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Confined variational calculation of o-Ps–He scattering properties
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High-precision quantum-mechanical calculations have been developed to investigate positronium (Ps) scat-
tering. Positronium scattering experiments are a powerful tool to study positronium-matter interactions, but the
theoretical description of these experiments needs better accuracy. We have developed an ab initio confined
variational approach that can reach higher collision energy, includes higher orbital momenta and uses small
confining radii. Calculation of the Ps–He momentum-transfer cross section shows that the experimental Doppler
broadening spectroscopy results are questionable. The energy dependence of the pickoff annihilation rate is also
calculated, demonstrating an important role of the so far neglected P-wave contribution.
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I. INTRODUCTION

Positronium (Ps), a bound system of one electron and one
positron, can be in a spin singlet state (p-Ps) with a lifetime
of 0.125 ns and a spin triplet state (o-Ps) with a lifetime of
142 ns. It plays an important role for testing the theory of
quantum electrodynamics [1–3], for generating antihydrogen
[4,5], for realizing γ -ray lasers based on a Bose-Einstein
condensate [6–9], for probing material defects [10–12], and
for discovering phenomena beyond the standard model (such
as dark matter) [13]. Experimental techniques exploring the
Ps-matter interaction have significantly developed since the
invention of the buffer gas positron trap [14]. Recent Ps beam
experiments with He, Ar, Kr, Xe, H2, N2, O2, and SF6 have
revealed electron-like scattering of Ps at intermediate energies
[15] and unexpectedly small scattering cross sections have
been observed for Ps-Ar and Ps-Xe scattering at low energies
[16]. A theoretical understanding of these experiments is
highly desirable, but accurate calculation of many-body Ps-
atom scattering is very complicated.

Experimental measurements of the cross sections and an-
nihilation rates have been carried out for Ps for many atoms
and molecules [15–18]. Among them there are significant
puzzles in the case of o-Ps–He scattering. For low energy
o-Ps–He scattering, the momentum-transfer cross section (σm)
has been determined experimentally by several approaches,
including the Ps lifetime in liquid He (LMLHE) [19,20],
the angular correlation of the annihilation radiation (ACAR)
[21,22], and Doppler broadening spectroscopy (DBS) [23,24].
The lower limit of the ACAR results turns out to be close
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to the LMLHE results but significantly higher than the DBS
results. In addition, the energy dependence of σm is found to
be linear by Coleman et al. [21] and quadratic by Engbrecht
et al. [24]. Calculations [25–28] support the ACAR results
while raising doubts about the DBS results. Experimental and
theoretical efforts are required to reconcile these findings for
collision energies between 0.3 and 1.2 eV.

Another important quantity for low-energy o-Ps–He scat-
tering that is experimentally accessible is the pickoff annihi-
lation rate (1Zeff) [19,29–33], which represents the probability
that the positron in Ps annihilates with an electron in He (the
positron-electron pair should be in a spin singlet state) during
the scattering process. Theoretical results are only available in
the case of S-wave scattering at zero energy (1Z0

0,eff) by Zhang
et al. [25] and Green et al. [26]. The energy (or temperature)
dependence of 1Zeff is crucial for interpreting precision Ps
decay rate spectra taken in low and medium gas densities with
thermodynamics processes [18,33]. The theoretical descrip-
tion of the energy dependence of 1Zeff is rather incomplete, as
only S-wave scattering has been considered near-zero energy,
despite continuous experimental efforts [19,32,33].

Theoretical determination of these quantities is very chal-
lenging due to the composite nature of both the target and
projectile, the electron exchange between Ps and He, and the
electron-electron and electron-positron correlations. The con-
fined variational method (CVM), first developed by Mitroy
et al. [34] and further developed by Zhang et al. [35], is
an ab initio method to tackle low-energy elastic-scattering
problems. CVM says that, if two potentials under the influence
of the same confining potential have the same eigenenergy,
then their phase shifts will be the same. Moreover, CVM tells
us how to find a simple auxiliary potential which has the same
phase shift as the equivalent potential between two atoms or
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molecules. Two aspects of the method require improvement
to address the topics of o-Ps–He scattering mentioned above:
Elimination of unphysical effects of the confining potential
(that acts on the center of mass of the positron and electron in
He) and extension beyond S-wave scattering and to higher col-
lision energies. Both these problems require significant exten-
sion of the quantum-mechanical calculations to the accurate
description of scattering of complicated composite systems.
These advancements are not restricted to Ps–He scattering,
but other composite scattering experiments, including cold
atom scattering and Ps-atom scattering, can also benefit from
these efforts by using suitable pseudopotentials to manage the
necessary degrees of freedom.

