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Nonradiative annihilation of a positron on bound electrons
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We consider nonradiative annihilation of a positron on electrons bound by the field of a heavy nucleus. This
process proceeds via the interaction of the annihilating positron-electron pair with another bound electron which
is emitted carrying away the energy release. We present a fully relativistic treatment of this process which
employs exact Dirac wave functions to describe the motion of the leptons in the nuclear field and regards the
interaction between the leptons as a perturbation. We calculate the total cross section for this process for a number
of elements ranging from silver to fermium. Our results substantially deviate from those previously reported in
the literature, both for the absolute values of the cross section and its dependence on the energy of the incident
positron. However, when we combine our results and the principle of detailed balance to get the cross section
for the inverse process (so-called negative-continuum dielectronic recombination), a very good agreement is
found with the existing results obtained by direct calculations. We also compare nonradiative annihilation with
radiative annihilation proceeding with emission of a single photon and show that the cross sections for the former
are much smaller.
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I. INTRODUCTION

Positron-electron annihilation represents a fundamental
phenomenon of converting matter particles into energy. It
can be realized via a few basic mechanisms (processes). The
simplest of them is annihilation of a free positron-electron
pair, which proceeds with emission of radiation and—due
to the energy-momentum constraints—has to involve at least
two emitted photons. The total cross section for this process,
which was first investigated by Dirac [1], reaches a maximum
when the kinetic energy of the relative motion of the pair tends
to zero.

More mechanisms for annihilation arise when a positron
is incident on an atom. First, the positron can annihilate with
outer-shell electrons. The energy release in annihilation given
by �2mec2 ≈ 1 MeV, where me is the mass of the electron
(positron) and c the speed of light, is enormous compared to
the binding energies of the outer atomic electrons. Therefore,
outer atomic electrons in this process can be regarded as
(quasi)free and the physics of positron annihilation on them
is essentially reduced to that of annihilation of a free positron-
electron pair.

Second, with an increase in the electron binding energy,
the nucleus of the atom can more effectively participate in
the momentum balance of annihilation. As a result, annihi-
lation can also proceed via emission of just a single photon
(see Fig. 1) and, at sufficiently large binding energies, this
begins to dominate over the two-photon annihilation. This
single-photon annihilation mechanism was first considered by
Fermi and Uhlenbeck [2]; their studies were followed by other
authors [3,4]. In order to be able to annihilate with a tightly
bound electron, the incident positron has to penetrate rather
close to the atomic nucleus and, hence, initially possess a
sufficient kinetic energy. However, with an excessive increase

in the positron energy, the time interval, when the positron and
electron become close and thus the annihilation can occur,
will decrease. As a result, the cross section for this process
exhibits a nonmonotonous behavior with the positron kinetic
energy, vanishing both at very small and very large values of
this energy.

Third, annihilation of an incident positron with a bound
electron in the presence of another (neighbor) bound electron
can proceed even without emission of radiation. In such a
case, the released energy is taken by the neighbor electron
(see Fig. 2). The probability of such annihilation, which will
be referred to as nonradiative annihilation (NRA), depends on
the distance between the electrons. Electrons are most tightly
“packed” in inner shells of very heavy atoms and/or ions
with their density growing with the increase in the charge
Z of the nucleus. Therefore, provided the incident positron
has enough energy to come close to the inner electrons, the
efficiency of this annihilation mechanism increases when Z
grows.

Nonradiative annihilation was first investigated by Brun-
ings [5]. In his calculations, based on a number of approx-
imations, he predicted, for positron annihilation involving
two K-shell electrons of lead, a maximum annihilation cross
section of ∼1 × 10−26 cm2, which is reached at positron
kinetic energies between 50 and 300 keV.

Later on, this channel was considered by Massey and
Burhop [6], who used plane waves to describe the ejected
electron. The authors found, for NRA involving two K-shell
electrons of lead atoms, the cross section of 0.1 × 10−26 cm2

at 100 keV positron kinetic energy. In addition, they also
considered NRA, which involves the assisting electron from
higher shells, and concluded that the cross section can reach a
maximum value between 1 and 1.5 × 10−26 cm2 at 300 keV
positron kinetic energy.
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FIG. 1. A schematic illustration—within the Dirac sea picture—
of annihilation of a positron on a bound electron with emission of
a single photon. In this picture, the process can be viewed as a
spontaneous radiative decay of a bound state into (a hole in) the
negative-energy continuum.

