig. 3, including the
Coulomb potential, but for the higher intensity also considered
in Fig. 2. We see that the performance of the approach of
Eq. (21) is very good while the approach of Eq. (11) fails
due to the reasons discussed above. As expected, the results
in Figs. 3 and 4 show that the accuracy of the approximation
of Eq. (21) improves as the laser intensity is increased. Of
course, the considered equations of motion will eventually fail
for intensities so high that v/c is no longer sufficiently small to
justify a nonrelativistic treatment—but this is not the regime
considered here.

To conclude this section, we note that the approximation
described by a perturbative account of the nondipole B-field
effect along the dipole laser-induced motion [Eq. (21)] is
accurate in the regime of recent experiments for linearly

polarized light. To connect to the quantum treatment, we
therefore proceed in the next section with an identification of
the corresponding Hamiltonian, i.e., an identification of the
Hamiltonian that gives the equation of motion of Eq. (21)
upon application of Hamilton’s classical equations of motion.

D. Nondipole strong-field-approximation Hamiltonian

In the strong-field-approximation or Keldysh-Faisal-Reiss
approach [41–43], the effect of the potential is neglected in
the continuum. In the nondipole strong-field-approximation
Hamiltonian, the idea is to account for the nondipole effects
as captured by the classical equations of motion in Eq. (21).
We are then lead to the search for the Hamiltonian that
results in the equations of motion Eq. (21). It is left for the
reader to verify, by applying the classical Hamilton equations
that Eq. (21), with an additional force from the potential
V , is obtained from the following nondipole strong-field-
approximation Hamiltonian:

HSFA
ND,MG = [p − qA(0)]2

2m
+ q2

m
A(0) · A(1) + V, (22)

i.e., by neglecting the term (−q/m)A(1) · p compared with
the (q2/m)A(0) · A(1) term in Eq. (8). This Hamiltonian is
the same as that considered in earlier work focusing on the
high-intensity, high-frequency regime [3–9]. The superscript
SFA in Eq. (22) reminds us that the Hamiltonian is inspired
by strong-field physics ideas. The subscript ND indicates that
this is a nondipole Hamiltonian.

It may be illustrative to rewrite the nondipole interaction
term in Eq. (22) as

q2

m
A(0) · A(1) = −q(ṙD × B(1) ) · r, (23)

which can be interpreted as the potential associated with the
Lorentz force on the trajectory induced by the electric field in
the polarization direction.

We note that (q2/m)A(0) · A(1) = −q(ṙD × B(1) ) · r = 0 in
the long-pulse limit for circularly polarized light. For circular
polarization, ε = 1, and in the long-pulse limit it is therefore
the − q

m A(1) · p = x
c (− q

m p) · E (0) terms from Eqs. (8) and (9)
that are responsible for nondipole effects. Classically, this
latter nondipole term gives a contribution to the Lorentz force
in the plane of polarization due to motion in the propaga-
tion direction. The resulting velocity is not along the vector
potential and therefore there is a nondipole effect. For linear
polarization, however, it can be an accurate approximation to
neglect these terms compared to the (q2/m)A(0) · A(1) term as
shown in Sec. II B. This sensitivity of the relevant nondipole
terms to the polarization of light again means that different
aspects of the nondipole effect can be probed in strong-field
interactions with matter simply by changing the polarization
from linear to circular. We remind the reader that focus in
this work is on linear polarization where the approximation
of Eq. (22) is expected to be most accurate based on the
discussion in Secs. II B and II C.

The discussion of Secs. II B and II C led to the
nondipole strong-field-approximation Hamiltonian, Eq. (22).
This Hamiltonian, or unitarily transformed versions thereof,
was considered in connection with calculations in the high-
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intensity and high-frequency regime [3–9]. To the best of our
knowledge it has not been considered in the long-wavelength
limit in focus here nor has its accuracy been justified by
classical analysis as that discussed in Sec. II B.

In Eq. (22) there is one interaction term proportional to
the momentum operator and one interaction term proportional
to the coordinate space operator. In strong-field physics, a
Hamiltonian where the interaction with the external field is ex-
pressed by momentum (spatial coordinate) operators is often
referred to as being in the velocity (length) gauge. Following
that tradition, we refer to the Hamiltonian in Eq. (22) as being
in a mixed velocity and length gauge (MG) representation,
which explains the subscript. By applying unitary transforma-
tions to Eq. (22), it is possible to express all interactions with
the external fields with either momentum or coordinate space
operators. The explicit forms in the velocity and length gauges
are given in the following sections.

