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Two-color phase-of-the-phase spectroscopy applied to nonperturbative electron-positron pair
production in strong oscillating electric fields
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Production of electron-positron pairs from vacuum in strong bichromatic electric fields, oscillating in
time with a fundamental frequency and its second harmonic, is studied. Strong-field processes occuring in
such field configurations are generally known to be sensitive to the relative phase between the field modes.
Phase-of-the-phase spectroscopy has recently been introduced in the context of strong-field photoionization
as a systematic means to analyze these coherence effects. We apply this method to the field-induced pair
production by calculating the phase dependence of the momentum-resolved particle yields. We show that
asymmetric checkerboard patterns arise in the phase-of-the-phase spectra, similarly to those found in strong-field
photoionization. The physical origin of these characteristic structures, which differ between the created electron
and positron, is discussed.
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I. INTRODUCTION

In the presence of very strong electric fields, the quantum
vacuum can become unstable and decay into electron-positron
(e−e+) pairs. This was first predicted for constant electric
fields [1,2] and later extended to electric fields harmonically
oscillating in time [3–5]. Pair production can also be induced
by high-intensity laser fields. While the vacuum remains
stable in the presence of a plane electromagnetic wave due
to its vanishing field invariants [2], the combination of a laser
wave with, for example, a γ -ray photon, a charged particle
or another counterpropagating laser wave may lead to pair
production [6]. The problem of field-induced pair production
has found renewed interest in recent years because it comes
into experimental reach at upcoming high-intensity laser facil-
ities, such as the Extreme-Light Infrastructure [7], the Exawatt
Center for Extreme Light Studies [8] or the European X-Ray
Free-Electron Laser [9].

Various interaction regimes of pair production in a
monochromatic oscillating field can be distinguished by the
value of the dimensionless parameter ξ = |e|E0/(mcω), with
electric field amplitude E0, oscillation frequency ω, electron
charge e and mass m, and speed of light c [6]. For ξ � 1, the
pair production rate obeys a perturbative multiphoton power
law. For ξ � 1 (providing E0 stays subcritical), it displays
instead a nonperturbative exponential field dependence, re-
sembling the case of constant electric field [2]. In between
these asymptotic domains lies the nonperturbative regime
of intermediate coupling strengths ξ ∼ 1, where analytical
treatments of the problem are rather difficult. Noteworthy,
a close analogy with strong-field photoionization in intense
laser fields exists where the corresponding regimes of pertur-
bative multiphoton ionization, tunneling ionization and above-
threshold ionization (ATI) are well known.

Very pronounced effects may be triggered when an os-
cillating field contains two frequencies ω1 and ω2. Strong

amplification of pair production has been predicted to occur
in fields consisting of a strong low-frequency and a weak
high-frequency component, with ω1 � ω2 ∼ mc2/h̄ [10–16].
Another interesting situation arises when the two frequencies
are commensurate, for example ω2 = 2ω1. Then characteristic
quantum interferences between different multiphoton path-
ways occur, along with a dependence on the relative phase
between the field modes. This was demonstrated for pair
production in the superposition of a high-energy γ -photon and
an intense laser wave [17,18] as well as in combined laser
and nuclear Coulomb fields [19–21]. The relative phase was
shown here to exhibit a distinct influence on the momentum
distribution of created particles. Similar coherence effects
were found for pair production in trains of electric field pulses
due to multiple-slit interferences in the time domain [22–27].

Two-color quantum interferences and relative-phase effects
are well established in intense laser interactions with atoms
and molecules [28]. Forming the basis for coherent phase
control, they enable to specifically manipulate strong-field
processes. This way it is, for example, possible to influence
photoelectron yields from strong-field ionization [29], en-
hance the efficiency of high-harmonic generation [30], and
spatially direct the fragmentation of molecules in photodis-
sociation [31].

Recently, phase-of-the-phase spectroscopy has been devel-
oped as a special method to analyze relative-phase effects
in two-color strong-field phenomena [32–35]. It relies on
the observation that, in mathematical terms, a relative phase
is a continuous variable and a bichromatic field is a 2π -
periodic function thereof. This periodic property is passed
on to observables, which are derived from the field, such
as momentum distributions of particles. The observable of
interest can therefore be expanded into a Fourier series, with
the relative-phase dependence being encoded in the complex
Fourier coefficients. The latter are given by their absolute
value and complex phase (which is thus “the phase of the
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phase”). The method was applied to the tunneling [32] and
above-threshold [33] regimes of strong-field photoionization
with linearly polarized fields in joint experimental and theo-
retical studies. It has also been extended to two-color fields of
circular [34] or mutually orthogonal polarization [35].