Shimizu et al. [7] performed an experiment on NRA of
positrons in a thin lead foil using a monoenergetic 300 keV
positron beam. Taking into account the contributions to this
process from the K-K , K-L, K-M, and L-L electron pairs
in lead atoms, they found, for the measured cross section,

FIG. 2. A schematic illustration—within the Dirac sea picture—
of nonradiative annihilation of a positron on bound electrons. This
process can be viewed as a kind of autoionization in which one of the
electrons undergoes a transition filling a hole in the negative-energy
continuum, whereas the other is emitted carrying away the energy
release.

σexp ∼ 0.8 × 10−26 cm2. The authors of [7] also made cal-
culations for NRA involving various pairs of active electrons
and obtained the cross-section value of ≈0.73 × 10−26 cm2,
which is quite close to their measured cross section.

Nonradiative annihilation was also considered by
Mikhailov and Porsev [8,9], who used approximate wave
functions to describe the electrons and the positron. In [8],
the Darwin approximation and Furry-Sommerfeld-Maue
wave functions were employed to describe bound electrons
and the positive- and negative-energy continuum states,
respectively. In [9], a term ∼Z2α2 was added in the expansion
of the wave functions, both for bound and continuum states.
The authors derived a simple analytical expression for the
total cross and obtained cross-section values which are two
orders of magnitude smaller than those reported in previous
works [5–7]. The results of [8,9] were slightly corrected in a
recent book [10].

As it follows from the brief discussion given in the previous
paragraphs, the studies of NRA produced contradicting results
for the cross sections. To our knowledge, this point was not
clarified in the literature. It is, therefore, the main intention
of the present paper to give a detailed theoretical description
of this process and present accurate numerical results for its
cross sections.

The paper is organized as follows. In the next section, using
the S-matrix formalism, we give a fully relativistic description
of NRA. Section III contains results and discussion. In partic-
ular, in this section we not only present results for nonradiative
annihilation, but also compare this process with radiative
annihilation proceeding with emission of a single photon. In
addition, we use our results for nonradiative annihilation and
the principle of detailed balance to get cross sections for the
process of negative-continuum dielectronic recombination,
obtaining a very good agreement with the direct calculations
for this process [11–13]. Section IV contains concluding
remarks.

Atomic units (me = h̄ = e = 1, where me is the electron
mass, h̄ is the Planck constant, and e is the elementary charge)
are used throughout, except where otherwise stated.

II. GENERAL CONSIDERATION

According to the “Dirac sea” picture, proposed by Dirac to
keep atoms stable in their ground states, under the normal con-
ditions all negative-continuum electron states are occupied.
In this picture, the process of positron-electron annihilation
is viewed as a transition of a positive-energy electron to a
vacancy in the negative-energy continuum. The corresponding
energy difference is either converted into the electromagnetic
radiation (radiative annihilation) or is transferred to a matter
particle represented, in our case, by a neighbor (assisting)
electron (nonradiative annihilation).

Let us consider a system consisting of an incident positron
and two electrons which are initially tightly bound by the
field of a highly charged nucleus. The process of NRA can be
conveniently described using the S-matrix formalism. Taking
into account that in the Dirac sea picture the positron and
the electron to be annihilated are viewed as two different
states of the same lepton and that the interaction between
this lepton and the assisting electron is transmitted by the
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electromagnetic field, the transition matrix element reads (see,
e.g., [14])

S f i = − i

c2

∫
d4x d4yJμ

+ (x)Dμν (x − y)Jν
−(y). (1)

Here, J+(x) is the electromagnetic four-current (density) at
a space-time point x describing the transition of one of the
electrons from its initial bound state into a vacancy in the
negative-energy continuum, and J−(y) is the electromagnetic
four-current at a space-time y corresponding to the transi-
tion of the other (assisting) electron from its initial bound
state to the positive-energy continuum. Further, Dμν (x − y)
is the propagator of the electromagnetic field which transmits
the interaction between the two four-currents and c is the
speed of light. The contravariant, aμ = (a0, a), and covariant,
aμ = (a0,−a), four-vectors are related by aμ = gμνaν , where
the metric tensor gμν is defined according to g00 = −g11 =
−g22 = −g33 = 1 and gμν = 0 for μ �= ν. In Eq. (1) and
below, the summation over the repeated Greek indices is
implied.

