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Detection of genuine tripartite entanglement by multiple sequential observers
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We explore the possibility of multiple usage of a single genuine entangled state by considering a scenario
consisting of three spin- 1

2 particles shared between Alice, Bob, and multiple Charlies. Alice performs measure-
ments on the first particle, Bob performs measurements on the second particle, and multiple Charlies perform
measurements on the third particle sequentially. Here the choice of measurement settings of each Charlie is
independent and uncorrelated with the choices of measurement settings and outcomes of the previous Charlies.
In this scenario, we investigate whether more than one Charlie can detect genuine tripartite entanglement, and
we answer this question affirmatively. In order to probe genuine entanglement, we use correlation inequalities
the violations of which certify genuine tripartite entanglement in a device-independent way. We extend our
investigation by using appropriate genuine tripartite entanglement witness operators. Using each of these
different tools for detecting genuine tripartite entanglement, we find out the maximum number of Charlies who
can detect genuine entanglement in the above scenario.
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I. INTRODUCTION

Entanglement [1] is one of the most fascinating non-
classical features of quantum mechanics. The demarcation
between separable and entangled states is well understood
in the bipartite scenario. But the situation becomes complex
in multipartite scenarios as one can consider entanglement
across many possible bipartitions. Moreover, the concept of
genuine entanglement [2] appears in the multipartite context.
A multipartite state is called genuinely entangled if and only if
it is not separable with respect to any partition. The concept of
genuine entanglement is not only important for quantum foun-
dational research, but also finds various information theoretic
implications, for example, in extreme spin squeezing [3], high
sensitive metrology tasks [4,5], quantum computation using
cluster states [6], measurement-based quantum computation
[7], and multiparty quantum networks [8–11].

In spite of various successful attempts for the genera-
tion and detection of genuine multipartite entangled states
[12–14], the complication of the process is appreciated as
the detection or verification of entanglement involves to-
mography or constructions of entanglement witnesses under
precise experimental control over the system subjected to
measurements. Due to the difficulties present in generating
genuine entanglement, which is the resource for a vast range
of information processing tasks, it is a significant question to
ask whether genuine entanglement can be preserved partially
even after performing a few cycles of local operations. The
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motivation of the present paper is to address the above ques-
tion, and we are able to answer it in the affirmative for the
tripartite scenario.

The general question as to what extent quantum correlation
of an entangled state can be shared by multiple observers
who perform measurements sequentially and independently
of each other was first posed in the case of the bipartite
scenario. Silva et al. [15] addressed this question in the context
of Bell nonlocality [16,17] by considering a scenario where
an entangled pair of two spin- 1

2 particles is shared between
Alice in one wing and multiple Bobs in another wing. Alice
acts on the first particle and multiple Bobs act on the second
particle sequentially, where Alice is spatially separated from
the multiple Bobs. In this scenario, using a measurement
model, which optimizes the tradeoff between information gain
and disturbance, it was conjectured [15] that at most two Bobs
can violate the Bell–Clauser-Horne-Shimony-Holt inequality
[16,17] with a single Alice. This result is valid when the
choice of measurement settings of each Bob is independent
of the choices of measurement settings and outcomes of the
previous Bobs and the frequencies of the inputs of each Bob
are the same. This result that was subsequently confirmed
analytically [18] applying a one-parameter positive operator-
valued measurement (POVM) [19,20].

Various experiments have been performed to demonstrate
this phenomena [21,22]. Recently, the notion of shareability of
quantum nonlocality has been extended to investigate several
other kinds of quantum correlations. These include sharing
of Einstein-Podolsky-Rosen steering [23,24], entanglement
[25,26], steerability of local quantum coherence [27], Bell
nonlocality with respect to quantum violations of various
other Bell-type inequalities [28], and preparation contextual-
ity [29]. These ideas have been applied in randomness gener-
ation [30], their classical communication cost [31], quantum
teleportation [32], and random access codes [33].
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Most of the previous studies have addressed the issue of
sharing quantum correlations by multiple sequential observers
in the bipartite scenario. Very recently, the possibility of se-
quential sharing of genuine tripartite nonlocality by multiple
observers has been studied [34]. Quantum entanglement is
the primary ingredient for nonlocal correlations, and in the
present paper we focus our attention on the sharing of gen-
uine multipartite entanglement. In particular, we consider the
scenario where three spin- 1

2 particles are spatially separated
and shared between, say, Alice, Bob, and multiple Charlies.
Alice measures on the first particle; Bob measures on the
second particle and multiple Charlies measure on the third
particle sequentially. In this scenario we investigate how many
Charlies can detect genuine tripartite entanglement.

In order to detect entanglement, one may consider the
violation of Bell-type inequalities as a criterion, since en-
tanglement is a necessary resource for generating nonlocal
correlations. One can construct inequalities which can certify
genuine multipartite entanglement from the statistical data
alone. This method of device-independent detection of gen-
uine entanglement was first introduced in [35–38] followed
by an extensive formalization by Bancal et al. [39]. Pál and
Vértesi [40] and Liang et al. [41] have improved the existing
inequalities for detecting genuine multipartite entanglement.
The Mermin polynomial [42], which is a useful tool for
device-independent entanglement witnesses, can be used to
detect genuine tripartite entanglement [35]. In the present
paper, we use quantum violations of the Mermin inequality
[42] and the Uffink inequality [37], respectively, in order to
probe detection of genuine tripartite entanglement by multiple
sequential Charlies.

Another well-developed tool for detection of entanglement
is through the entanglement witness operators [43–48]. For
each entangled state, there always exists a witness operator
which is a consequence of the Hahn-Banach theorem [49]. A
similar concept has been formulated for the genuine tripartite
entangled states [W state and Greenberger-Horne-Zeilinger
(GHZ) state] and distinguishes genuine entanglement from
the set of all biseparable states [2,50–52]. In the present paper,
we further analyze the idea of sequential detection of genuine
tripartite entanglement using appropriate witness operators.

All our analyses point out that it is indeed possible to
detect genuine entanglement sequentially by more than one
Charlie. In particular, we show that at most two Charlies can
detect genuine entanglement sequentially using the linear as
well as nonlinear device-independent genuine entanglement
inequalities. On the other hand, through appropriate genuine
entanglement witnesses which are suitable for the W state and
the GHZ state, at most four Charlies and 12 Charlies can,
respectively, detect genuine entanglement. Hence, this result
can be useful in recycling genuine multipartite entangled
resources in the context of various information processing
tasks.

The paper is organized as follows. In Sec. II we present the
basic tools for detecting genuine tripartite entanglement. The
measurement scenario involving multiple sequential observers
used in this paper is also described in this section. In Sec. III,
we present the main results of this paper, namely, sequential
detection of genuine tripartite entanglement. Finally, we con-
clude in Sec. V.