1. Velocity gauge

To obtain the velocity gauge form of the nondipole strong-
field-approximation Hamiltonian, we note that if the state |ψ〉
fulfils the TDSE ih̄∂t |ψ〉 = H |ψ〉, then the unitarily trans-
formed state |ψ ′〉 = U |ψ〉 for a unitary operator U fulfills
ih̄∂t |ψ ′〉 = H ′|ψ ′〉 with

H ′ = UHU † + ih̄U̇U †. (24)

In analogy with the operator exp( i
h̄ qA(0)r), with −∂t A(0) =

E (0), that facilitates the transformation between the length
and velocity gauge forms in the dipole approximation, we
introduce the temporal integral of the force factor in the
propagation direction defined through the relation (excluding
ε = 1)

−∂t A(M ) = ṙD × B(1). (25)

It is readily seen by using the Baker-Haussdorf
lemma, exp(iGλ)A exp (−iGλ)=A+iλ[G, A] + (i2λ2/2!)[G,

[G, A]] + · · · , where G a Hermitian operator and λ is a real
parameter [44], that a unitary transformation of Eq. (22) with

U = exp

(
i

h̄
qA(M ) · r

)
(26)

leads to a transformed Hamiltonian with only momentum
operators, i.e.,

HSFA
ND,VG = (p − qA′)2

2m
+ V, (27)

where

A′ = A(0) + A(M ), (28)

with A(0) given in Eq. (4) and having nonvanishing compo-
nents in the plane of polarization and A(M ) defined in Eq. (25)
and having a nonvanishing component along the propagation
direction. The Hamiltonian in Eq. (27) is the nondipole strong-
field-approximation Hamiltonian in the velocity gauge.

2. Length gauge

A nondipole strong-field-approximation length gauge
Hamiltonian is obtained by unitary transforming the Hamil-
tonian in Eq. (27), according to Eq. (24), using the unitary

operator

U = exp

(
− i

h̄
qA′ · r

)
. (29)

The result can be obtained by using the Baker-Haussdorff
lemma and it reads

HSFA
ND,LG = p2

2m
− qE ′ · r + V, (30)

where the effective electric field is defined as

E ′ = −∂t A′, (31)

with A′ defined in Eq. (28).

E. Nondipole strong-field-approximation Volkov states

In strong-field physics, the Volkov wave states play a
prominent role. These states are solutions to the TDSE in the
absence of the atomic or molecular potential V . The solutions
are readily found as follows.

The solution to the TDSE corresponding to the velocity
gauge nondipole strong-field-approximation Hamiltonian of
Eq. (27) is seen to be the velocity gauge nondipole strong-
field-approximation Volkov state given by∣∣ψV,k

ND,VG

〉 = |k〉e− i
h̄ S, (32)

with 〈r|k〉 = (2π )−3/2 exp(ik · r) a plane wave with wave
number k, normalized such that 〈k′|k〉 = δ(k − k′). In
Eq. (32), the nondipole strong-field-approximation Volkov
phase is given by

S =
∫ t

−∞
(h̄k − qA′)2/(2m)dt ′. (33)

It then follows from Eq. (29) that the length gauge
nondipole strong-field-approximation Volkov state, which
solves the TDSE with the Hamiltonian in Eq. (30), is given
by ∣∣ψV,k

ND,LG

〉 = |k − qA′/h̄〉e− i
h̄ S. (34)

Finally, we note that the mixed gauge nondipole state
corresponding to the Hamiltonian in Eq. (22), by Eqs. (27)
and (26), is given by∣∣ψV,k

ND,MG

〉 = |k − qA(M )/h̄〉e− i
h̄ S. (35)

Long-pulse limit

The above expressions for the nondipole Volkov states are
on forms, which can be readily used in theory aiming at a
description of charged particles with intense pulses of short
duration, e.g., in strong-field ionization, and we come back to
such applications of the nondipole Volkov state below. For the
analysis of a certain class of strong-field physics problems,
including the case of laser-assisted scattering, it is helpful
to consider the long-pulse limit. In this limit the temporal
envelope in the definition of the vector potential is neglected
and it is assumed that the field is adiabatically switched on
and off at suitably early and late times. In this case, A(M ) can
be expressed as

A(M ) = −x̂
q

2mc
(A(0) )2. (36)
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The integral in Eq. (33) can then be evaluated keeping terms
up to order 1/c with the result (for ε = 0 where the approach
is most accurate)

Slin =
(

h̄2k2

2m
+ U ′

p

)
t + h̄k · α0(t ) − U ′

p

2ω
sin(2ωt ), (37)

where

U ′
p =

(
1 + h̄kx

mc

)
Up (38)

and

Up = q2A2
0

4m
(39)

is the ponderomotive potential describing the average energy
of a free electron in the dipole field, and where

α0(t ) = α0 cos(ωt )ẑ, (40)

with ẑ the direction of the linear polarization and where

α0 = qA0

mω
(41)

is the classical quiver radius, i.e., the maximal excursion of
the charged particle in the dipole field A(0) of Eq. (4) with
ε = 0. We see from Eq. (38) that the nondipole contribution
gives rise to a shift of the ponderomotive potential. The
shift depends on the direction of the electron with respect to
the propagation direction of the electromagnetic pulse. This
shift is identical to the shift obtained by making a first-order
Taylor expansion of the energy given on the right-hand side in
Eq. (21) of Ref. [30].