Below, the S-matrix transition element will be evaluated
based on the following. First, it is convenient to work in
a reference frame where the heavy nucleus is at rest and
to take its position as the origin. Second, the field of the
highly charged nucleus is much stronger than the fields
produced by the leptons. Therefore, the interaction between
each of the leptons and the field of the nucleus will be
taken into account exactly via using the corresponding Dirac
wave functions for describing both the bound and contin-
uum states of the leptons. Third, the interaction between
the electron-positron pair and the remaining electron will be
taken in the lowest possible (=first) order of the perturbation
theory. Fourth, since the electrons are indistinguishable, the
exchange effect has to be taken into account. This will be
done by antisymmetrizing the initial wave function of the two
electrons.

Thus, the transition S-matrix element can be written as a
sum of the direct, Sdir

f i , and exchange, Sexc
f i , terms,

S f i = Sdir
f i + Sexc

f i . (2)

The direct part reads

Sdir
f i = − i

c2

∫
d4x d4yJμ

dir,+(x)Dμν (x − y)Jν
dir,−(y), (3)

where the four-currents are given by

Jμ
dir,+(x) = ec ψc,+(t1, x)γ μψa(t1, x) (4)

for a transition to the positive-energy continuum and by

Jμ
dir,−(y) = ec ψc,−(t2, y)γ μψb(t2, y) (5)

for a transition to the negative-energy continuum. In these
expressions, ψa and ψb are single-electron bound wave func-
tions referring to the initial states of the electrons in the field
of the highly charged ion, and ψc+ and ψc− are continuum
wave functions describing states with the positive and negative
energies, respectively. Further, x = (t1, x) and y = (t2, y),
where x and y are the three-dimensional position vectors of
the electrons with respect to the nucleus, γ μ are the Dirac

γ -matrices, and the notation ψ stands for the adjoint conju-
gate ψ = (γ0ψ )†.

Similarly, the exchange term is given by

Sexc
f i = + i

c2

∫
d4x d4yJμ

exc,+(x)Dμν (x − y)Jν
exc,−(y), (6)

where

Jμ
exc,+(x) = ec ψc,+(t1, x)γ μψb(t1, x) (7)

and

Jμ
exc,−(y) = ec ψc,−(t2, y)γ μψa(t2, y). (8)

A. Bound-state wave functions

As stated above, ψa and ψb are bound wave functions
describing the initial single-electron states. We take them as
the Dirac hydrogenlike wave functions, which read

ψν (t, x) = e−iεν t

(
gν (x) χμν

κν
(x̂)

i fν (x) χ
μν

−κν
(x̂)

)
. (9)

Here, x = |x|, x̂ = x/x, ν = a (or ν = b), εν is the corre-
sponding binding energy, and κν and μν are the relativistic
quantum number and the magnetic quantum number, re-
spectively, in the state ψν . The functions χμ

κ (x̂) denote the
normalized spin-angular functions and will be given below.
Further, gν ( fν ) are the large (small) component of the Dirac
radial function for the electron which moves in a spherical
potential V (x) created by the nucleus with a charge Z (and
possibly by other atomic electrons).

In the case of a Coulomb field, V (x) = − Ze2

x , the exact
energies and the radial wave functions of the bound states are
known analytically and given, respectively, by (see, e.g., [15])

εν = mc2

[
1 +

(
ζ

n′ + s

)2]− 1
2

(10)

and{
gν

fν

}
= − N±rs−1e− r

2

[(
κ − ζ

qλ̄e

)
1F1(−n′, 2s + 1, r)

± n′
1F1(−n′ + 1, 2s + 1, r)

]
. (11)

Here, ζ = Zα, where α = e2/h̄c � 1/137 is the fine-structure
constant, s =

√
κ2 − ζ 2, r = 2qx, n′ = n − |κ|, and

N± = ±
(

1 ± εν

mc2

) 1
2

√
2q

5
2 λ̄e

�(2s + 1)

[
�(2s + n′ + 1)

n′!ζ (ζ − κqλ̄e)

] 1
2

. (12)

In expressions (11) and (12), the signs + and − (in the
notation ±) refer to gν and fν , respectively. Further, �(x)
and 1F1(a, b; z) are the gamma and confluent hypergeometric
functions [16], respectively, λ̄e = h̄/mc is the electron Comp-
ton wavelength, and q = ζ