II. PRELIMINARIES

In this section we will present some basic tools which will
be used in our paper. We will also elaborate on the scenario in
which sequential detection of genuine tripartite entanglement
is studied.

A. Detection of genuine entanglement

In order to certify genuine entanglement in a device-
independent way, several inequalities have been proposed. For
the purpose of the present paper, we will use some of them. A
tripartite state ρ is said to be biseparable if and only if it can
be written in the following form:

ρ =
∑

λ

pλρ
A
λ ⊗ ρBC

λ +
∑

μ

pμρB
μ ⊗ ρAC

μ +
∑

ν

pνρ
C
ν ⊗ ρAB

ν ,

(1)
with 0 � pλ, pμ, pν � 1 and

∑
λ pλ + ∑

μ pμ + ∑
ν pν = 1.

A tripartite state is called genuinely entangled if and only if
it cannot be written in the biseparable form (1).

Let us begin with presenting the device-independent entan-
glement witness provided by the Mermin polynomial [42] as
the simplest example for detecting genuine tripartite entangle-
ment [35]. Consider that three spatially separated parties, say,
Alice, Bob, and Charlie, are sharing some quantum system in
the state ρ. The choices of measurement settings, performed
by Alice, Bob, and Charlie on the shared state ρ, are denoted
by Ax, By, and Cz, respectively, where x, y, z ∈ {0, 1}.
The outcomes of Alice’s, Bob’s, and Charlie’s measurements
are denoted by a, b, and c, respectively, with a, b, c ∈
{+1,−1}. By repeating the experiment a number of times, the
joint probability distributions P(a, b, c|x, y, z) are produced.
In this scenario, the Mermin inequality, the violation of which
certifies the presence of genuine entanglement in a device-
independent way, can be expressed as [35,53]

M = |〈A1B0C0〉 + 〈A0B1C0〉 + 〈A0B0C1〉 − 〈A1B1C1〉|
� 2

√
2. (2)

Here 〈AxByCz〉 = ∑
abc a b c P(a, b, c|x, y, z). Here it may be

noted that the violation of the inequality initially proposed by
Mermin [42] (which is nothing but M � 2), in general, does
not detect genuine entanglement. Subsequently, the above
inequality (2) has been derived in order to detect genuine
multipartite entanglement [35,53]. Since quantum violation
of the above inequality (2) can be detected by observing
the outcome statistics of the local measurements alone, it
enables detecting genuine entanglement without considering
the dimension of the corresponding Hilbert space and is,
hence, device independent.

With the motivation of getting a stronger device-
independent genuine entanglement witness, Uffink designed
another nonlinear Bell-type inequality [37] which may dis-
tinguish genuine multipartite entanglement from lesser entan-
gled states:

U = 〈A1B0C0 + A0B1C0 + A0B0C1 − A1B1C1〉2

+ 〈A1B1C0 + A0B1C1 + A1B0C1 − A0B0C0〉2 � 8. (3)

So far we have discussed the detection of genuine en-
tanglement by looking at the measurement statistics in a

042340-2



DETECTION OF GENUINE TRIPARTITE ENTANGLEMENT … PHYSICAL REVIEW A 101, 042340 (2020)

device-independent way. However, there exist scenarios in
which the devices are trusted, and one need not resort to
the more resource consuming method of device-independent
entanglement verification. We now describe the concept of
witness operators which can also be used to detect genuine
entanglement. A witness operator W which detects genuine
entanglement of a state ρ is a Hermitian operator that satisfies
the conditions

Tr(Wρ) � 0, ∀ρ ∈ BS

∃ at least one ρ /∈ BS, such that Tr(Wρ) < 0 (4)

where BS is the set of all biseperable states. The existence of
such a witness operator is a consequence of the Hahn-Banach
theorem on normed linear spaces [49]. For every genuinely
entangled state, there exists a genuine entanglement witness.

In the present paper we consider two types of witness op-
erators that detect genuine entangled states. The first witness
operator that we will use is suitable for detecting genuine
entanglement of the three-qubit W state. Consider the three-
qubit W state given by |W 〉 = 1√

3
(|001〉 + |010〉 + |100〉).

The witness operator that detects genuine entanglement in the
state |W 〉 is given by [2,50–52]

WW = 2

3
I3 − |W 〉〈W |. (5)

Whenever a state ρ gives Tr[WW ρ] < 0, genuine entangle-
ment in the state ρ is certified.

Next we discuss the witness operator which is suitable
for detecting genuine entanglement of the three-qubit GHZ
state. Consider the three-qubit GHZ state given by |GHZ〉 =

1√
2
(|000〉 + |111〉). The witness operator that detects genuine

entanglement in the state |GHZ〉 is given by [2,50]

WGHZ = 1

2
I3 − |GHZ〉〈GHZ|. (6)

If a state ρ gives Tr[WGHZρ] < 0, then genuine entanglement
in the state ρ is certified.

The advantage of such kinds of witness operators is that
they can be implemented in the laboratory by performing
a finite number of correlated local measurements. Hence,
such witness operators can be realized when the observers
sharing the quantum state are spatially separated. Both the
witness operators (5) and (6) can be written as a sum of
tensor products of local operations. The explicit forms of the
decompositions of the two operators WW and WGHZ can be
found in Appendices A and B, respectively.

B. Setting up the measurement context

In this subsection we describe the scenario adopted in the
present paper. Let us consider that three spatially separated
observers, say, Alice, Bob, and a sequence of multiple Char-
lies (i.e., Charlie1, Charlie2, Charlie3, . . ., Charlien), share a
tripartite state ρ consisting of three spin- 1

2 particles. In our
scenario, Alice performs projective measurements on the first
particle, Bob performs projective measurements on the second
particle, and multiple Charlies are allowed to perform nonpro-
jective or unsharp measurements [19,20] on the third particle
sequentially. Let us now clarify the measurement scenario
of multiple Charlies. Initially, Charlie1 performs an unsharp

FIG. 1. Sequential detection of genuine tripartite entanglement:
consider a scenario where three spin- 1

2 particles are prepared in
the state ρ. Initially ρ is shared between three spatially separated
parties, say, Alice, Bob, and Charlie1. Alice as well as Bob perform
projective measurements on their respective particles but Charlie1

performs unsharp measurements and sends the particle to Charlie2.
After doing a measurement on his respective part Charlie2 again
sends the particle to Charlie3. In this way the protocol goes on.

measurement on the third particle, then he sends that particle
to Charlie2. Charlie2 subsequently passes the third particle
to Charlie3 after performing another unsharp measurement.
Charlie3 also follows the same procedure and so on. This
scenario is depicted in Fig. 1.