The nondipole phase factor e− i
h̄ Slin entering the nondipole

strong-field-approximation states can now be evaluated
in terms of Bessel functions of integer order by using
the generating functions eix sin φ = ∑

n Jn(x)einφ , eix cos φ =
eix sin(π/2−φ) = ∑

n inJn(x)e−inφ , and eix sin 2φ = ∑
n Jn(x)ei2nφ .

For linear polarization, we find an expression in terms of
the generalized Bessel functions, Jn(u, v) [43], and with the
present choice of phase for the vector potential, the result
reads

e−iSlin/h̄ =
∑

n

Jn

(
kzα0,

U ′
p

2h̄ω

)
(−i)ne− i

h̄ ( h̄2k2

2m +U ′
p+nh̄ω)t . (42)

The factor in Eq. (42) can be combined with the suitable
plane wave states of Eqs. (32), (34), and (35) to give the
corresponding long-pulse limit expressions for the nondipole
strong-field-approximation Volkov states.

F. Some physical effects of the nondipole contribution included
in the nondipole strong-field-approximation Hamiltonian

The nondipole formalism considered here can be readily
applied to strong-field physics in TDSE simulations and mod-
eling. It should be stressed that the nondipole strong-field-
approximation Hamiltonians are particularly well-suited for
TDSE simulations since the Hamiltonians involve operators
that are individually expressed either in coordinate or momen-
tum space. Hence, they are on a form which readily allows for
split-operator schemes [32]. To illustrate the usefulness of the
present approach, we postpone the consideration of ab initio

TDSE approaches, and here merely outline the nondipole
theory for laser-assisted scattering and for nonperturbative
strong-field ionization in their simplest possible formulations
(see, e.g., Ref. [45] for corresponding calculations in the
dipole case).

1. Nondipole strong-field-approximation laser-assisted scattering

In laser-assisted electron scattering (LAES), an electron
scatters elastically by a potential in the presence of a laser
pulse. The potential allows the electron to exchange energy
with the assisting field in multiples of the photon energy.
LAES is fundamental in recent advancements within ultra-
fast molecular imaging with laser-assisted electron diffraction
[46,47] and is also a part of the foundation of strong-field
physics, since the original LAES experiments gave the first
clear demonstration of multiphoton free-free processes [48].
A theoretical description of LAES was formulated by Kroll
and Watson in 1973 [49] and a description in the first-Born
approximation for the scattering between the electron and the
potential can be found in Ref. [50]. To make the discussion
as simple as possible and to be able to clearly identify
nondipole effects associated with the nondipole strong-field-
approximation Hamiltonian, we consider laser-assisted scat-
tering in linearly polarized light in the first-Born approxima-
tion. Using the nondipole strong-field-approximation velocity
gauge Volkov states of Eq. (32), the S-matrix describing the
transition from an initial state i with wave number ki, to a
final state f with wave number k f due to the scattering in
the potential V , can be calculated. One finds in the first-Born
approximation the following expression for the S-matrix:

(S − 1)B
f i = −i

∫ ∞

−∞
dt

〈
ψ

V,k f

ND,VG

∣∣V ∣∣ψV,ki
ND,VG

〉
. (43)

We introduce the wave-number transfer vector, Q = k f − ki,
and the Fourier transform of the scattering potential, denoted
by

Ṽ (Q) = 1

(2π )3

∫
dre−iQ·rV (r). (44)

The nondipole strong-field-approximation Volkov phases
form a Dirac delta function in energy upon integrating over
time, which implies the following energy conservation rela-
tion for light linearly polarized in the z direction and propa-
gating in the x direction:

h̄2k2
f

2m
+ h̄k f · x̂

mc
Up = h̄2k2

i

2m
+ h̄ki · x̂

mc
Up + l h̄ω. (45)