In this work, we first develop a strategy to effectively elimi-
nate unphysical confining effects while extending the CVM to
nonzero partial-wave scattering and higher collision energies.
The advanced CVM is verified by calculating the P- and
D-wave phase shifts for Ps-H scattering and comparing them
with results of the complex Kohn variational method (CKVM)
[36]. We then calculate the properties of o-Ps–He scattering:
S-, P-, and D-wave phase shifts, momentum-transfer cross
section, and energy dependence of the pickoff annihilation
rate for S wave and P wave. We develop a computational
method that allows us to use smaller confining regions and
significantly improve the accuracy of the calculated scattering
properties.

II. THEORY

Atomic units are used in the following unless stated other-
wise. We consider the Schrödinger equations

(
−∇2

2
+ V1(r)

)
�(r) = E�(r), (1)

(
−∇2

2
+ V1(r) + Vcp(r)

)
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(
−∇2

2
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)
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(
−∇2

2
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)
�′(r) = E�′(r), (4)

where E > 0. V1 represents the equivalent potential between
Ps and He and V2 represents the auxiliary potential. We
assume

V1(r) = 0, r > R0,

V2(r) = 0, r > R0. (5)

The confining potential Vcp has the form

Vcp(r) = 0, r < R0,

Vcp(r) = G(r − R0)2, r � R0, (6)

where G is a tunable positive number. To achieve continuity
of the four wave functions �, � ′, �, and �′, their logarithmic
derivatives

�X (R0) ≡ 1

X (R0)

dX

dr

∣∣∣∣
R0

(7)

must be the same at energy E and radius R0 [34], i.e.,

�� (R0) = �� ′ (R0) = ��(R0) = ��′ (R0). (8)

This implies that the phase shift as a function of �X (R0) is
exactly the same for Eqs. (1) and (3) at E . Although V1 is not
known, we can obtain the exact phase shift from Eq. (3).

In the approximation of infinite nucleus mass, the
Schrödinger equation for o-Ps–He scattering has the form

H�(r, s) = E�(r, s),

H = −
4∑

i=1

∇2
i

2
+

4∑
i=1

Qqi

|ri|

+
∑

i

, j = 1 j > i4 qiq j

|r j − ri| , (9)

where in rT = (r1, r2, r3, r4) the positions of the electrons
relative to the fixed nucleus are given by r1, r2, and r3 and
the position of the positron is given by r4. Similarly, sT =
(s1, s2, s3, s4) refers to the spin. Additionally, qi is the charge
of the ith lepton and Q is the charge of the nucleus. The total
many-body wave function is expanded in the basis functions

φn(r, s) = |v|2K+L exp

(
−1

2
rTAnr

)
YLM (v)χ (s), (10)

where v = uTr, with uT = (u1, u2, u3, u4) being the global
vector, and χ (s) is the spin function. K is an integer and
can be chosen in our calculation. An is the nth parameter
matrix. L is the total orbital angular momentum and YLM is the
spherical harmonic. As compared with a spherical explicitly
correlated Gaussian basis, the factor |v|2K+L plays a key role
in describing the increasing number of nodes of the wave
function for Ps incident momentum k > 0.2a−1

0 . The global
vector representation of the orbital angular momentum sim-
plifies the calculation of matrix elements, because one-by-one
coupling of the orbital angular momenta of the four lepta is
avoided.