In the present paper, we study e−e+ pair production by
bifrequent oscillating electric fields in the nonperturbative
regime with ξ ∼ 1. The corresponding time-dependent Dirac
equation is solved numerically to obtain the production prob-
abilities for given particle momenta. Our focus lies on the
relative-phase dependence of the momentum distributions that
is analyzed by phase-of-the-phase spectroscopy. The resulting
spectra are shown to exhibit a characteristic checkerboard
pattern, similar to those obtained in corresponding studies
of strong-field photoionization [32–34]. The method offers
a possibility to distinguish in future high-intensity laser ex-
periments coherent pair production channels from incoherent
background processes, which might arise from residual rest
gas atoms, for example.

Our paper is organized as follows. In Sec. II we briefly
outline our theoretical approach to the problem which was
derived in detail previously. Our numerical results regarding
the relative-phase dependence of bichromatic field-induced
pair production are presented in Sec. III. Concluding remarks
are given in Sec. IV. Relativistic units with h̄ = c = 4πε0 = 1
are used throughout unless otherwise stated.

II. THEORETICAL FRAMEWORK

Our goal is to analyze the relative-phase dependence of
pair production in an oscillating electric field comprising a
fundamental frequency ω and its second harmonic 2ω. The
field is chosen to be linearly polarized in the y direction. In the

temporal gauge, such a field �E (t ) = − �̇A(t ) can be described
by a vector potential of the form

�A(t ) = [A1 sin(ωt ) + A2 sin(2ωt + ϕ)] F (t ) �ey , (1)

where Aj is the amplitude of the j-th mode ( j ∈ {1, 2}) and ϕ

is the relative phase between the modes. Besides, the field is
confined by an envelope function

F (t ) =

⎧⎪⎪⎨
⎪⎪⎩

sin2
(

1
2ωt

)
, 0 � t < τ

1 , τ � t < T − τ

sin2
(

1
2ωt

)
, T − τ � t � T

0 , otherwise

(2)

with turn-on and turn-off increments τ = π
ω

of half-cycle
duration each and a plateau of constant intensity in between.
The plateau region comprises N oscillation cycles of the
fundamental mode, so that the total duration of the electric
field pulse is T = (N + 1) 2π

ω
.

The pair production probability in a time-dependent elec-
tric field can be obtained by solving a coupled system of
ordinary differential equations [15,16,36–39]. We use the
following representation, which was derived in Refs. [38,39]:

ḟ (t ) = κ (t ) f (t ) + ν(t )g(t ) ,

ġ(t ) = −ν∗(t ) f (t ) + κ∗(t )g(t ) , (3)

with

κ (t ) = ieA(t )
py

ε �p
,

ν(t ) = −ieA(t ) e2iε �pt

[
(px − ipy)py

ε �p(ε �p + m)
+ i

]
. (4)

It is obtained from the time-dependent Dirac equation when an
ansatz of the form ψ �p(�r, t ) = f (t ) φ

(+)
�p (�r, t ) + g(t ) φ

(−)
�p (�r, t )

is inserted. Here, φ
(±)
�p ∼ ei( �p·�r∓ε �pt ), with ε �p =

√
�p2 + m2, de-

note free Dirac states with momentum �p and positive or
negative energy, respectively. The suitability of this ansatz
relies first of all on the fact that in a spatially homogeneous
external field, according to Noether’s theorem, the canonical
momentum is conserved. Since the latter coincides with the
kinetic momentum �p of a free particle outside the time interval
when the field is on, it is possible to treat the invariant
subspace spanned by the usual four free Dirac states with
momentum �p separately. Because of the rotational symmetry
of the problem about the field axis, the momentum vector can
be parametrized as �p = (px, py, 0) with transversal (longitu-
dinal) component px (py). As a consequence, one can find a
conserved spinlike operator, which allows one to reduce the
effective dimensionality of the problem further from four to
two basis states [38,39].