Here l is the number of photons exchanged with the external
field. As is clear from this equation l > 0 describes photon ab-
sorption and l < 0 describes photon emission. An additional
effect of the nondipole term included in the nondipole strong-
field approximation is the energy-contribution associated with
the propagation direction x̂ of the field. Physically, these
terms mean that the scattered electron will not only be able
to gain photon energy from absorption or emission but also
through a change in the direction of the scattered particle
relative to the propagation direction. We express the time-
dependent part of the nondipole strong-field approximation
Volkov states by Eq. (42) and use the summation relations of
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generalized Bessel functions [43], and we find the transition
matrix elements T B

f i (l ) for the scattering process as

(S − 1)B
f i = −2π h̄i

∑
l

T B
f i (l ), (46)

T B
f i (l ) = (−i)l J−l

(
α0 · Q,

Up

2ωmc
Q · x̂

)
Ṽ (Q), (47)

where α0 = α0ẑ in the case of linearly polarized light. The in-
fluence of the laser on the scattering process is included in the
generalized Bessel function in Eq. (47), which multiplies the
field-free first-Born T -matrix, given by the Fourier transform
of the potential in Eq. (44). The differential cross section is
proportional to the norm square of the transition matrix ele-
ment and we find that the nondipole laser-assisted scattering
cross section of l-photon exchange can be expressed as

dσ B,ND(l )

d
(k f (l ), ki )

= k f (l )

ki
J2
−l

(
α0 · Q,

Up

2ωmc
Q · x̂

)
dσ B

d
(k f (l ), ki ), (48)

where the last factor on the right-hand side is the field-free
cross section in the first-Born approximation. In the dipole
approximation, the second argument of the generalized Bessel
function in Eq. (48) vanishes, and since Jl (x, 0) = Jl (x), we
have the following Born expression in the dipole approxima-
tion

dσ B,D(l )

d
(k(l ), ki ) = k f (l )

ki
J2
−l (α0 · Q)

dσ B

d
(k f (l ), ki ). (49)

Comparing Eqs. (48) and (49), one sees that the nondipole
effect is captured by the second argument in the generalized
Bessel function. Due to the behavior of these functions, it fol-
lows that the nondipole effect is predicted to give a maximal
contribution to the differential cross section in geometries,
where the transfer vector, Q, and the propagation direction
of the light, x̂, are parallel or antiparallel, as well as for
low photon frequencies, ω. This is exactly the domain where
experiments found unexpected results and reported large dis-
agreement with laser-assisted scattering theory formulated in
the dipole approximation [51–56]. A significant feature of the
nondipole strong-field-approximation approach is a lack of
symmetry in the differential cross section around the polar-
ization direction. This originates from the contribution in the
propagation direction x̂ present in the nondipole and absent in
the dipole case. Because of this contribution, by changing the
laser propagation direction, the nondipole contribution may
change from enhancing multiphoton absorption and suppress-
ing multiphoton emission to the opposite. A more detailed
investigation of the predictions of the nondipole strong-field-
approximation Hamiltonian in connection with experimental
data for laser-assisted scattering [51–53,55,56] is work for the
future.

2. Nondipole strong-field-approximation multiphoton ionization

To see how the nondipole effects manifest themselves, it
is useful first to consider again the long-pulse limit where the
pulse is switched on and off at very early and late times. In
the S-matrix formulation [43], the leading-order transition for

multiphoton ionization reads in the nondipole case

(S − 1)B
f i = −i

∫ ∞

−∞
dt

〈
ψV,k

ND,VG

∣∣ − q

m
A′ · p + q2A′2

2m
|φ0〉,

(50)

where |ψV,k
ND,VG〉 is the time-dependent nondipole Volkov state

of Eq. (32), A′ is defined in Eq. (28), and |φ0〉 is the field-free
initial state, which includes the trivial time dependence e− i

h̄ Ebt

associated with the time evolution of the ground state with
energy Eb = −Ip. Expressing the time-dependent part of the
nondipole Volkov state by the expansion Eq. (42), the time
integral is readily performed and the result reads

(S − 1)B
f i = −2π h̄i

∑
n0

Tf i(kn), (51)

with an energy conserving Dirac delta function giving the final
kinetic energy as

h̄2k2
n

2m
= nh̄ω − U ′

p + Eb (52)

for n � n0 and n0 the smallest number that makes the right-
hand side of Eq. (52) positive. The T -matrix element in
Eq. (51) to first order in 1/c reads

Tf i(kn) = (−i)n(U ′
p − nh̄ω)J−n

(
α0 · kn,

U ′
p

2h̄ω

)
φ̃0(kn), (53)

with φ̃0(kn) = (2π )−3/2
∫

dr exp(−ikn · r)φ0(r) the Fourier
transform of the initial orbital evaluated at the momentum
kn. The multiphoton ionization rate is related to the norm
square of the transition matrix [43]. The energies of kn for a
given n depends on the component of k along the propagation
direction x̂ due to the presence of U ′

p of Eq. (38) in Eq. (52).
This dependence induces an asymmetry in the photoelectron
momentum distribution in the propagation direction: When
the momentum of the photoelectron is along the propagation
direction, U ′

p is larger than when the directions are antiparal-
lel. Note that the effect of the Coulomb force can change the
momentum offset as illustrated in the classical simulations in
Sec. II C. At a driving frequency of ω = 50 a.u. and for intense
fields, the nondipole strong-field approximation was shown to
give qualitatively correct results for the photoelectron angular
distributions when compared with TDSE results [9].