To eliminate unphysical confining effects, we consider the
confining potentials

3∑
i=1

OT(i, 4)Vcp(ρi ), (11)

where ρi = (|ri + r4|)/2 and OT(i, 4) is a spin-projection
operator that ensures that only electron-positron pairs
(electron i) in a spin triplet state are confined. According to
Eq. (6), in the standard CVM the confining potentials act on
both o-Ps and p-Ps. In our calculations, Vcp are replaced by
Eq. (11). We define judgment indices

snm
i = 〈φn|OT (i, 4)
(ri4 − R1)(ri4 − R1)2|φm〉

〈φn|OT (i, 4)
(ρi − R0)(ρi − R0)2|φm〉 , (12)

where ri4 = |ri − r4|, 
(ri4 − R1) is the Heaviside step func-
tion, and R1 is a tunable number. If the confining potential
acts on the pseudo Ps (formed by the positron and electron i
in He), ri4 will be much larger than the characteristic size of Ps
(2a0). This means that snm

i will be a large value when R1 is set
to 2a0 (or a little larger). We discard 〈φn|OT(i, 4)Vcp(ρi )|φm〉
when snm

i exceeds a specific threshold. The effect of these two
improvements [Eqs. (11) and (12)] is that we can perform the
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TABLE I. Phase shifts (δL
k , in radians) calculated with present

CVM and CKVM for Ps-H scattering. k is given in units of a−1
0 and

ab abbreviates a × 10b.

CVM (R0 = 15a0) CKVM [36]

δ
3P
0.1 −1.72−3 −1.72−3

δ
1D
0.4 5.15−2 5.04−2

calculation with smaller R0, which is opposite to the strategy
of the standard CVM. In Ref. [35] unphysical confining
effects have been removed by a large R0 (24a0 for Ps-H). The
use of a small R0 is the key point of our proposed method,
providing two major advantages: First, we achieve better ac-
curacy with fewer basis functions, since exp(− 1

2 rTAr) decays
quickly for growing r. In other words, for smaller R0 in
Eq. (5) it is easier to perform the calculation. Second, the
CVM can reach higher collision energies due to the enhanced
confinement.

III. RESULTS AND DISCUSSION

A. P- and D-wave phase shifts for Ps-H scattering

For Ps scattering from atoms and molecules, the CVM
until now has been used only for calculating the S-wave phase
shifts for Ps-H and Ps-H2 scattering. To examine the reliability
and efficiency of the present advanced CVM we study as an
example the P- and D-wave phase shifts for Ps-H scattering;
see Table I. Choosing R0 = 15a0 reduces the computation
costs greatly as compared with previous calculations with
R0 = 24a0. Because of the enhanced confinement, we can
extract δ

1D
0.4 (1D-wave phase shift for k = 0.4a−1

0 ) from the
third bound state instead of higher bound states. Our CVM
result of δ

3P
0.1 (3P-wave phase shift for k = 0.1a−1

0 ) coincides
with the CKVM result [36]. In the CKVM calculations, the
value of δ

1D
0.4 is less accurate than that of δ

3P
0.1 because the

mixed-symmetry basis functions are neglected for the D wave.
For δ

1D
0.4 our value is 2% higher than the CKVM value.

B. Phase shifts and momentum-transfer cross sections
for o-Ps–He scattering

Phase shifts obtained by the present advanced CVM with
R0 = 15a0 (sufficient because the distortion of Ps is predom-
inant), many-body theory (MBT) [26], frozen-target model
(FTM) [27], and free-electron-gas (FEG) approximation [28]
are compared in Table II. In the energy range considered, the
D-wave phase shifts obtained are much smaller than the S- and
P-wave phase shifts (contribute little to σm) and are not shown
here. The notations FTMvdW

2.5 , FTMvdW
3.0 , and FEGvdW

2.5 mean
that those calculations used a model van der Waals potential
with a short-range cutoff function (the cutoff radius is 2.5a0,
3.0a0, and 2.5a0, respectively). There are obvious differences
between our results and those of others, especially for the P
wave, and the variations decrease with increasing k, which is
due to the approximations entering the MBT, FTM, and FEG.
The main advantage of our method compared with the MBT,
FTM, and FEG is that we treat the electrons of Ps and He
equally. This equivalence can be illustrated by the probability

TABLE II. Phase shifts (δL
k , in radians) calculated with present

CVM, MBT [26], FTM [27], and FEG [28] for o-Ps–He scattering.
k is given in units of a−1

0 and ab abbreviates a × 10b.