λ̄e
[ζ 2 + (n′ + s)2]−

1
2 . The normal-

ized spin-angular function χμ
κ for a fixed quantum number κ

and magnetic quantum number μ (see, e.g., [15,17]) reads

χμ
κ (x̂) =

∑
ms=± 1

2

C jμ
lμ−ms

1
2 ms

Ylμ−ms (x̂) χ
ms
1
2

,
(13)
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where C jμ
lm 1

2 ms
and Ylm are the Clebsch-Gordon coefficients

and the spherical harmonic functions [18], respectively, l and
j are the orbital and total angular momenta, l = κ if κ >

0; l = −κ − 1 if κ < 0 and j = |κ| − 1
2 , and the quantities

χ
ms
1
2

are the Pauli spinors with χ
1
2
1
2

= (1
0) and χ

− 1
2

1
2

= (0
1).

B. Continuum wave functions

1. Positive-energy continuum

The electron emitted in the process of NRA is represented
by a positive-energy continuum state. For an electron with the
total energy Ek > mc2, which moves in a spherical potential
field, its state can be written in the form

ψc+(t1, x) = e−iEk t1 ψ
(−)ms
k (x), (14)

where ψ
(−)ms
k (x) is the incoming wave with an asymptotic

momentum k and a spin projection ms. Choosing the z axis
to be the quantization axis, the wave function ψ

(−)ms
k (x) can

be written as (see, e.g., [15,17])

ψ
(−)ms
k (x)=4π

√
π

Ve2Wkk

∑
κμ

il e−i�κC jμ
lm 1

2 ms
Y ∗

lμ−ms
(k̂)ϕEkκμ(x),

(15)

where Ve is the normalization volume for the emitted electron
with an energy Ek = Wkmc2, and

ϕEkκμ(x) =
(

Pκ (x) χμ
κ (x̂)

iQκ (x) χ
μ
−κ (x̂)

)
. (16)

The functions Pκ and Qκ are the radial solutions of the system
of coupled Dirac equations in a spherical potential V (x). In the
case of a Coulomb potential, produced by a pointlike nucleus
of charge Z , the exact radial solutions read (see, e.g., [15,17]){

Pκ

Qκ

}
=A±�s−1

{
Re
Im

}
e− i

2 �eiδκ (s+iη) 1F1(iη+s+1, 2s+1, i�).

(17)

Here, � = 2kx,

A± = ±(Ek ± mc2)
1
2

2k
1
2

c
√

π

|�(s + iη)|
�(2s + 1)

e
π
2 η, (18)

where + and − refer to Pκ and Qκ , respectively, the notation
Re (Im) denotes the real (imaginary) part of the term on
the right-hand side of (17), η = Zα Ek

ck is the Sommerfeld
parameter, and the phase δκ is defined by

e2iδκ = −κ + iη/Wk

s + iη
. (19)

The Coulomb phase shift �κ is given by �κ = δκ − arg �(s +
iη) + (l + 1 − s)π

2 (see, e.g., [15]).

2. Negative-energy continuum

The incoming negative-energy (−Ep < 0) continuum state
of an electron moving along the z axis (taken as the quantiza-
tion axis) with an asymptotic momentum p and helicity σ can
be written as

ψc−(t, x) = e+iEp tψ (−)
p,σ (x), (20)

where, taking into account that σ = −2m′
s, one has

ψ
(−)
p,m′

s
(x)=

√
4π2

Vp 2Wp p

∑
κ ′

il ′e−i�′
κ′
√

2l ′+1 C j′m′
s

l ′0 1
2 m′

s
ψEpκ ′m′

s
(x),

(21)

where Vp is the normalization volume for the positron with an
energy Ep = Wpmc2. The partial wave function ψEpκ ms , which
describes a negative-energy electron with a given quantum
number κ and a projection ms of the spin along the z axis
moving in the field of a spherically symmetric potential, can
be taken in the form

φEpκms (x) =
(

−iFκ (x) χ
ms−κ (x̂)

Gκ (x) χms
κ (x̂)

)
, (22)

where{
Gκ

Fκ

}
=B±�s−1

{
Re
Im

}
e− i

2 �′
eiδ′

κ (s+iη′) 1F1(iη′+s+1, 2s+1, i�),

(23)

with � = 2p x and

B± = ±(Ep ± mc2)
1
2

2p
1
2

c
√

π

|�(s + iη′)|
�(2s + 1)

e− π
2 η′

. (24)

Here, η′ = −Zα
Ep

c p and δ′
κ = 1

2 arg[−sκWp + η′2 + iη′(κWp +
s)] + ξ π

2 , with ξ = 1 if κ > 0 and ξ = 0 if κ < 0. The
Coulomb phase shift �′

κ = δ′
κ − arg �(s + iη′) + (l + 1 −

s)π
2 , where l = κ if κ > 0 and l = −κ − 1 if κ < 0. Further,

s =
√

κ2 − ζ 2 as before and Wp = Ep

mc2 > 0 is the Lorentz
factor of the positron.