3. Nondipole-induced shift in the propagation direction

The nondipole effect manifests itself in the measured
photoelectron momentum distribution, e.g., by a shift of this
distribution along the laser propagation direction [14,15,17].
In the long-pulse limit the origin of this shift was discussed
above. A saddle-point analysis can give a closed analytical
expression for the estimation of the shift. The magnitude and
direction of the shift depends on the polarization of light. It
also depends on the relative strength of the laser field and the
Coulomb potential, as illustrated by the examples in Sec. II C.
An analytical estimate of the shift can be obtained by con-
sidering the leading-order term of the strong-field-ionization
amplitude in the tunneling regime using the nondipole strong-
field-approximation Hamiltonian as derived in detail in the
Appendix. The result for the dominant contribution to the
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nondipole-induced shift of the momentum distribution in the
laser propagation direction is

(h̄kx )shift = 1

3c
Ip. (54)

This shift was also found previously (see, e.g., Refs. [17–20]).
It is encouraging that the shift is captured by the nondipole
strong-field-approximation Hamiltonian. As noted above, the
effect of the Coulomb potential can lead to a resulting net
final drift of the outgoing low-energy electrons in the direction
opposite to the laser propagation direction. To account for
such effects in the S-matrix formulation, one would need
to account for the atomic or molecular potential, V , in a
more accurate manner, e.g., by developing the Born series
to higher order in V , or integrating the effect of V along the
laser-induced trajectory in an Eikonal-like approach.

4. Nondipole strong-field-approximation laser-assisted
photoelectric effect and attosecond streaking

The nondipole strong-field-approximation Hamiltonian
can also be used to include nondipole effects in an analysis of
laser-assisted photoelectric effect (LAPE) (see, e.g., Ref. [57]
for an experiment on LAPE) and attosecond streaking (see,
e.g., Ref. [58]). In the LAPE case, the S-matrix to consider is

(S − 1)B
f i = −i

∫ ∞

−∞
dt

〈
ψV,k

ND,VG

∣∣ − q

m
AXUV · p|φ0〉, (55)

where |ψV,k
ND,VG〉 and |φ0〉 were defined after Eq. (50) and AXUV

is the XUV field with the angular frequency ωXUV inducing
single photon ionization. The nondipole effect is included
in the nondipole Volkov wave function. Evaluation of the S
matrix leads to an energy conservation relation

(h̄kn)2

2m
= ωXUV − Ip − U ′

p − nh̄ω (56)

and a T -matrix element corresponding to n-photon exchange
by the assisting IR given by

Tf i(kn) = (i)nJn

(
α0 · kn,

U ′
p

2h̄ω

)
(−qA0,XUV · h̄kn)

2m
φ̃0(kn),

(57)

where α0 is the quiver radius associated with the assisting
IR field and A0,XUV is the vector potential amplitude of the
XUV field. The norm square of the T -matrix element gives the
ionization rate. The nondipole effect is present in the modified
ponderomotive energy U ′

p given by Eq. (38).
For attosecond streaking, analysis based on the S matrix

considered above, but for short pulses, can give an analytical
estimate for the shift in the center of energy position due
to nondipole effects. In the derivation, it is used that the
nondipole Volkov phase changes only a little during the brief
duration of the attosecond pulse, justifying a first-order Taylor
expansion of the phase (see, e.g., Ref. [59] for the procedure).
We find that the peak in the center of final ( f ) energy is
determined by the relation

h̄2k2
f

2m
+ q2(A(0) )2

2m
− q

m
A′ · h̄k f + Ip − h̄ωXUV = 0, (58)

where the vector potentials given by Eqs. (4) and (28) are
evaluated at the time τ , when the attosecond XUV is fired
w.r.t. the center of the femtosecond IR pulse. Using the
explicit forms of the vector potentials introduced above, we
find that a calculation for an IR field linearly polarized along
the z direction and with propagation along the x direction
gives rise to a shift in h̄k f ,z due to the A(M ) term present in
A′. The shift is described by the following substitution going
from the dipole to the nondipole case:

h̄k f ,z → h̄k f ,z − qA0

2mc
(h̄k f ,x ) sin(ωτ ). (59)

We see from Eq. (59) that there is no nondipole effect, at the
present level of theory, if the outgoing electrons are detected
in the polarization direction (z). If the photoelectrons are de-
tected at a nonvanishing angle w.r.t. the polarization direction,
Eq. (59) shows that there is a nondipole-induced shift in the
peak of the photoelectron energy distribution, which could
be considered in the interpretation of attosecond time-delay
experiments.