In accordance with the ansatz mentioned above, the time-
dependent coefficients f (t ) and g(t ) describe the occupation
amplitudes of a positive-energy and negative-energy state,
respectively. The system of differential equations (3) is solved
with the initial conditions f (0) = 0, g(0) = 1. After the field
has been switched off, f (T ) represents the occupation ampli-
tude of an electron state with momentum �p, positive energy
ε �p, and certain spin projection. Taking the two possible spin
degrees of freedom into account, we obtain the probability for
creation of a pair with given momentum as

W ( �p, ϕ) = 2 | f (T )|2 . (5)

From the manifold parameters that the pair production proba-
bility W depends on, our notation highlights the electron mo-
mentum �p and the relative phase ϕ because they are of main
interest here. Note that the created positron has momentum
−�p, so that the total momentum of each pair vanishes.

As explicated in the introduction, the function W ( �p, ϕ)
is 2π -periodic in the phase variable ϕ. It can therefore be
expanded into Fourier series according to

W ( �p, ϕ) =
∞∑

�=−∞
W�( �p ) ei�ϕ

= W0( �p ) + 2
∞∑

�=1

|W�( �p )| cos[�ϕ + ��( �p )] . (6)

The Fourier coefficients

W�( �p ) = 1

2π

∫ 2π

0
W ( �p, ϕ) ei�ϕ dϕ (7)

can be expressed as W� = |W�| ei�� , with the absolute value
|W�| (called “relative-phase contrast” in [32–34]) and the
complex phase �� (called “phase of the phase”).
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These quantities will be investigated in the next section.
To this end, the coupled system of differential equations (3)
is solved numerically, which was performed by a standard
computer algebra program and, independently, by a custom
C++ code employing a time step of �t = 0.01m−1. The
integral in Eq. (7) is computed as a discrete Riemann sum over
70 equidistant ϕ points. Besides, the momentum resolution in
the spectra below is chosen as �px,y = 0.01m.

Before moving on to the numerical results, we remark
that—under suitable conditions—strong electric fields oscil-
lating in time can serve as simplified models for intense laser
pulses. Particularly in the regime of the relativistic intensi-
ties that are relevant here [40], the field resulting from the
superposition of two counterpropagating laser waves, sharing
the same frequency, amplitude, and polarization direction,
may be represented by an electric background oscillating
in time, provided the characteristic pair formation length is
much smaller than the laser wavelength and focusing scale. At
high frequencies (ω � 0.1m), however, significant differences
between pair production in an oscillating electric field and
pair production in a standing laser wave arise from the spatial
dependence and magnetic component of the latter [41–45]. In
our numerical investigations we will apply field frequencies
of this magnitude, for reasons of computational feasibility.
The corresponding outcomes can therefore be transferred to
the case of laser fields only in a qualitative manner. Neverthe-
less, some general features of the phase-of-the-phase spectra
discussed below are expected to find their counterparts in
laser-induced pair production as well.

III. RESULTS AND DISCUSSION

A. Choice of field parameters

We have applied the method of phase-of-the-phase spec-
troscopy to pair production by a strong bifrequent electric field
in the nonperturbative multiphoton regime. Previous studies
based on monofrequent fields have revealed that the pair
production shows characteristic resonances whenever the ratio
between the energy gap and the field frequency attains integer
values [4,5,39,46,47]. The energy gap is given by 2ε̄, with the
time-averaged particle quasienergies

ε̄ = 1

T

∫ T

0

√
m2 + p2

x + [py − eA(t )]2 dt , (8)

where �p denotes the electron momentum [48]. For example,
in a monofrequent field with ξ = 1 one obtains ε̄ ≈ 1.21m
for vanishing particle momenta ( �p = 0). The enhancement as
compared with the corresponding field-free energy [ε �p = m
for �p = 0] is a result of field dressing. As a consequence,
a field frequency of ω = 0.49072m leads to resonant pro-
duction of particles at rest by absorption of five field quanta
(“photons”) [39]. To allow for a comparison of our results
with this earlier study (see also the recent analysis of pair
production in electric double pulses [27]), we have used
the same frequency value in our numerical calculations. Be-
sides, the normalized amplitude of the fundamental mode
is taken as ξ1 = |e|A1/m = 1, lying in the nonperturbative
multiphoton regime of pair production. The second harmonic
mode is chosen with ξ2 = |e|A2/m ∼ 0.1. Since the parameter
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FIG. 1. Two-dimensional momentum distribution of the electron
(or positron) created in a bifrequent electric field with ξ1 = 1, ξ2 =
0.1, N = 7, ω = 0.49072m, and ϕ = 0 [see Eq. (1)]. The polarization
direction corresponds to the py axis. The center around px = py = 0
is determined by a 5ω resonance and the characteristic ring structure
arises from higher multiphoton resonances with total energy absorp-
tion of 6ω, 7ω, 8ω, etc. The color coding refers to log10 W ( �p, ϕ).