It may be noted here that the choice of measurement set-
tings of each Charlie is independent and uncorrelated with the
choices of measurement settings and outcomes of the previous
Charlies. The unbiased input scenario is another assumption
that we have adopted in this paper. It implies that all possible
measurement settings of each Charlie are equally probable.
Note also that the no-signaling condition (the probability of
obtaining one party’s outcome does not depend on the other
spatially separated party’s setting) is satisfied between Alice,
Bob, and any Charlie as they are spatially separated and they
perform measurements on three different particles. However,
the no-signaling condition is not satisfied between different
Charlies as each subsequent Charlie performs measurements
on the same particle accessed earlier by the previous Charlie.

In the above scenario, we ask the question as to how many
Charlies can detect genuine tripartite entanglement with Alice
and Bob. We will address this issue by investigating how many
Charlies can have correlations with Alice and Bob such that
they violate the Mermin inequality (2) or the Uffink inequality
(3). Furthermore, we will also discuss how many Charlies
can demonstrate genuine tripartite entanglement if they use
the witness operators given by Eqs. (5) and (6), respectively.
Here, if any Charlie performs projective measurements, then
the entanglement of the state will be completely lost, and there
will be no chance to detect entanglement by the subsequent
Charlies. However, it is natural that no such restriction is re-
quired for the measurements performed by the last Charlie in
the sequence. Hence, in order to deal with the above problem
with n Charlies, the first (n − 1) Charlies in the sequence
should perform unsharp measurements. In the following we
will briefly discuss the unsharp measurement formalism used
in this paper (for details, see [15,18,23]).
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Following the standard projective measurement scheme
proposed by von Neumann [54], after an interaction with a
meter having the state φ(q) (q is the position of the pointer),
the state |ψ〉 = a|0〉 + b|1〉 (|0〉 and |1〉 form an orthonormal
basis in C2, |a|2 + |b|2 = 1) of the system (to be measured)
of a spin- 1

2 particle becomes

|ψ〉 ⊗ φ(q) → a|0〉 ⊗ φ(q − 1) + b|1〉 ⊗ φ(q + 1). (7)

In a general sharp or projective measurement, one obtains
the maximum amount of information at the cost of maximum
disturbance to the state of the system. On the other hand,
the disturbance to the state can be reduced by performing
an unsharp measurement where one obtains less information.
An unsharp measurement can be characterized by two real
parameters: the quality factor F and the precision G of the
measurements. The quality factor quantifies the extent to
which the initial state of the system (to be measured) remains
undisturbed during the measurement process. Mathemati-
cally, the quality factor is defined as F [φ(q)] = ∫ ∞

−∞〈φ(q +
1)|φ(q − 1)〉dq. Precision G quantifies the information gain
due to the measurement. Mathematically, it is defined as
G[φ(q)] = ∫ 1

−1 φ2(q)dq. It is obvious that for sharp measure-
ment F = 0 and G = 1. An optimal pointer state is the one for
which one obtains the greatest precision for a given quality
factor. The information-disturbance tradeoff relation for an
optimal pointer is given by F 2 + G2 = 1 [15]. In other words,
for dichotomic measurements on a qubit system, satisfying
the condition F 2 + G2 = 1 implies that the disturbance is
minimized given a certain information gain.

The above formalism can be recast in terms of unsharp
measurements. Unsharp measurement is one particular class
of POVMs [19,20]. POVM is nothing but a set of positive op-
erators that add to identity, i.e., E ≡ {Ei|

∑
i Ei = I, 0 < Ei �

I}. Here, each of the operators Ei determines the probability
Tr[ρEi] of obtaining the ith outcome (here ρ is the state of the
system on which the measurement is performed).

In order to see how the unsharp measurement formalism
[19,20,55–59] is connected with the one-parameter class of
POVMs, consider a dichotomic observable A = P+ − P−
with outcomes +1 and −1, where P+ (P−) denotes the projec-
tors associated with the outcome +1 (−1); P+ + P− = I and
P2

± = P±. Given the observable A, one can define a dichotomic
unsharp observable Aλ = Eλ

+ − Eλ
− [58,59] associated with

the sharpness parameter λ ∈ (0, 1], where Eλ
+ + Eλ

− = I, 0 <

Eλ
± � 1. Here the positive operators Eλ

± (also known as effect
operators) are given by

Eλ
± = λP± + (1 − λ)

I2

2
. (8)

This is obtained by mixing projective measurements with
white noise. The probability of getting the outcomes +1 and
−1, when the above unsharp measurement is performed on
the state ρ, is given by Tr[ρEλ

+] and Tr[ρEλ
−], respectively.

Note that the above positive operators can also be written in
the following way:

Eλ
± = 1 + λ

2
P± + 1 − λ

2
P∓.

The expectation value of Aλ for a given ρ is defined as [58,59]

〈Aλ〉 = Tr[ρEλ
+] − Tr[ρEλ

−]

= Tr[ρ(Eλ
+ − Eλ

−)]

= λ〈A〉, (9)

where 〈A〉 is the expectation value of the observable A under
projective measurements. The operational meaning of the
expectation value 〈Aλ〉 follows from the above equation: from
the probabilities (Tr[ρEλ

±]) of obtaining the outcomes ±1
under unsharp measurement, one can evaluate 〈Aλ〉. Note
that these probabilities under unsharp measurements can be
realized in experiments [60–63].

Using the generalized von Neumann–Lüders transforma-
tion rule [19], the states after the measurements, when the

outcomes +1 and −1 occur, are given by
√

Eλ+ρ
√

Eλ+
Tr[Eλ+ρ]

and√
Eλ−ρ

√
Eλ−

Tr[Eλ−ρ]
, respectively. In any sequential measurement sce-

nario, we need to gain certain information while minimally
disturbing the state of the system. In case of qubits, unsharp
measurements are shown to be a good choice for this purpose
[15]. For the von Neumann–Lüders transformation rule, it was
shown [18] that the quality factor and the precision associated
with the above unsharp measurement formalism are given by
F = √

1 − λ2 and G = λ. Hence, the optimality condition for
information gain and disturbance, F 2 + G2 = 1, for qubits is
compatible with the unsharp measurement formalism [18,23].
In other words, the unsharp measurement formalism along
with the von Neumann–Lüders transformation rule provides
the largest amount of information for a given amount of
disturbance created on the state due to the measurement.

In our paper we will consider that each Charlie, except
the final Charlie in the sequence, performs unsharp measure-
ments.