III. SUMMARY AND CONCLUSION

In this work, we have presented an analysis of nondipole
effects to order 1/c in the nonrelativistic regime. The idea
behind the approach is based in strong-field physics, where the
effect of the strong-field driving along the laser polarization
direction is of paramount importance. In this regime, often
useful insights into electron dynamics can be obtained by
accounting in an approximate manner for the interaction of
the electron with the atomic or molecular potential. In line
with these observations, we have explored to what extent
it can be accurate to account for the effect of the B field
along the laser-induced dipole motion. We have shown that
while this particular nondipole effect can dominate and accu-
rately describe nondipole effects for linearly polarized, high-
intensity, infrared light, its contribution vanishes for circularly
polarized light in the long-pulse limit. This analysis exposed
the sensitivity of nondipole effects to the polarization of the
driving light.

For high-intensity, infrared, linearly polarized light, it was
shown by classical simulations that a perturbative description
of the effect of the B field along the laser-induced dipole
trajectories is accurate. Using Hamilton’s classical equations
of motion, we identified the corresponding classical Hamilton
function and therefore also the quantum mechanical Hamil-
tonian. Because this Hamiltonian was obtained using ideas
about the relative importance of interactions w.r.t. the domi-
nant E -field interaction from strong-field physics, we refer to
this Hamiltonian as the nondipole strong-field-approximation
Hamiltonian. The Hamiltonian obtained in this way was previ-
ously applied to physics in the high-intensity, high-frequency
regime [3–9], where in particular its numerical advantage
was stressed. This Hamiltonian separates namely coordinate
and momentum space operators in its mixed gauge version.
This separation property is highly advantageous for numerical
propagation schemes and allows us to formulate the light-
matter interaction part of the Hamiltonian in terms of op-
erators involving exclusively momentum space operators, or
exclusively spatial coordinate space operators, corresponding
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to the velocity gauge and the length gauge versions of the
nondipole strong-field-approximation Hamiltonian.

With the nondipole strong-field-approximation Hamilto-
nian at hand we considered analytically some implications of
nondipole effects on laser-assisted and laser-induced strong-
field processes. The analytical approach was facilitated by
the simple form of the Hamiltonian. In connection with
laser-assisted scattering, we identified a maximal nondipole
contribution to the cross section in scattering geometries
where corresponding theory within the dipole approximation
predicts a vanishing cross section. The nondipole strong-
field-approximation Hamiltonian therefore seems a suitable
starting point for developing theory in this geometry where the
comparison between theory and experiment is still a problem
to be dealt with. In connection with strong-field ionization,
we identified laser-induced nondipole shifts of the maximum
in the photoelectron momentum distribution. In the tunneling
regime of small Keldysh parameter, we obtained an analytical
expression for the dominant shift, which is in agreement
with that obtained by others. We also outlined the nondipole
effects induced by the nondipole strong-field-approximation
Hamiltonian in related strong-field processes such as the laser-
assisted photoelectric effect and attosecond streaking. In par-
ticular, we identified an additional nondipole-induced shift of
the photoelectron energy distribution that could be considered
in the interpretation of attosecond time-delay experiments.

In conclusion, we find that the nondipole strong-field-
approximation Hamiltonian for linearly polarized light can be
accurate in the low-frequency, high-intensity regime. We find
that the Hamiltonian captures interesting nondipole effects
already within the simplest analytical quantum mechanical
approaches such as leading-order S matrix or strong-field-
approximation theory. For these reasons, we think it is worth-
while to explore the predictions of this Hamiltonian in this
regime in the future with, e.g., numerical ab initio meth-
ods, which would benefit from its non-space-and-momentum-
mixing form, or with higher-order terms in laser-dressed
Born-type expansions.
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APPENDIX: SADDLE-POINT ANALYSIS
OF NONDIPOLE-INDUCED MOMENTUM SHIFT