ξ corresponds to the inverse of the Keldysh parameter γ for
strong-field photoionization, our field parameters are closely
related to those of Ref. [33], where γ ≈ 1 for the fundamental
mode and A2/A1 = 0.05. We point out that the resonant nature
of pair production in an oscillating electric field constitutes
a difference from the nonresonant process of strong-field
photoionization. In the latter case, the electron momentum is
not conserved because the atomic nucleus generates a space-
dependent field and can absorb recoil momentum.

The pair production probability (5) resulting for the chosen
field parameters is shown in Fig. 1, as a function of the
momenta px and py of one of the created particles. For the
chosen value of the relative phase (ϕ = 0), the distribution is
mirror symmetric under the transformations px → −px and
py → −py. This implies, in particular, that the distributions
for electrons and positrons coincide in this case. A char-
acteristic ring structure of multiphoton resonances can be
seen (similarly to ATI rings in strong-field photoionization).
It arises from the fact that, under resonant conditions, the
pair production probability (5) as function of the interaction
time T exhibits Rabi-like oscillations between the negative-
and positive-energy Dirac continua with maximum amplitude
of 2. For the chosen interaction time, which corresponds
to N = 7 cycles of the fundamental mode, this maximum
amplitude is reached for the 5ω resonance at the center of
Fig. 1. The resonance condition, in the present case of a
bifrequent field, reads (n1 + 2n2)ω = 2ε̄. We note that, in
contrast to the monofrequent case [39] and a bifrequent, but
noncommensurate situation [15], there are several quantum
pathways that contribute to a specific resonance. For example,
a total energy of 5ω can be absorbed by either n1 = 5 low-
frequency photons from the fundamental mode, n1 = 3 low-
frequency photons and n2 = 1 high-frequency photon from
the second harmonic mode, or n1 = 1 low-frequency photon
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FIG. 2. Longitudinal momentum distribution of electrons created
in a bifrequent electric field with ξ1 = 1, ξ2 = 0.1, N = 7, and ω =
0.49072m [see Eq. (1)]. The black solid (red dashed) curve refers
to a relative phase of ϕ = 0 (ϕ = π

2 ). The transverse momentum
vanishes, px = 0.

and n2 = 2 high-frequency photons. These various pathways
interfere, which generates a dependence of the pair production
probability on the relative phase between the field modes.

Before proceeding to the next subsection, we would like to
mention that quantum interferences can lead to visible signa-
tures in monochromatic fields as well. For example, distinct
carpetlike structures have been observed in the momentum
spectra of ATI photoelectrons under certain emission direc-
tions [49]. They arise from interfering contributions to the
ionization yield, which correspond to two different emission
times during a single field cycle and lead to the same electron
momentum. A similar substructure of alternating maxima
and minima along the resonance rings has also been found
in the momentum distributions of e−e+ pairs produced by
monofrequent electric fields [5] (for an illustration, see Fig. 11
in Ref. [39]). In contrast to these phenomena, phase-of-the-
phase spectroscopy enables to study changes in observables,
such as momentum distributions, when a controllable phase
parameter is externally varied.

B. Phase dependence of pair production

An illustration of the relative phase dependence of pair
production in a bifrequent electric field is depicted in Fig. 2.
It shows the production probability for two different phase
values, when the electron momentum along the field direction
varies from 0 to 2m while its transverse momentum is kept
fixed to zero. Qualitatively, both curves look similar, starting
from maximum values of probability and showing a falling
tendency, with pronounced multiphoton resonance peaks in
between. Quantitatively, however, there are clear differences.
For example, compared to the outcome for ϕ = 0 (black
solid curve), more particles are produced with small momenta
around py ≈ 0.2m whereas much less particles have momenta
above ≈1.2m when the phase is chosen as ϕ = π

2 (red dashed
curve). Similar phase effects arise in the transversal momen-
tum distributions. Furthermore, the positions of the resonance
peaks in Fig. 2 are slightly shifted when the relative phase