C. Cross sections

The cross section is related to the S-matrix transition
element by the standard rules. In particular, the cross section
for NRA, which is the differential in the energy and angle of
the emitted electron, reads

dσ NRA

dEkd�k
= π2c2α2

vp pWp

⎡
⎣1

2

∑
m′

sms

⎤
⎦ ∑

μaμb

|Tf i|2δ(εa + εb + Ep−Ek ).

(25)

Here, vp is the (asymptotic) velocity of the incident positron, p
and Ep = mc2Wp are its momentum and energy, respectively,
εa and εb are the binding energies of the electrons in their
initial states, Ek is the energy of the emitted electron, and �k

is its emission (solid) angle. In Eq. (25), the averaging over
the positron spin and summation over the spin of the emitted
electron are performed. Further,

Tf i =
∑
κμκ ′

il ′− lC jμ
lμ−ms; 1

2 ms
C j′μ′

l ′0; 1
2 m′

s
Ylμ−ms (k̂)ei(�κ+�′

κ′ ) M f i,

(26)
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TABLE I. The total cross section for NRA of a positron with
kinetic energy of 500 keV on the K shell of gold (Z = 79) and lead
(Z = 82).

σ NRA (10−27 cm2)

Z = 79 Z = 82

2 Ref. [6]
1.5 Ref. [7]

1.3 × 10−2 a 1.5 × 10−2 a Ref. [10]
0.4 × 10−1 0.52 × 10−1 Present work

aExpression (11.68) from [10].

where M f i = 1√
2
(Mdir

f i − Mexc
f i ). The direct term Mdir

f i reads

Mdir
f i = 1

2π2

∫
d3κ

gαβ

κ2 − (ω f i

c

)2 − i0+

∫
d3x e−ix·κϕEkκμ(x)

×γ αϕa(x)
∫

d3y eiy·κ ψEpκ ′m′
s
(y)γ βϕb(y). (27)

The exchange term Mexc
f i is obtained from the direct one by

interchanging the states ϕa and ϕb.
The total cross section is obtained by integrating (25) over

the energy and angles of the emitted electron. The integration
over the energy is performed with the help of the δ function.
The integration over the solid angle and the summation over
the electron spin ms are performed by using the properties of
the spherical harmonics and the Clebsch-Gordon coefficients,
respectively. The result is

σ NRA = π2c2α2

vp pWp

⎡
⎣1

2

∑
m′

s

⎤
⎦ ∑

μaμb

∑
κ ′κμ

|M f i|2. (28)

III. RESULTS AND DISCUSSION

In this section, we consider numerical results for nonradia-
tive annihilation, which are obtained by using the treatment
of this process discussed in the previous section. We shall
compare them (when possible) with results for this process
obtained by other authors. We shall also use our results for
NRA to get the total cross section for its inverse process.
Besides, we shall compare the cross sections for NRA and
radiative annihilation with emission of a single photon.

A. Nonradiative annihilation of a positron
on the K-shell electrons

In Table I, we present results for the total cross section
for NRA of a 500 keV positron on the K-shell electrons
in Au (Z = 79) and Pb (Z = 82). It follows from the table
that our results agree neither with those of [6,7] nor with
those obtained using expression (11.68) of [10]. In particular,
our results are much smaller than those of [6,7], but exceed,
roughly by a factor of 3, the results of [10].

Moreover, it turns out that the different calculations predict
even a different shape for the total cross section considered
as a function of the energy of the incident positron. This
is clearly seen in Fig. 3, where we present the total cross

FIG. 3. Cross sections for NRA of the incident positron on the K
shell of lead. Solid circles: results of [6] divided by 40; open circles
connected by a thin line: results from [5] divided by 100; dashed line:
results of [7] divided by 40; thin solid line: results obtained by using
Eq. (11.68) of [10] multiplied by 2.5; thick solid line: results of the
present paper.

section for NRA of positrons on the K-shell electrons in lead
[Pb (Z = 82)] given as a function of the positron kinetic
energy. Indeed, while at small positron energies all the
calculations show an increase in the cross section with the
growth in the impact energy, they predict different positions
of its maximum. In addition, at larger impact energies, where
the cross section decreases, they predict, for this decrease,
different rates. In particular, at large positron energies,
our results show a much more extended cross-section tail
compared to the other calculations.