III. SEQUENTIAL DETECTION OF GENUINE
TRIPARTITE ENTANGLEMENT IN THE

DEVICE-INDEPENDENT SCENARIO

In this section we find out the maximum number of Char-
lies that can independently and sequentially detect genuine
entanglement in the device-independent scenario. Before pro-
ceeding, we wish to mention that it was shown [34] earlier that
at most two Charlies can simultaneously demonstrate genuine
tripartite nonlocality with a single Alice and a single Bob in
the scenario described in Sec. II B. This was demonstrated
through the quantum violation of the Svetlichny inequality
[64]. Since genuine entanglement is necessary for demon-
strating genuine nonlocality, we can state that at least two
Charlies can simultaneously demonstrate genuine tripartite
entanglement in a device-independent way with a single Al-
ice and a single Bob through the quantum violation of the
Svetlichny inequality [64]. Next, we want to find out whether
the number of Charlies who can detect genuine entanglement
sequentially can be increased using quantum violations of
Mermin inequality (2) or Uffink inequality (3) in the scenario
described in Sec. II B.

We start with the Mermin inequality (2), which
is maximally violated by tripartite GHZ state [65]
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ρGHZ=|ψGHZ〉〈ψGHZ|, where

|ψGHZ〉 = 1√
2

(|000〉 + |111〉). (10)

Suppose a tripartite GHZ state given by Eq. (10) is initially
shared among Alice, Bob, and multiple Charlies. Alice per-
forms dichotomic sharp measurement of the spin component
observable on her part in the direction x̂0 or x̂1. Bob per-
forms dichotomic sharp measurement of the spin component
observable on his particle in the direction ŷ0 or ŷ1. Charliem

(where m ∈ {1, 2, . . . , n}) performs dichotomic unsharp mea-
surement of the spin component observable in the direction ẑm

0
or ẑm

1 . The outcomes of each measurement are ±1.
The projectors associated with Alice’s sharp measurement

of the spin component observable in the direction x̂i (with
i ∈ {0, 1}) can be written as Pa|x̂i = I2+a x̂i·�σ

2 (with a being the
outcome of the sharp measurement and a ∈ {+1,−1}). Simi-
larly, the projectors associated with Bob’s sharp measurement
of the spin component observable in the direction ŷ j (with

j ∈ {0, 1}) are given by Pb|ŷ j = I2+b ŷ j ·�σ
2 (with b being the

outcome of the sharp measurement and b ∈ {+1,−1}). The
directions x̂i and ŷ j can be expressed as

ξ̂l = sin θ
ξ

l cos φ
ξ

l X̂ + sin θ
ξ

l sin φ
ξ

l Ŷ + cos θ
ξ

l Ẑ, (11)

where l ∈ {0, 1}; 0 � θ
ξ

l � π ; 0 � φ
ξ

l � 2π . X̂ , Ŷ , and Ẑ are
three orthogonal unit vectors in Cartesian coordinates. For
Alice ξ = x and for Bob ξ = y.

The effect operators associated with Charliem’s (m ∈
{1, 2, . . . , n}) unsharp measurement of the spin component
observable in the direction ẑm

k (with k ∈ {0, 1}) are given by

Eλm
cm|ẑm

k
= λm

I2 + cmẑm
k · �σ

2
+ (1 − λm)

I2

2
, (12)

where cm is the outcome of the unsharp measurement by
Charliem and cm ∈ {+1,−1}; λm (with 0 < λm � 1) denotes
the sharpness parameter associated with Charliem’s unsharp
measurement. When we consider a sequence of n Charlies,
then the measurements of Charlien will be sharp, i.e., λn = 1.
The the direction ẑm

k is expressed as

ẑm
k = sin θ zm

k cos φzm

k X̂ + sin θ zm

k sin φzm

k Ŷ + cos θ zm

k Ẑ, (13)

where 0 � θ zm

k � π ; 0 � φzm

k � 2π .
The joint probability distribution of occurrence of the

outcomes a, b, and c1, when Alice and Bob perform pro-
jective measurements of spin component observables along
the directions x̂i and ŷ j , respectively, and Charlie1 performs
unsharp measurement of the spin component observable along
the direction ẑ1

k , is given by

P
(
a, b, c1

∣∣x̂i, ŷ j, ẑ1
k

)

= Tr

[{
I2 + ax̂i · �σ

2
⊗ I2 + bŷ j · �σ

2
⊗ Eλ1

c1|ẑ1
k

}
· ρGHZ

]
.

(14)

The correlation function between Alice, Bob, and Charlie1,
when Alice and Bob perform projective measurements of
spin component observables along the directions x̂i and ŷ j ,
respectively, and Charlie1 performs unsharp measurement of

the spin component observable along the direction ẑ1
k , can be

written as

C1
i, j,k =

+1∑
a=−1

+1∑
b=−1

+1∑
c1=−1

a b c1 P
(
a, b, c1

∣∣x̂i, ŷ j, ẑ1
k

)
. (15)

The left-hand side of the Mermin inequality (2) associated
with Alice, Bob, and Charlie1 in terms of the correlation
functions is expressed as

M1 = ∣∣C1
100 + C1

010 + C1
001 − C1

111

∣∣. (16)

Now it is observed that Alice, Bob, and Charlie1 get quantum
violation of Mermin inequality (2) (i.e., M1 > 2

√
2) when

λ1 > 1√
2
. This happens for the following choice of measure-

ment settings: (θ x
0 , φx

0, θ x
1 , φx

1, θ
y
0 , φ

y
0, θ

y
1 , φ

y
1, θ z1

0 , φz1

0 , θ z1

1 ,
φz1

1 ) ≡ ( π
2 , π

2 , π
2 , 0, π

2 , π
2 , π

2 , 0, π
2 , π

2 , π
2 , 0).

Charlie1 passes his particle to Charlie2 after his mea-
surement. The following expression gives the un-normalized
postmeasurement reduced state at Charlie2’s end after Alice
and Bob get outcomes a and b by performing projective
measurements of spin component observables along the di-
rections x̂i and ŷ j , respectively, and Charlie1 gets outcome c1

by performing unsharp measurement of the spin component
observable along the direction ẑ1

k :

ρC2

un = TrAB

[{
I2 + ax̂i · �σ

2
⊗ I2 + bŷ j · �σ

2
⊗

√
Eλ1

c1|ẑ1
k

}

·ρGHZ ·
{
I2 + ax̂i · �σ

2
⊗ I2 + bŷ j · �σ

2
⊗

√
Eλ1

c1|ẑ1
k

}]
,

(17)

where

√
Eλ1

c1|ẑ1
k
=

√
1 + λ1

2

(
I2 + c1ẑ1

k · �σ
2

)

+
√

1 − λ1

2

(
I2 − c1ẑ1

k · �σ
2

)
. (18)

Here TrAB[. . .] denotes the partial trace over the subsystems
of Alice and Bob. On the above reduced state, Charlie2 again
performs unsharp measurement (with the sharpness parameter
being denoted by λ2) of the spin component observable along
the direction ẑ2

l and gets the outcome c2. The joint probability
distribution of occurrence of the outcomes a, b, c1, and c2,
when Alice and Bob perform projective measurements of
spin component observables along the directions x̂i and ŷ j ,
respectively, and Charlie1 and Charlie2 perform unsharp mea-
surement of spin component observables along the directions
ẑ1

k and ẑ2
l , respectively, is given by

P
(
a, b, c1, c2

∣∣x̂i, ŷ j, ẑ1
k , ẑ2

l

) = Tr
[
Eλ2

c2|ẑ2
l
· ρC2

un

]
. (19)

From this expression, one can obtain the joint probability
of obtaining the outcomes a, b, and c2 when Alice, Bob,
and Charlie2 measure spin component observables in the
directions x̂i, ŷ j , and ẑ2

l , respectively, and when Charlie1

has already measured spin component observables in the
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direction ẑ1
k :

P
(
a, b, c2

∣∣x̂i, ŷ j, ẑ1
k , ẑ2

l

) =
+1∑

c1=−1

P
(
a, b, c1, c2

∣∣x̂i, ŷ j, ẑ1
k , ẑ2

l

)
.