IN LASER PROPAGATION DIRECTION

When describing the process of recollision-free direct mul-
tiphoton ionization by S-matrix theory with an electromag-
netic field in the electric dipole approximation, the photoelec-
tron momentum distribution (PMD) will be symmetric around
the laser propagation direction. In this Appendix, we derive an
analytical result for the asymmetry induced in the PMD when
the interaction with the electromagnetic field is described by
the nondipole strong-field-approximation Hamiltonian. The
relevant quantities, i.e., states and vector potentials, are given

in the main text of the paper, but to make the derivation easier
to follow, we make the presentation in this Appendix self-
contained and reintroduce most quantities needed. To obtain
an analytical estimate, we describe the electromagnetic field
by the vector potential

A′ = A(0) + A(M ), (A1)

with

A(0) = A0 sin(ωt )ẑ and A(M ) = −x̂
q

2mc
(A(0) )2. (A2)

The S-matrix to leading order reads

(S − 1)B
f i = −i

∫ t f

0
dt

〈
ψV,k

ND,VG

∣∣ − q

m
A′ · p + q2A′2

2m

∣∣φ0
〉
,

(A3)

where the limits on the integral describe that we assume
a main contribution to the amplitude to come from one
dominant half cycle of the field. The nondipole strong-field-
approximation velocity gauge Volkov state reads∣∣ψV,k

ND,VG

〉 = |k〉 e− i
h̄ S(t,k), (A4)

with 〈r|k〉 = (2π )−3/2 exp(ik · r) and the Volkov phase

S(t, k) =
∫ t

0
dt ′(h̄k − qA′)2/(2m)

≈
∫ t

0
dt ′

[
(h̄k)2

2m
− q

m
A(0) · (h̄k)

+
(

1 + h̄kx

mc

)
(qA(0) )2

2m

]
. (A5)

The S-matrix element can be expressed as

(S − 1)B
f i = −i

∫ t f

0
dtD(k, t )e

i
h̄ Stot (t,k), (A6)

where D(k, t ) describes the nonoscillating part of the inte-
grand and Stot is the total phase including the contribution
from the time evolution of the ground state

Stot(t, k) =
∫ t

0
dt ′

[
(h̄k)2

2m
− q

m
A(0) · (h̄k)

+
(

1 + h̄kx

mc

)
(qA(0) )2

2m

]
+ Ipt . (A7)

Since the phase of Eq. (A7) is rapidly oscillating, the S-matrix
element, Eq. (A6), can be approximated using the saddle-
point approximation. The ionization probability for ionization
and final electron momentum h̄k is to leading-order in the
interaction proportional to

P(k) ∝ e−2Im[Stot (ts,k)], (A8)

where the saddle-point time, ts, solves

∂Stot(t, k)

∂t
= 0. (A9)

The remaining task is to find ts and use the approximate
expression for the probability, Eq. (A8), to estimate the
nondipole-induced shift of the PMD in the laser propagation
direction.
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The saddle-point equation to the zeroth order in 1/c reads

∂Stot(t, k)

∂t
= 0 = (h̄k)2

2m
− q

m
A0 sin(ωts)h̄kz

+ q2

2m
A2

0 sin2(ωts) + Ip. (A10)

This equations is solved by

ts = 1

ω
arcsin

(
ω

qE0
h̄kz ± iγeff

)
, (A11)

where we have used E0 = ωA0 and where γeff =
ω

qE0

√
h̄2k2

x + h̄2k2
y + 2mIp is a modified Keldysh factor.

The standard Keldysh factor is given by γ = ω
qE0

√
2mIp. Only

the “+” solution in Eq. (A11) is used for the asymmetric
shift-analysis of the PMD. One could include another saddle
point ts + π/ω, corresponding to ionizing in the following
half cycle. Including this extra saddle point would lead to
interference effects in the PMD from the two ionization times.
However, an analysis of the effect of using two saddle points
leads to no significant difference in the nondipole-induced
shift in the laser propagation direction of the PMD compared
to only using a single saddle point. Therefore, the analysis of
the asymmetry will be made using only the saddle point in
Eq. (A10). Also note that the consideration of the saddle-point
equation including the leading-order correction in 1/c will
give the same final result, so it suffices to use the solution of
Eq. (A11). The asymmetry of the PMD for a specific choice
of kz and ky can be approximated by the shift of the maximum
of the lateral distribution corresponding to finding the kx that

solves the equation

∂P(k)

∂ (h̄kx )
= 0. (A12)

Solving Eq. (A12) is equivalent to solving

∂Im[Stot(ts, k)]

∂ (h̄kx )
= 0. (A13)

To solve Eq. (A13), the imaginary part of Stot needs to be
found. We consider the tunneling limit γ → 0 and consider
the dominant small final momenta in the polarization direc-
tion, |h̄kz| � E0/ω. In the integral in Eq. (A7), the total phase
becomes

Stot(ts, k) =
[

(h̄k)2

2m
+ Ip

]
ts + qE0

mω2
cos(ωts)h̄kz

+ q2

m

(
1 + h̄kx

mc

)
E2

0

4ω2

[
ts − 1

ω
cos(ωts) sin(ωts)

]
.