From the results of other authors, which are shown in
Fig. 3, the closest to ours are those of [10]. If one would disre-
gard the (substantial) difference in the absolute cross-section
values, then at relatively low impact energies, our results in
Fig. 3 would be rather close to those of [10]. However, at
larger impact energies (after the corresponding cross-section
maxima), the difference between these results rapidly grows
and, at 1.5 MeV, already exceeds a factor of 7.

With increasing Z , the full account of the relativistic effects
becomes more and more important. Therefore, as one can
expect, the difference between our results and those of [10]
grows when Z increases. For instance, comparing the results
for NRA on the K shell of plutonium (see Fig. 4) with those
for lead (see Fig. 3), we see that this difference noticeably
increases both at the maximum of the calculated cross sections
and at larger impact energies, reaching a factor of 10 at an
energy of 1.5 MeV.

Figure 5 shows the total cross section for NRA of a
positron on the K shell of different elements ranging from
Z = 47 to Z = 100. The cross section is given as a function
of the kinetic energy of the incident positron. It, in particular,
follows from this figure that the cross section rapidly grows
when the atomic number Z increases. For instance, the ratio
between the maximum values of the cross section at Z =
47 and Z = 100 reaches almost a factor of 150, suggest-
ing the corresponding cross-section dependence ∼Zρ with
ρ ≈ 6.7.
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FIG. 4. The total cross section for NRA of a positron on the
K shell of plutonium (Z = 94). Dashed and thin-solid gray lines
are twice the results obtained by using Eqs. (11.64) and (11.68),
respectively, from [10]. Thick-solid line is the results of the present
paper.

B. Nonradiative annihilation of a positron involving
electron(s) from the L and M shells

In the previous sections, we considered NRA on the
K-shell electrons only. Now we very briefly discuss NRA

FIG. 5. The total cross section for NRA of a positron on the K
shell of elements with the atomic numbers ranging between Z = 47
and Z = 100 given as a function of the positron kinetic energy.

TABLE II. Cross sections (in 10−27 cm2) for NRA of a positron
on various pairs of electrons in gold (Z = 79, left column) and lead
(Z = 82, right column). The cross sections are given at those positron
energies where they reach their maximum; the corresponding kinetic
energies of the positron are indicated.

The cross sections for NRA (in 10−27 cm2)
Z = 79 at Ep = 231.6 keV Z = 82 at Ep = 220.9 keV

K-K 0.652 × 10−1 0.831 × 10−1

K-LI 0.191 × 10−1 0.247 × 10−1

K-LII 0.36 × 10−2 0.501 × 10−2

K-LIII 0.18 × 10−2 0.246 × 10−2

K-L 0.245 × 10−1 0.321 × 10−1

K-MI 0.558 × 10−2 0.719 × 10−2

K-MII 0.122 × 10−2 0.170 × 10−2

K-MIII 0.66 × 10−3 0.890 × 10−3

K-MIV 0.72 × 10−5 0.105 × 10−4

K-MV 0.15 × 10−4 0.222 × 10−4

K-M 0.75 × 10−2 0.98 × 10−2

LI -LI 0.14 × 10−2 0.18 × 10−2

LI -LII 0.48 × 10−3 0.68 × 10−3

LI -LIII 0.26 × 10−3 0.36 × 10−3

LII -LII 0.45 × 10−5 0.72 × 10−5

LII -LIII 0.66 × 10−4 0.984 × 10−4

LIII -LIII 0.59 × 10−5 0.833 × 10−5

L-L �0.22 × 10−2 �0.30 × 10−2

σtotal �0.1 �0.125

involving (also) electrons from higher shells. In Table II,
we present the total cross sections for NRA of a positron
by various combinations of electron pairs in gold and lead.
The cross sections are given at those positron energies where
they reach their maximal values; the corresponding positron
energies are also indicated.