(20)
Let C2

i jkl denote the correlation between Alice, Bob, and

Charlie2 when Alice, Bob, Charlie1, and Charlie2 measure
spin component observables in the directions x̂i, ŷ j , ẑ1

k , and
ẑ2

l , respectively. The expression for C2
i jkl can be obtained from

C2
i jkl =

+1∑
a=−1

+1∑
b=−1

+1∑
c2=−1

a b c2 P
(
a, b, c2

∣∣x̂i, ŷ j, ẑ1
k , ẑ2

l

)
. (21)

Since Charlie2’s choice of measurement settings is inde-
pendent of the measurement settings of Charlie1, the above
correlation has to be averaged over the two possible measure-
ment settings of Charlie1 (spin component observables in the
directions {ẑ1

0, ẑ1
1}). This average correlation function between

Alice, Bob, and Charlie2 is given by

C2
i jl =

∑
k=0,1

C2
i jkl P

(
ẑ1

k

)
, (22)

where P(ẑ1
k ) is the probability with which Charlie1 performs

unsharp measurement of spin component observables in the
direction ẑ1

k (k ∈ {0, 1}). For an unbiased input scenario, we
take the two measurement settings for Charlie1 to be equally
probable, i.e., P(ẑ1

0 ) = P(ẑ1
1 ) = 1

2 .
The left-hand side of the Mermin inequality (2) associated

with Alice, Bob, and Charlie2 in terms of the average correla-
tion functions is expressed as

M2 = ∣∣C2
100 + C2

010 + C2
001 − C2

111

∣∣. (23)

In a similar way, by evaluating the average correlation
functions between Alice, Bob, and Charliem, the Mermin
inequality can be written as

Mm = ∣∣Cm
100 + Cm

010 + Cm
001 − Cm

111

∣∣ � 2
√

2. (24)

Violation of this inequality implies detection of genuine en-
tanglement by Alice, Bob, and Charliem.

Let us first study whether Charlie1 and Charlie2 can se-
quentially detect genuine entanglement through quantum vi-
olation of Mermin inequality (2) with a single Alice and a
single Bob in the scenario depicted in Fig. 1. Since there are
only two Charlies in this case, we consider measurements
of Charlie2 to be sharp, i.e., λ2 = 1. For the measurement
settings (θ x

0 , φx
0, θ x

1 , φx
1, θ

y
0 , φ

y
0, θ

y
1 , φ

y
1, θ z1

0 , φz1

0 , θ z1

1 , φz1

1 , θ z2

0 ,
φz2

0 , θ z2

1 , φz2

1 ) ≡ (π
2 , π

2 , π
2 , 0, π

2 , π
2 , π

2 , 0, π
2 , π

2 , π
2 , 0, π

2 , π
2 ,

π
2 , 0) and for λ1 = 0.74, we observe that Charlie1 gets 5%
violation of the Mermin inequality (2) (i.e., M1 = 2.96) and
Charlie2 gets 18% violation of the Mermin inequality (2) (i.e.,
M2 = 3.34). Hence, Charlie1 and Charlie2 can detect genuine
entanglement sequentially through the quantum violations of
the Mermin inequality (2). In fact, it can be shown that
Charlie1 and Charlie2 both get quantum violations of the
Mermin inequality (2) when λ1 ∈ (0.71, 0.91).

Next, we investigate whether Charlie1, Charlie2, and
Charlie3 can sequentially detect genuine entanglement
through quantum violation of Mermin inequality (2) with a

single Alice and a single Bob in the scenario depicted in
Fig. 1. In this case the measurements of Charlie3 will be sharp,
i.e., λ3 = 1. On the other hand, Charlie1 and Charlie2 perform
unsharp measurements. When Charlie1 gets 5% violation and
Charlie2 gets 5% violation of the Mermin inequality (2)
(i.e., when M1 = 2.96 and M2 = 2.96), then the maximum
magnitude of the left-hand side of Mermin inequality (2) for
Charlie3 becomes M3 = 2.62. This happens for the choice
of measurement settings (θ x

0 , φx
0, θ x

1 , φx
1, θ

y
0 , φ

y
0, θ

y
1 , φ

y
1, θ z1

0 ,

φz1

0 , θ z1

1 , φz1

1 , θ z2

0 , φz2

0 , θ z2

1 , φz2

1 , thetaz3

0 , φz3

0 , θ z3

1 , φz3

1 ) ≡
(π

2 , π
2 , π

2 , 0, π
2 , π

2 , π
2 , 0, π

2 , π
2 , π

2 , 0, π
2 , π

2 , π
2 , 0, π

2 , π
2 ,

π
2 , 0) and when λ1 = 0.74 and λ2 = 0.88. In fact, when
M1 = 2

√
2 and M2 = 2

√
2, then we have the maximum of

M3 = 2.78 < 2
√

2. Hence, Charlie1, Charlie2, and Charlie3

cannot detect genuine entanglement sequentially through the
quantum violations of the Mermin inequality (2).

One important point to be noted here is that Charlie3 may
obtain a quantum violation of the Mermin inequality (2) if
the sharpness parameter of Charlie2 or that of Charlie1 is too
small to get a violation. Hence, at most two Charlies can
sequentially detect genuine entanglement through quantum
violations of the Mermin inequality (2).

Up to now we have used quantum violation of the Mermin
inequality (2) to certify genuine entanglement between Alice,
Bob, and any Charlie. Now, we will investigate whether
the number of Charlies who can sequentially detect genuine
entanglement can be increased by using quantum violation
of the Uffink inequality (3). The Uffink inequality in terms
of the average correlation functions between Alice, Bob, and
Charliem can be expressed as

Um = (
Cm

100 + Cm
010 + Cm

001 − Cm
111

)2

+ (
Cm

110 + Cm
011 + Cm

101 − Cm
000

)2 � 8. (25)

The average correlation functions can be evaluated following
the aforementioned procedure. Violation of this inequality
implies that a genuine entangled state is shared between Alice,
Bob, and Charliem. In this case too, we assume that the three-
qubit GHZ state is initially shared between Alice, Bob, and
Charlie1 as this state can give the maximum quantum violation
(Um = 16) of the Uffink inequality (3).