CVM (R0 = 15a0) MBT FTMvdW
2.5 FTMvdW

3.0 FEGvdW
2.5

δS
0.1 −1.57−1 −1.69−1 −1.52−1 −1.61−1 −1.61−1

δP
0.1 −9.88−4 −1.84−3 −6.62−4 −1.25−3 −3.72−3

δS
0.2 −3.15−1 −3.34−1 −3.02−1 −3.20−1 −3.24−1

δP
0.2 −7.16−3 −1.33−2 −5.29−3 −9.47−3 −1.18−2

δS
0.32 −5.03−1 −5.22−1 −4.77−1 −5.07−1 −5.21−1

δP
0.32 −3.09−2 −4.51−2 −2.13−2 −3.48−2 −4.54−2

δS
0.42 −6.52−1 −6.67−1 −6.16−1 −6.57−1 −6.85−1

δP
0.42 −6.55−2 −8.32−2 −4.62−2 −6.94−2 −9.64−2

density distributions Ci(R) = ∫
dR̂〈�(r)|δ(ri − R)|�(r)〉 of

the electron and positron wave functions. Figure 1 shows
results for S-wave scattering with k = 0.1a−1

0 . Interestingly,
we observe C4/C1 ≈ 3 for R > 5a0, which can have two
reasons: First, identity of the electrons implies C1 = C2 = C3.
Second, for large R the electrical neutrality of Ps requires that
the sum of the probability density distributions of the electrons
equals the probability density distribution of the positron,
C1 + C2 + C3 = C4.

A comparison of theoretical and experimental results of
σm is shown in Fig. 2. For k < 0.2a−1

0 almost all theoretical
values fall into the error bars of the experimental value of
Nagashima et al. [22], with the best agreement provided by
the FEGvdW

2.5 . The experimental values of Canter et al. [19],
Rytsola et al. [20], and Coleman et al. [21] are best approxi-
mated by the FTMvdW

2.5 curve. Our CVM values fit better to the
value of Coleman et al. [21] than to that of Nagashima et al.
[22]. For 0.2a−1

0 < k < 0.42a−1
0 , all theoretical values and the

experimental values of Coleman et al. [21] are significantly
higher than the experimental values of Skalsey et al. [23] and

FIG. 1. Probability density distributions of the electron (C1) and
positron (C4) wave functions for S-wave o-Ps–He scattering with
k = 0.1a−1

0 . For R > 5a0 we have C4/C1 ≈ 3, i.e., the distortion of
Ps can be neglected.
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FIG. 2. Comparison of theoretical and experimental results of
σm for o-Ps–He scattering. Theory: CVM with R0 = 15a0, open
black circles; MBT, solid red line [26]; FTMvdW

2.5 , solid blue line
[27]; FTMvdW

3.0 , solid green line [27]; FEGvdW
2.5 , solid yellow line

[28]. Experiment: Canter et al., filled black square [19]; Rytsola
et al., filled black circle [20]; Coleman et al., dash black line [21];
Nagashima et al., filled red triangle [22]; Skalsey et al., filled red
circle [23]; Engbrecht et al., solid black line [24].

Engbrecht et al. [24]. The only approximation in our work is
that of infinite nucleus mass. We obtain δS

0.1 = −0.15698 in
this case (values rounded in Table II) and δS

0.1 = −0.15705
for a nucleus mass of mHe = 7294.299 536 1 a.u. [37]. It can
be estimated that the relative errors of δL

k and σ k
m between

infinite and finite nucleus mass are of the order of magnitude
of 1/mHe. Our ab initio calculation of σm therefore shows that
the DBS results are questionable.

C. Pickoff annihilation rate for o-Ps–He scattering

After sufficient cooling, the dominant species left in the
buffer gas is o-Ps. In addition to its own intrinsic decay
(3γ process), o-Ps can decay through collision when the
positron annihilates with the atomic (or molecular) electrons.
The pickoff annihilation rate for o-Ps–He scattering represents
the effective number of He electrons in a spin singlet state with
the positron [17]. It is given by

1Zeff = 〈�|
3∑

i=1

OS(i, 4)δ(ri − r4)|�〉, (13)

where OS(i, 4) is a spin projection operator that ensures that
only electron-positron pairs (electron i) in a spin-singlet state
annihilate. Accurate determination of 1Zeff requires a com-
plete account of the short-range correlations and exchange
effects. Partial-wave expansion gives

1Zeff =
∑

L

1ZL,eff, (14)

and the effective-range theory [25] implies for S-wave scatter-
ing at small k that

1Z0,eff(k) = 1Z0
0,eff + 1Z1

0,effk
2 + 1Z2

0,effk
4. (15)

TABLE III. Comparison of theoretical and experimental results
of 1Z0

0,eff for o-Ps–He scattering.