The cross sections were calculated assuming that the active
electrons move in the unscreened field of the nucleus. This is
a rather rough approximation since in real systems this field
will be partly screened by other atomic (or ionic) electrons.
The screening has the smallest effect on the K shell and
its relative importance rapidly grows with the increase in
the shell number. The neglect of the screening reduces the
size of the electron orbits, decreasing the distance between
the active electrons. This effectively increases the strength of
the lepton-lepton interaction and, as a result, the probability
for nonradiative annihilation.

Thus, our results for nonradiative annihilation, which in-
volves active electrons from the L and M shells, would notice-
ably overestimate the corresponding cross sections for many-
electron ions and neutral atoms. However, as it follows from
Table II, even overestimated values for annihilation involving
the K-L, K-M, and L-L electron pairs remain substantially
smaller than the K-K annihilation cross section. This enables
us to conclude that even in neutral heavy atoms, nonradiative
annihilation will mainly proceed on the K shell and that
the corresponding results (which were obtained essentially
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FIG. 6. A scheme of the process of negative-continuum dielec-
tronic recombination (NCDR).

for heliumlike ions) could also serve—as an estimate—for
annihilation on neutral atoms.

C. Nonradiative annihilation and negative-continuum
dielectronic recombination

Taking into account large differences between our re-
sults and those of the other authors, we made an addi-
tional check of our calculations by considering the process

of so-called negative-continuum dielectronic recombination
(NCDR) [11–13]. In the process of NCDR, an electron in-
cident on a bare nucleus is captured, forming a bound state
with the nucleus. The energy that is released in the capture
is converted into an electron-positron pair, with the electron
being created in a bound state. In the Dirac sea picture, this
process can be viewed as dielectronic recombination involv-
ing a negative-energy electron (see Fig. 6), which plays the
same role as a bound “real” electron in the usual dielectronic
recombination. As a result of the interaction between the
incident and a negative-energy electron, both undergo tran-
sitions into bound states, leaving a hole in the negative-energy
continuum which corresponds to an emitted positron.

As is obvious from the above brief description, the process
of NCDR is inverse to the process of NRA. This means that
the cross section for NCDR can be calculated by using the
cross section for NRA and employing the principle of detailed
balance.

Table III presents a comparison between results for NCDR,
which were obtained in Ref. [11] and in the present paper.
According to the remark made in Ref. [13], the cross-section
values of [11] were corrected by multiplying them by the
factor Wp/p. Our results were calculated by using Eqs. (28)
and the principle of detailed balance. It follows from the tables
that the agreement is quite good, which lends further support
to the accuracy of the results for NRA presented in this paper.

D. Nonradiative annihilation vs single-photon
radiative annihilation

Let us now briefly discuss the correspondence between
nonradiative and single-photon radiative annihilation pro-
cesses. Our results for the total cross section for single-photon

TABLE III. The total cross section for the NCDR reaction e− + U92+ → U90+(1s2) + e+ obtained in Ref. [11] and in the present paper.
We note that the results of [11] were multiplied by the factor Wp/p (see [13]). The total cross section for the inverse reaction (NRA), e+ +
U90+(1s2) → U92+ + e−, is also given. For more explanation, see the text.

Kinetic energies (keV) Cross sections (10−27 cm2)

Positron Electron NRA NCDRa NCDRb

42.56 800 8.2 × 10−3 2.55 × 10−4 2.44 × 10−4

92.56 850 7.18 × 10−2 4.65 × 10−3 4.53 × 10−3

142.6 900 1.33 × 10−1 1.27 × 10−2 1.243 × 10−2

192.6 950 1.64 × 10−1 2.05 × 10−2 2.08 × 10−2

242.6 1000 1.74 × 10−1 2.64 × 10−2 2.59 × 10−2

342.6 1100 1.61 × 10−1 3.22 × 10−2 3.16 × 10−2

442.6 1200 1.35 × 10−1 3.29 × 10−2 3.22 × 10−2

542.6 1300 1.11 × 10−1 3.12 × 10−2 3.05 × 10−2

642.6 1400 9.12 × 10−2 2.88 × 10−2 2.81 × 10−2

742.6 1500 7.58 × 10−2 2.63 × 10−2 2.56 × 10−2

842.6 1600 6.40 × 10−2 2.39 × 10−2 2.33 × 10−2

942.6 1700 5.48 × 10−2 2.19 × 10−2 2.14 × 10−2

1043 1800 4.76 × 10−2 2.02 × 10−2 1.96 × 10−2

1143 1900 4.19 × 10−2 1.87 × 10−2 1.81 × 10−2

1243 2000 3.72 × 10−2 1.73 × 10−2 1.68 × 10−2

1743 2500 2.33 × 10−2 1.27 × 10−2 1.23 × 10−2

2243 3000 1.62 × 10−2 9.83 × 10−3 9.5 × 10−3

aResults for NCDR obtained by using Eq. (28) and the principle of detailed balance.
bResults of [11] multiplied by the factor Wp/p.
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FIG. 7. The total cross section for single-photon annihilation of a
positron on the K shell of elements with the atomic numbers ranging
between Z = 47 and Z = 100 given as a function of the positron
kinetic energy.