FIG. 3. Pair production probabilities (black solid curves) in a
bifrequent electric field with ξ1 = 1, ξ2 = 0.1, N = 7, and ω =
0.49072m, as function of the relative phase between the field modes.
The electron momenta in the top (bottom) panel are px = 0.25m,
py = 0 (px = 0.01m, py = 0.1m). The red dash-dotted lines show the
corresponding Fourier coefficient W0. The blue dotted (green dashed)
curves show the results of the truncated Fourier sums in Eq. (6) when
terms up to � = 1 (up to � = 2) are taken into account.

is varied. This can be understood by noting that the precise
form of the vector potential enters into the quasienergy (8).
As a consequence, the latter exhibits a weak dependence on
ϕ, so that the resonance condition is fulfilled at slightly shifted
particle momenta. In the range of field parameters considered
here, these shifts are on the order of 10−2m [50].

Figure 3 shows the pair production probability W ( �p, ϕ) for
fixed particle momenta as function of ϕ (black solid curves).
In general, the phase dependence can be rather involved, as
exemplified in the top panel. In accordance with Eq. (6), the
probability can be decomposed into its Fourier components.
The leading coefficient W0 determines the phase-averaged
value of probability (red dash-dotted line). By adding the
next term with � = 1 in the Fourier expansion, the overall
trend of W ( �p, ϕ) is reproduced roughly (blue dotted curve).
When the � = 2 term is taken into account as well, the
approximate agreement becomes convincing (green dashed
curve). Therefore, in what follows, we will concentrate on the
first three terms in the Fourier series.

As illustrated in the bottom panel of Fig. 3, for certain
particle momenta the picture simplifies considerably. In the
example shown the shape of the pair production probability
closely resembles a sin function and is pretty well approx-
imated already by the first two Fourier components. The
complex phase of the first Fourier coefficient W1 in this case
takes the value �1 ≈ −π

2 , accordingly.
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FIG. 4. Absolute values of the Fourier coefficients W0 (black
solid curve), W1 (red dashed curve) and W2 (blue dotted curve)
associated with pair production in a bifrequent electric field with the
parameters of Fig. 3. Shown is the dependence on the longitudinal
electron momentum py, when the transverse momentum px is zero.

C. Relative phase contrast and phase-of-the-phase

In the framework of phase-of-the-phase spectroscopy, the
relative-phase dependence of the pair production yield (as
illustrated in Fig. 3) is encoded in a few functions of the
particle momenta. As argued above, in the parameter regime
under consideration, the absolute values of the Fourier coef-
ficients W0( �p ), W1( �p ), and W2( �p ) along with the complex
phases �1( �p ) and �2( �p ) are sufficient to reconstruct the pair
production signal with high accuracy.

The dependence of |W�( �p )| on the longitudinal electron
momentum py, when the transverse momentum vanishes, is
shown in Fig. 4 for � = 0, 1 and 2. The field parameters
are ξ1 = 1, ξ2 = 0.1, N = 7, and ω = 0.49072m. The largest
contribution results from W0, which roughly follows the pair
production probabilities shown in Fig. 2. Depending on the
value of ϕ, the contributions from the terms with � = 1 and
� = 2 in Eq. (6) either enhance or reduce the pair production
yield at given �p. This leads to the differences between the
curves in Fig. 2.

Figures 5 and 6 show the phase-of-the-phase values �1( �p )
and �2( �p ) for the created electron in the px-py plane for
ξ1 = 1 and ξ1 = 2, respectively. A very complex structure is
found, which is dominated by alternating red and blue areas.
A characteristic checkerboard pattern arises this way, which
closely resembles the structures found for ATI photoelec-
trons in bichromatic fields [32–34]. The spectra are mirror
symmetric under the transformation px → −px along the
transverse direction, but asymmetric along the field direction.
As a consequence, the corresponding spectra for the created
positron would be inversed (i.e., �� → −��).

We first discuss the behavior of �1. The blue (red) areas
belong to �1 ≈ −π

2 (�1 ≈ +π
2 ), corresponding to a +sin-like

(-sin-like) dependence of the pair yield:

W ( �p, ϕ) ≈ W0( �p ) + 2|W1( �p )| cos
(
ϕ ∓ π

2

)

= W0( �p ) ± 2|W1( �p )| sin(ϕ) . (9)
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FIG. 5. Phase-of-the-phase spectra for the electron created in a
bifrequent electric field with the parameters of Fig. 3. Top panel:
�1, bottom panel: �2 (each measured in rad with −π � �� � π , as
indicated by the color coding).