Let us try to find out whether Charlie1, Charlie2,
and Charlie3 can sequentially detect genuine entanglement
through quantum violation of Uffink inequality (3) with a
single Alice and a single Bob. Here the measurement of
Charlie3 is sharp, i.e., λ3 = 1. When Charlie1 gets 5% vio-
lation and Charlie2 gets 5% violation of the Uffink inequality
(3) (i.e., when U1 = 8.40 and U2 = 8.40), then the maximum
magnitude of the left-hand side of Uffink inequality (3) for
Charlie3 becomes U3 = 7.73. This happens for the choice of
measurement settings (θ x

0 , φx
0, θ x

1 , φx
1, θ

y
0 , φ

y
0, θ

y
1 , φ

y
1, θ z1

0 , φz1

0 ,
θ z1

1 , φz1

1 , θ z2

0 , φz2

0 , θ z2

1 , φz2

1 , θ z3

0 , φz3

0 , θ z3

1 , φz3

1 ) ≡ (π
2 , π

2 , π
2 ,

0, π
2 , π

2 , π
2 , 0, π

2 , π
2 , π

2 , 0, π
2 , π

2 , π
2 , 0, π

2 , π
2 , π

2 , 0) and
when λ1 = 0.72 and λ2 = 0.86. In fact, we observe that when
U1 = 8 and U2 = 8 then we have the maximum of U3 = 7.76.
Hence, at most two Charlies can detect genuine entanglement
sequentially through the quantum violations of the Uffink
inequality (3).
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IV. SEQUENTIAL DETECTION OF GENUINE TRIPARTITE
ENTANGLEMENT USING WITNESS OPERATORS

In this section we are going to use genuine entanglement
witnesses, instead of using device-independent genuine en-
tanglement inequalities, in order to probe sequential detection
of genuine entanglement by multiple Charlies in the scenario
described in Sec. II B. The first witness operator suitable for
detecting genuine entanglement of the three-qubit W state is
given by [2,50–52]

WW = 2

3
I3 − |W 〉〈W |. (26)

The decomposition of this witness operator in terms of tensor
products of operators is given by Eq. (A1). However, in the
scenario depicted in Fig. 1 the local measurements performed
by Charliem (except for the final Charlie in a sequence) are
unsharp. Since the decomposition (A1) of the witness operator
WW can be used when each observer performs sharp pro-
jective measurements, we have to modify the decomposition
(A1) of the above witness operator for unsharp measurements
at Charlie’s end. In order to do this, we will follow the
prescription described in [25].

The joint probability of obtaining the outcomes a, b, and
cm, when Alice and Bob perform projective measurements of
spin component observables along the directions x̂i and ŷ j ,
respectively, and Charliem performs unsharp measurement of
the spin component observable along the direction ẑm

k , can be
evaluated using the formula

Tr
[
ρ
(
Pa|x̂i ⊗ Pb|ŷ j ⊗ Eλm

cm|ẑm
k

)]
, (27)

where ρ is the average postmeasurement state obtained after
the previous stage of the measurement processes; Pa|x̂i and
Pb|ŷ j are projection operators corresponding to the projective
measurements by Alice and Bob, respectively, and Eλm

cm|ẑm
k

is the effect operator associated with the POVM (unsharp
measurement) performed by Charliem.

The expectation value of the state ρ corresponding to the
above joint measurements is given by

Tr
[{(

P+|x̂i − P−|x̂i

) ⊗ (
P+|ŷ j − P−|ŷ j

)
⊗(

Eλm
+|ẑm

k
− Eλm

−|ẑm
k

)}
ρ
]
. (28)

Now, P+|x̂i − P−|x̂i (P+|ŷ j − P−|ŷ j ) is nothing but x̂i · �σ (ŷ j · �σ ).
Let us denote it by σxi (σy j ). Let us also denote Eλm

+|ẑm
k

− Eλm
−|ẑm

k

as σ
λm
zm

k
. Hence, we can write the following:

〈
σxi ⊗ σy j ⊗ σ

λm
zm

k

〉
= Tr

[(
P+|x̂i − P−|x̂i

) ⊗ (
P+|ŷ j − P−|ŷ j

) ⊗ (
Eλm

+|ẑm
k

− Eλm
−|ẑm

k

)
ρ
]

= Tr
[(

P+|x̂i − P−|x̂i

) ⊗ (
P+|ŷ j − P−|ŷ j

) ⊗ λm
(
P+|ẑm

k
− P−|ẑm

k

)
ρ
]

= λm
〈
σxi ⊗ σy j ⊗ σzm

k

〉
. (29)

Noting the above relation, one can use the substitution 〈σxi ⊗
σy j ⊗ σ

λm
zm

k
〉 → λm〈σxi ⊗ σy j ⊗ σzm

k
〉 in the case of a general

λm [25]. The unsharp version decomposition (A1) of the
genuine entanglement witness operator Wλm

W using the above
substitution is given in Appendix C.

Now, since we have Tr[WW ρBS] � 0 ∀ ρBS ∈ BS (where
BS is the set of all biseparable states) and 0 < λm � 1, we
have Tr[Wλm

W ρBS] � 0 ∀ ρBS ∈ BS (the detailed proof is
given in Appendix C). Hence, we can conclude that the
operator WW even after introducing unsharpness in Charlie’s
measurements (Wλm

W ) can be used as a valid witness of gen-
uine entanglement.

Before proceeding further, let us elaborate on the scenario
used by us in the context of genuine entanglement witness
operators. As discussed earlier, we have considered that Alice,
Bob, and any Charlie are spatially separated from each other.
The no-signaling condition is satisfied between Alice, Bob,
and any Charlie. Each of Alice, Bob, and Charliem (where
m � 1 is arbitrary) always performs any of the predefined
(sharp or unsharp) measurements (e.g., in case of Wλm

W , σz,
(σz + σx )/

√
2, (σz − σx )/

√
2, (σz + σy)/

√
2, and (σz − σy)/√

2) randomly in any experimental run. After completion of
the experiment, they communicate their choice of measure-
ment setting and outcome for each of the experimental runs
to the referee. The referee then determines the correlations
necessary to evaluate the witness. For example, when the
referee wants to determine 〈σz ⊗ σz ⊗ λm σz〉 between Alice,
Bob, and Charliem, then the referee will only consider the data
of those experimental runs in which each of Alice, Bob, and
Charliem performs (sharp or unsharp) measurement of σz.