annihilation of a positron on the K shell are shown in Fig. 7.
By comparing them with the corresponding results for NRA
(see Fig. 5), one can make a few main observations. First,
annihilation with emission of a photon is much more probable
than that with emission of an electron. Second, compared to
NRA, the cross section for the radiative annihilation, after
reaching the maximum, decreases much slower with increas-
ing the positron energy. Third, the ratio between the nonradia-
tive and radiative cross section increases when Z grows.

As was already mentioned, annihilation with emission of a
single photon can be regarded as spontaneous radiative decay
of a bound state into the negative-energy continuum (see
Fig. 1), while NRA can be viewed as autoionization (involving
transitions to the negative-energy continuum; see Fig. 2).
Therefore, it is of interest to make a brief comparison of the
correspondence between these processes with that between
the “normal” spontaneous radiative decay and autoionization
of excited electron states.

It is known that in highly charged ions, where the latter
processes are characterized by a large energy release, the
process of spontaneous radiative decay is much stronger than
autoionization (Auger decay). Besides, when the atomic num-
ber of the ion grows—which also leads to the increase in the
energy release—the dominance of the radiative decay over
autoionization increases.

In annihilation, where the energy release is very large,
the “spontaneous radiative decay” also strongly dominates
over “autoionization.” In addition, in annihilation the energy
release depends mainly on the positron energy (and just rather
weakly on Z) and we observe that the dominance of the

“spontaneous radiative decay” grows with increasing this en-
ergy. We thus see that the correspondence between “radiative
decay” and “autoionization” channels of annihilation is rather
similar to that between the spontaneous radiative and Auger
decay of excited electron states in highly charged ions.

On the other hand, since the energy release in annihilation
weakly depends on Z whereas the effective strength of the
electron-electron interaction increases with Z , the ratio be-
tween autoionization and spontaneous radiative decay is now
different: unlike the decay of “normal” excited electron states,
where the ratio decreases with Z , in the case of annihilation it
grows.

IV. CONCLUSIONS

We have considered nonradiative annihilation of a positron
by bound electrons in various heavy elements ranging from
silver (Z = 47) to fermium (Z = 100). Our consideration was
based on the fully relativistic treatment of this process which
employs the exact (Dirac) positive- and negative-energy con-
tinuum states as well as bound states to describe the motion
of the leptons in a strong Coulomb field of the nucleus. The
interaction between the leptons, which is much weaker than
their interaction with the nucleus, was taken into account in
the lowest possible order of perturbation theory.

The main focus of the present study was on nonradiative
annihilation of a positron on the ground state of heliumlike
heavy ions. These results can also be directly applied to
estimate nonradiative annihilation on the K shell of the cor-
responding heavy ions with more electrons and neutral atoms.

Using the principle of detailed balance, we applied our
results for nonradiative annihilation to calculate the cross
section for negative-continuum dielectronic recombination. A
good agreement with the existing data was found.

Our results for nonradiative annihilation involving the K-
shell electrons turned out to very substantially differ from
those reported by other authors. However, since (unlike the
other authors) we employed the fully relativistic description
of this process and used exact (Dirac) states to account for the
strong interaction between the leptons and the highly charged
nucleus, we expect that at the moment our results represent the
most accurate data for the total cross section of this process.

We also very briefly discussed nonradiative annihilation
which involves electron(s) from higher shells. According to
our results, annihilation in such a case is less probable and,
even in the case of a neutral atom, the main contribution to
the total nonradiative annihilation of a positron will be given
by the K-shell electrons.

We also compared nonradiative and single-photon radia-
tive annihilation and found that nonradiative annihilation is
a much weaker process. We discussed the correspondence
between these two processes and pointed out certain simi-
larities and differences between this correspondence and the
relationship between spontaneous radiative and Auger decay
of excited electron states in highly charged ions.
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