(A14)

To find the imaginary part of Stot, the quantities ts, cos(ωts),
and sin(ωts) cos(ωts) are expanded in orders of γeff and
(ω/E0)h̄kz. Since the front factors on the ts-dependent terms in
Eq. (A14) are different and relate to the expansion variables,
the individual ts-dependent factors are expanded to different
orders. The ts in the term [ (h̄k)2

2m + Ip]ts is expanded to first
order with the result

ts ≈ 1

ω

(
ω

qE0
h̄kx + iγeff

)
, (A15)

from which the imaginary part is readily found.
The cos(ωts) factor is expanded to second order,

cos(ωts) = cos

[
arcsin

(
ω

qE0
h̄kz + iγeff

)]
=

√
1 −

(
ω

qE0
h̄kz + iγeff

)2

≈ 1 − i
ω

qE0
h̄kzγeff − 1

2

(
ω

qE0

)2

(h̄kz )2 + 1

2
γ 2

eff,

(A16)

from where we can also read-off the imaginary part.
The ts in the last parenthesis in the last factor in Eq. (A14) is expanded to third order,

ts ≈ 1

ω

[
ω

qE0
h̄kx + iγeff − i

1

6
γ 3

eff + 1

6

(
ω

qE0

)3

(h̄kz )3 + i
1

2

(
ω

qE0

)2

(h̄kz )2γeff − 1

2

ω

qE0
h̄kzγ

2
eff

]
, (A17)

and one finds that the imaginary part of ts has the following approximate expression:

Im(ts) ≈ 1

ω

[
γeff − 1

6
γ 3

eff + 1

2

(
ω

qE0

)2

(h̄kz )2γeff

]
. (A18)

Finally, the expansion of cos(ωts) sin(ωts) to third order yields

cos(ωts) sin(ωts) =
√

1 −
(

ω

qE0
h̄kz + iγeff

)2(
ω

qE0
h̄kz + iγeff

)

≈
[

1 − i
ω

qE0
h̄kzγeff − 1

2

(
ω

qE0

)2

(h̄kz )2 + 1

2
γ 2

eff

](
ω

qE0
h̄kz + iγeff

)
, (A19)

with the imaginary part

Im[cos(ωts) sin(ωts)] ≈ γeff − 3

2

(
ω

qE0

)2

(h̄kz )2γeff + 1

2
γ 3

eff. (A20)
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To find the kx that solves Eq. (A13) to the first order in 1/c, we assume that γeff is kx independent. This approximation yields
the same result as solving for a kx-dependent γeff and expanding this solution to the first order in 1/c. However, the considered
calculation is much less tedious. The equation to solve reads

∂Im[Stot(ts, k)]

∂ (h̄kx )
= 0 = h̄kx

m
γeff + q2

m

1

mc

E2
0

4ω2

1

ω

[
γeff − 1

6
γ 3

eff + 1

2

(
ω

qE0

)2

(h̄kz )2γeff

]

+ q2

m

1

mc

E2
0

4ω2

1

ω

[
−γeff + 3

2

(
ω

qE0

)2

(h̄kz )2γeff − 1

2
γ 3

eff

]

= h̄kx

m
γeff + q2

m

1

mc

E2
0

4ω2

1

ω

[
2

(
ω

qE0

)2

(h̄kz )2γeff − 4

6
γ 3

eff

]
,

which implies that the nondipole-induced shift in the laser propagation direction is

(h̄kx )shift = q2

m

1

c

E2
0

4ω2

[
4

6

(
ω

qE0

)2(
(h̄ky)2 + 2mIp

) − 2

(
ω

qE0

)2

(h̄kz )2

]
= 1

c

[
1

3

(
(h̄ky)2

2m
+ Ip

)
− (h̄kz )2

2m

]
. (A21)

As seen from Eq. (A21), for the shift of maximum in the
PMD, at kz = ky = 0, the shift is h̄kx,shift = 1/(3c)Ip. Note
that the sign on the term proportional to k2

z is negative
in the present case based on the nondipole strong-field-
approximation Hamiltonian. With the full 1/c Hamiltonian,
a similar derivation as the one above gives a positive sign

on that term; see Supplemental Material of Ref. [17]. Since
most of the ionization yield comes in the vicinity of the point
kz = ky = 0, the total shift in momentum in the propagation
direction will be in the positive direction at a distance of
approximately 1/(3c)Ip. This shift is given by Eq. (54) of the
main text.
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