In case of Wλm
W , Charliem always measures an unsharp

version of any of the above-mentioned five observables. But
the choice of the particular measurement (among the above
five measurements) performed by Charliem in a run is always
independent of the particular measurements performed by
previous Charlies. To summarize, any Charlie always per-
forms one of the above-mentioned five measurements ran-
domly and independently of the choices of measurements
(among the above-mentioned five measurements) of the pre-
vious Charlies.

Now, for example, consider an experimental run in which
Charlie1 and Charlie2 perform unsharp measurements of σz

and (σz + σx )/
√

2, respectively. Then Charlie1’s measure-
ment outcome will be useful for the referee to calculate 〈σz ⊗
σz ⊗ λ1 σz〉 between Alice, Bob, and Charlie1 if Alice and Bob
perform sharp measurements of σz in that experimental run.
But Charlie2’s measurement outcomes will not be useful in
this case to calculate any of the correlations necessary to eval-
uate the witness. On the other hand, Charlie2’s measurement
outcome in the above experimental run will be useful for the
referee to calculate 〈(σz + σx ) ⊗ (σz + σx ) ⊗ λ2 (σz + σx )〉 if
Alice and Bob perform sharp measurements of (σz + σx )/

√
2

in that experimental run. But Charlie1’s measurement out-
comes will not be useful in this case.

Now, suppose that the three-qubit W state given by |W 〉 =
1√
3
(|001〉 + |010〉 + |100〉) is initially shared between Alice,

Bob, and Charlie1. When Alice and Bob perform projective
measurements and Charlie1 performs unsharp measurement
with the sharpness parameter being denoted by λ1, the entang-
lement witness Wλ1

W acquires the following expectation value:

Tr
[|W 〉〈W |Wλ1

W

] = 1

18
(7 − 13λ1). (30)

It is clear from the above equation that Charlie1 can detect
genuine entanglement with Alice and Bob when λ1>

7
13�0.54.
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Let us now explore whether there is any possibility for
subsequent Charlies, i.e., Charlie2, Charlie3 . . ., to detect the
residual genuine entanglement in the postmeasurement aver-
age state with a single Alice and a single Bob at other sides.
Since any Charlie is ignorant about the choices of measure-
ment settings and outcomes of all previous Charlies, we have
to average over the previous Charlie’s inputs and outputs to
obtain the state shared between Alice, Bob, and the Charlie
of the current stage of the experiment. After performance of
Charlie1’s unsharp measurement, the average state becomes

|W 〉〈W | → ρ
λ1
W

= 1

5

∑
i,ẑ1

k

(
I ⊗ I ⊗

√
Eλ1

i|ẑ1
k

)|W 〉〈W |(I ⊗ I ⊗
√

Eλ1

i|ẑ1
k

)
, (31)

where i ∈ {+1,−1}, ẑ1
k ∈ {ẑ, ẑ+x̂√

2
, ẑ−x̂√

2
, ẑ+ŷ√

2
, ẑ−ŷ√

2
}.

In the next step Charlie2 performs unsharp measurements
on his part of ρ

λ1
W with sharpness parameter λ2, to check

with Alice and Bob whether the state is genuinely entangled,
by using the witness parameter Wλ2

W , which acquires the
following expectation value:

Tr
[
ρ

λ1
W Wλ2

W

] = 1

90

[
35 − (

23 + 42
√

1 − λ2
1

)
λ2

]
. (32)

Hence, Charlie2 can detect genuine entanglement with Alice

and Bob if 1
90 [35 − (23 + 42

√
1 − λ2

1)λ2] < 0. On the other

hand, from Eq. (30) we know that Charlie1 can detect genuine
entanglement with Alice and Bob when λ1 > 7

13 , i.e., when
λ1 = 7

13 + ε with ε being a positive number such that ε �
6

13 . Hence, in order to detect genuine entanglement, Charlie2

must choose his sharpness parameter λ2 such that it satisfies
1

90 {35 − [23 + 42
√

1 − ( 7
13 + ε)2]λ2} < 0. If we take ε = 0

(i.e., λ1 = 7
13 ), then we obtain that Charlie2 can detect genuine

entanglement with Alice and Bob if λ2 > 0.60.
In this way if we proceed it can be observed that at most

four Charlies can detect genuine entanglement through the
witness operator Wλm

W when the initial shared state is the
three-qubit pure W state. Allowed ranges of the sharpness
parameters associated with different Charlies’ measurements
in order to detect genuine entanglement using the witness
operator Wλm

W are presented in Table I.
Now we are going to investigate the maximum number of

Charlies that can detect genuine entanglement in the scenario
mentioned in Fig. 1 using another type of witness operator
(suitable for detecting genuine entanglement of the three-
qubit GHZ state), which is given by [2,50]

WGHZ = 1

2
I3 − |GHZ〉〈GHZ|. (33)

Now, when any Charliem performs unsharp measurements
with sharpness parameter λm, the decomposition of the gen-
uine entanglement witness operator Wλm

GHZ is presented in
Appendix D.

Now, since we have Tr[WGHZρBS] � 0 ∀ ρBS ∈ BS and
0 < λm � 1, we can write that Tr[Wλm

GHZρBS] � 0 ∀ ρBS ∈
BS (details can be found in Appendix D). Hence, one may
conclude that the operator Wλm

GHZ after introducing unsharp-

TABLE I. Here we show the permissible ranges of sharpness
parameters λm (where 0 < λm � 1) of Charliem for detecting genuine
entanglement through the witness operator Wλm

W with a single Alice
and a single Bob at the other sides. The permissible range of each
λm depends on the values λ1, λ2, . . ., λm−1. In the above table we
have presented the permissible range of each λm for the minimum
permissible values of λ1, λ2, . . ., λm−1. For other values of λ1, λ2, . . .,
λm−1, the permissible range of each λm can also be calculated.
However, the permissible ranges of λm will be smaller than those
presented in the table if we take other values λi > λmin

i ∀ i < m, and
the maximum number of Charlies may get reduced. Here we find
that at most four Charlies can detect genuine tripartite entanglement
through the witness operator Wλm

W .

Charliem Permissible ranges for λm

Charlie1 1 � λ1 > λmin
1 = 0.54

Charlie2 1 � λ2 > λmin
2 = 0.60

when λi = λmin
i ∀ i < 2

Charlie3 1 � λ3 > λmin
3 = 0.69

when λi = λmin
i ∀ i < 3

Charlie4 1 � λ4 > λmin
4 = 0.84

when λi = λmin
i ∀ i < 4

Charlie5 No valid permissible range for λ5

(since 0 < λ5 � 1)

when λi = λmin
i ∀ i < 5

ness in Charlie’s measurements can again be used as a valid
witness operator of genuine entanglement.