SVMSM [25] MBT [26] MBTEF [26] FCSVM [38]

0.1157 0.0411 0.131 0.0378
Duff [29] Smith [31] Canter [19] Coleman [30]

0.118 ± 0.016 0.116 ± 0.004 0.129 ± 0.006 0.125 ± 0.002
CVM(R0 = 15a0)

0.1197

A comparison of theoretical and experimental results
of 1Z0

0,eff is given in Table III. The results of MBT and
FCSVM (fixed core stochastic variational method) underes-
timate 1Z0

0,eff by a factor of ≈3. Including the enhancement
factor (EF), which is an integral part of the MBT, the MBTEF
value produces agreement with the experimental values of
Duff et al. [29] and Canter et al. [19]. The stochastic varia-
tional method + stabilization method (SVMSM) gives values
in agreement with the experimental values of Duff et al.
[29] and Smith et al. [31]. By fitting the obtained values of
1Z0,eff using Eq. (15), we derive 1Z0

0,eff = 0.1197. This value
is within the experimental error bars of Duff et al. [29] and
Smith et al. [31].

To better understand the complex processes involved in the
thermalization of Ps in gases, it is essential to determine the
energy (or temperature) dependence of 1Zeff. Vallery et al.
[33] have found that 1Zeff increases linearly with the scattering
energy, while no energy dependence was observed by Fox
et al. [32]. Theoretically, only 1Z0,eff has been investigated
near zero energy. To resolve this long-standing puzzle, we
calculate 1Z1,eff, neglecting the contribution of 1Z2,eff, i.e.,
only S- and P-wave contributions are taken into account,
1Zeff = 1Z0,eff + 1Z1,eff. To normalize the probability density
distributions of Ps we use the asymptotic forms sin2(kR + δS

k )
and sin2(kR − π/2 + δP

k ) for the S- and P-wave contributions,
respectively. Our results are shown in Fig. 3. For increasing k,
1Z0,eff decreases slowly but 1Z1,eff increases quickly, i.e., the
P-wave contributions become more and more important. By

FIG. 3. Momentum dependence of the pickoff annihilation rate
for o-Ps–He scattering.
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the effect of 1Z1,eff, 1Zeff increases with k. We find that 1Zeff

is a factor of 1.3 larger at k = 0.42a−1
0 than at k = 0.1a−1

0 ,
implying that the positron annihilates significantly easier. We
suggest that this important effect must be taken into account
in the determination of σm from the experiments of Skalsey
et al. [23] and Engbrecht et al. [24], as it may be the key point
to explain the unexpectedly small σm.

IV. SUMMARY

To resolve long-standing questions in the context of low-
energy o-Ps–He scattering, we have improved the CVM by
eliminating unphysical confining effects and extending it
beyond S-wave scattering and to higher collision energies.
The key point of our proposed method is the usage of a
small R0, which is opposite to the strategy of the standard
CVM. We present ab initio calculations of σm and 1Zeff for
o-Ps–He scattering in the energy range from 0 to 1.2 eV. Our
accurate values of σm clarify that its energy dependence is
almost linear, rendering previous DBS results questionable.
P-wave contributions to 1Zeff are considered for the first time,
which makes it possible to obtain the energy dependence of
1Zeff. Our results suggest that the energy dependence of 1Zeff

influences the determination of σm from DBS experiments.

Besides positron and Ps scattering, there is an increas-
ing demand for accurate determination of the low-energy
scattering properties between atoms and molecules as the
development of the ultracold atomic and molecular physics.
For example, the He-He and He-Li scattering lengths are
important for understanding the Efimov effect and the Li-H2

scattering cross section is key for creating a cold-atom vacuum
standard device. Our proposed method makes it possible to
accurately study the low-energy scattering properties of these
complicated systems.
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