Figure 5 (top panel) shows as a general trend that, within a
cone-shaped region around the field axis, a +sin-like depen-
dence dominates for positive longitudinal momenta, py > 0,
and vice versa. This feature can be related to the shape of the
underlying vector potential (1), which is responsible for the
pair production. In contrast to the case of ϕ = 0, the vector
potential is in general asymmetric when ϕ �= 0. For example,
when ϕ lies between 0 and π , the maximum amplitude of
e �A(t ) in the positive y direction exceeds its maximum ampli-
tude in the negative y direction. The asymmetry of the vector
potential leads to an asymmetry in the electron momentum
spectra [51,52].

This kind of relation was also found in Ref. [19] where
the phase dependence of electron spectra resulting from pair
production in the superposition of strong bichromatic laser
and nuclear Coulomb fields was studied. It can be understood
by noting that in strong-field processes the asymptotic longi-
tudinal electron momentum (i.e., the momentum outside the
field) is often related to e �A(t0) where t0 denotes the “moment”
when the electron has entered into the field. In line with
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FIG. 6. Right halves (0 � px � 4m): Same as Fig. 5, but with
increased amplitude of the fundamental field mode, corresponding
to ξ1 = 2. Left halves (−4m � px < 0): Electron momentum distri-
bution for these field parameters at a fixed relative phase ϕ = 0; the
color scale of Fig. 1 is applied here.

this picture we see that, in the present situation, positive
py values are favored, whereas the production probability
for electrons with negative py component has a tendency to
be reduced when ϕ grows from 0 towards positive values.
The same general trend was found in phase-of-the-phase
spectra of ATI photoelectrons [33]. In our case the transfer
of asymmetry from the vector potential (whose magnitude is
limited by |e �A(t )| � m for the chosen parameters ξ2 � ξ1 ∼ 1)
to the electron momenta is mediated by the quasienergy
(8), which contains the combination py − eA(t ). Thus, when
the maximum of eA(t ) in the positive direction exceeds the
maximum in the negative direction, it is “easier” to produce
electrons with rather large positive than with rather large neg-
ative py values. For positrons the situation is reversed: here,
a +sin-like dependence dominates for negative longitudinal
momenta.

When the fundamental field amplitude is increased to
ξ1 = 2, the momentum distribution is stretched along the
polarization direction of the field and, accordingly, extends to

larger py values. This is illustrated in the left halves of Fig. 6.
The right half of the top panel shows the phase-of-the-phase
�1. Note that, because of the mirror symmetry under px →
−px, it is sufficient to consider the domain where px � 0. As
before, a distinct asymmetry along the y direction appears,
which is reflected in blue (red) regions dominating for py > 0
(py < 0). However, due to the stretching of the distribution,
the previously cone-shaped regions now attain a parabolalike
form. These structures are also present in the momentum
distribution itself, being located at the same positions. They
arise from a regular pattern of minima along the resonance
rings, as caused by the interference effect mentioned at the
end of Sec. III A.

Outside the cone- or parabola-shaped regions in Figs. 5
and 6, blue and red areas alternate frequently along the res-
onance rings, leading to a pronounced checkerboard pattern.
Accordingly, when moving along (or across) a resonance ring,
a sign change from + sin-like to − sin-like (or vice versa)
occurs. As argued in Ref. [33], the appearance of such a
pattern is related to a redistribution of probability in the
px-py plane, when the relative phase changes. This means, the
increase of probability in some regions is accompanied by a
decrease of probability in neighboring regions. In the present
case of pair production, this redistribution can be caused by
the ϕ-dependence of the quasienergy (8). For the chosen
parameters, the latter changes by ∼10−2m when ϕ varies from
0 to 2π . While being small, this change lies in the same order
of magnitude as the widths of the multiphoton resonances
[39]. Consequently, when ϕ is varied, one may need either
larger or smaller momentum values to approach the resonance
condition.

The lower panels in Figs. 5 and 6 illustrate the behavior of
�2. The overall appearance resembles the phase-of-the-phase
�1, but the structure has become even more rich. In addition
to the cone or parabola-shaped regions and the blue-and-red
checkerboard pattern, there are now also many green areas
that correspond to �2 ≈ 0 and, thus, a + cos-like dependence
with cos(2ϕ). Besides, one may notice that the colors are
exchanged within the cone or parabola-shaped regions: now a
+ sin-like behavior dominates for py < 0. Hence, the second
term in the Fourier series (� = 2) seems to partially counteract
the influence of the first term (� = 1). In general, however, the
contribution of the second term is substantially smaller, as was
shown in Fig. 4.

The pair production in a bifrequent electric field exhibits,
in general, very complex dependences on the various field
parameters. However, in the parameter regime under con-
sideration we have observed that the absolute values of the
Fourier coefficients scale to a good approximation like |W1| ∼
ξ2 and |W2| ∼ ξ 2

2 with the amplitude ξ2 � 1 of the weak
second harmonic mode. Accordingly, the first Fourier term
W1, which contains the phase �1, can be related to pair
production pathways involving the absorption of one photon
of frequency 2ω. Similarly, the second Fourier term W2 with
phase �2 may be associated to production channels where two
photons from the weak second harmonic mode participate.
The phases �1 and �2 determine, at a given momentum
�p, for which ϕ-values these contributions to the pair pro-
duction probability add constructively or destructively to W0

(see Fig. 3).
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FIG. 7. For fundamental field amplitudes corresponding to ξ1 =
0.5 (left panels) and ξ1 = 0.2 (right panels), the top row displays the
electron momentum distribution W ( �p, ϕ=0), the middle row shows
�1( �p ), and the bottom row illustrates �2( �p ). The other parameters
are ξ2 = 0.1, N = 7 and ω = 0.49072m, as before. Note the different
color scale in the top row as compared with Figs. 1 and 6.

We round the discussion off with a final remark on how
the phase-of-the-phase spectra change when the amplitude of
the fundamental field mode is reduced. Figure 7 shows our
results for ξ1 = 0.5 and ξ1 = 0.2. In comparison with Fig. 5,
we see that the cone-shaped regions are contracted towards
the center, so that in the multiphoton regime of interaction
(ξ1 � 1) these regions gradually diminish. As a consequence,
the corresponding asymmetry along the field direction is less
and less pronounced, the smaller the value of ξ1 becomes.
Nevertheless, a pronounced mirror asymmetry �� → −��

under the transformation py → −py remains in the form of
a ring structure whose dominating colors red and blue change
their roles at py = 0. The underlying pair production proba-
bility in this outer region is very small, though (see the top
row in Fig. 7).

IV. CONCLUSION AND OUTLOOK

Electron-positron pair production from vacuum in strong
bifrequent electric fields was studied. The influence of the
relative phase between a fundamental field mode and its
second harmonic was analyzed by phase-of-the-phase spec-
troscopy, decomposing the pair yield into its corresponding
Fourier components. We have shown that the phase-of-the-
phase spectra for the created electron closely resemble the
corresponding outcomes from strong-field photoionization
that have been obtained previously [33]. The spectra for the
created positron differ by an overall sign. For the applied
field parameters the pair production signal can be well recon-
structed by inclusion of the first three Fourier terms.

Phase-of-the-phase spectroscopy has been introduced in
strong-field atomic physics as a means to experimentally
discriminate photoelectrons emitted via the coherent inter-
action with a two-color laser field from those electrons that
result from incoherent and, thus, phase-independent processes
(such as thermal emission or collisional ionization via in-
coherent scatterings) [32–34]. When applied to strong-field
pair production, the method could similarly help to distin-
guish the desired signal of coherently produced pairs from
the—potentially strong—background noise, which might re-
sult from other processes, such as collisions between resid-
ual atoms and laser-accelerated electrons in the rest gas,
for instance. One should mention, though, that such an
application—at the very high field intensities required for pair
production—certainly represents a major technical challenge.
Most likely, it would therefore become relevant only after
pair-production experiments at the upcoming high-field facil-
ities [7–9] have become routine.

The method is not limited to the scenario of the present pa-
per. It can also be applied to pair production processes in other
field configurations, such as high-intensity laser beams com-
bined with γ -ray photons [17,18] or nuclear fields [11,19–
21]. Besides, it is applicable not only to the relative phase of
a bichromatic field, but to any continuous variable that the
field depends periodically on and that can be controlled in
experiment (such as the carrier-envelope phase of a few-cycle
laser pulse [53,54]).
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