In this case, consider that the three-qubit GHZ state given
by |GHZ〉 = 1√

2
(|000〉 + |111〉) is initially shared between

Alice, Bob, and Charlie1. In a similar fashion described ear-
lier, we now investigate how many Charlies can detect genuine
entanglement sequentially with a single Alice and a single
Bob. Since Alice and Bob perform projective measurements
and Charlie1 performs unsharp measurement with sharpness
parameter λ1, the expectation value of the genuine entangle-
ment witness Wλ1

GHZ becomes

Tr
[|GHZ〉〈GHZ|Wλ1

GHZ

] = 1

4
(1 − 3λ1). (34)

Hence, it is clear from the above expectation value that
Charlie1 can detect genuine entanglement using the genuine
entanglement witness Wλ1

GHZ with Alice and Bob when λ1 >
1
3 ≡ 0.33.

After Charlie1’s unsharp measurement, the average state
shared between Alice, Bob, and Charlie2 becomes

|GHZ〉〈GHZ| → ρ
λ1
GHZ

= 1

4

∑
i,ẑ1

k

(
I ⊗ I ⊗

√
Eλ1

i|ẑ1
k

)|GHZ〉〈GHZ|(I ⊗ I ⊗
√

Eλ1

i|ẑ1
k

)
,

(35)

where i ∈ {+1,−1}, ẑ1
k ∈ {ẑ, x̂, x̂+ŷ√

2
, x̂−ŷ√

2
}.

Next, Charlie2 performs unsharp measurements on his part
of ρ

λ1
GHZ with sharpness parameter λ2, to check with Alice and

Bob whether the state is genuinely entangled. In this case, the

042340-8



DETECTION OF GENUINE TRIPARTITE ENTANGLEMENT … PHYSICAL REVIEW A 101, 042340 (2020)

TABLE II. Here we show the permissible ranges of sharpness
parameters λm (where 0 < λm � 1) of Charliem for detecting genuine
entanglement through the witness operator Wλm

GHZ with a single Alice
and a single Bob at the other sides. The permissible range of each
λm depends on the values λ1, λ2, . . ., λm−1. In the above table we
have presented the permissible range of each λm for the minimum
permissible values of λ1, λ2, . . ., λm−1. For other values of λ1, λ2, . . .,
λm−1, the permissible range of each λm can also be calculated.
However, the permissible ranges of λm will be smaller than those
presented in the table if we take other values λi > λmin

i ∀ i < m, and
the maximum number of Charlies may get reduced. Here we find
that at most 12 Charlies can detect genuine tripartite entanglement
through the witness operator Wλm

W .

Charliem Permissible ranges for λm

Charlie1 1 � λ1 > λmin
1 = 0.33

Charlie2 1 � λ2 > λmin
2 = 0.35

when λi = λmin
i ∀ i < 2

Charlie3 1 � λ3 > λmin
3 = 0.36

when λi = λmin
i ∀ i < 3

Charlie4 1 � λ4 > λmin
4 = 0.38

when λi = λmin
i ∀ i < 4

Charlie5 1 � λ5 > λmin
5 = 0.40

when λi = λmin
i ∀ i < 5

Charlie6 1 � λ6 > λmin
6 = 0.42

when λi = λmin
i ∀ i < 6

Charlie7 1 � λ7 > λmin
7 = 0.45

when λi = λmin
i ∀ i < 7

Charlie8 1 � λ8 > λmin
8 = 0.48

when λi = λmin
i ∀ i < 8

Charlie9 1 � λ9 > λmin
9 = 0.53

when λi = λmin
i ∀ i < 9

Charlie10 1 � λ10 > λmin
10 = 0.59

when λi = λmin
i ∀ i < 10

Charlie11 1 � λ11 > λmin
11 = 0.67

when λi = λmin
i ∀ i < 11

Charlie12 1 � λ12 > λmin
12 = 0.81

when λi = λmin
i ∀ i < 12

Charlie13 No valid permissible range for λ13

(since 0 < λ5 � 1)

when λi = λmin
i ∀ i < 13

expectation value of the witness operator Wλ2
GHZ becomes

Tr
[
ρ

λ1
GHZW

λ2
GHZ

] = 1

4

[
1 − (

1 + 2
√

1 − λ2
1

)
λ2

]
. (36)

Hence, Charlie2 can detect genuine entanglement with
Alice and Bob using the above witness if 1

4 [1 − (1 +
2
√

1 − λ2
1)λ2] < 0. Since, Charlie1 can detect genuine en-

tanglement with Alice and Bob when λ1 = 1
3 + ε with ε

being a positive number such that ε � 2
3 . Hence, for detecting

genuine entanglement, Charlie2 must choose his sharpness
parameter λ2 such that 1

4 {1 − [1 + 2
√

1 − ( 1
3 + ε)2]λ2} < 0.

For example, if we take ε = 0 (i.e., λ1 = 1
3 ), then Charlie2 can

detect genuine entanglement with Alice and Bob if λ2 > 0.35.
Next, we continue exploring the possibility for subsequent

Charlies (Charlie3, Charlie4, . . .) to detect genuine entan-
glement. We observe that at most 12 Charlies can detect
genuine entanglement through the witness operator Wλm

GHZ
when the initial shared state is the three-qubit pure GHZ state.
Allowed ranges of the sharpness parameters associated with
different Charlies’ measurements in order to detect genuine
entanglement using the witness operator Wλm

GHZ are presented
in Table II.

V. CONCLUSIONS

There exist several communication and computational
tasks where multipartite quantum correlations serve as re-
sources [3–5,10,66–75]. However, due to the difficulties
present in experimentally producing multipartite quantum
correlations, their implementation as powerful resources in
various information processing tasks is still elusive. Hence,
exploring the possibilities of using single multipartite quan-
tum correlation several times is not only interesting for
foundational studies but may also be useful for information
theoretic applications.

In the present paper we address the question as to whether
multiple observers can detect genuine tripartite entanglement
sequentially. We consider the scenario where three spin- 1

2
particles are spatially separated and shared between, say,
Alice, Bob, and multiple Charlies. Alice measures on the first
particle, Bob measures on the second particle, and multiple
Charlies measure on the third particle sequentially. In the
course of our paper we have used both linear as well as
nonlinear correlation inequalities which detect genuine entan-
glement in the device-independent scenario. In this context,
we have shown that at most two Charlies can detect genuine
entanglement of the GHZ state. Note that the question of
sharing of genuine entanglement of the W state in the device-
independent scenario remains to be investigated due to the
lack of a suitable inequality. A possible direction in this
context may be to evaluate the biseparable bounds of the
inequalities presented in [76], which are violated maximally
by the W state.

The number of Charlies may be increased by giving up
the requirement of device independence, as we have shown
using two types of appropriate genuine entanglement witness
operators. Here, we find that at most four Charlies can detect
genuine entanglement sequentially with the single Alice and
single Bob using the shared W state. In case of the shared GHZ
state we find that the number of Charlies can increase up to
12, which may open up interesting possibilities of detection of
genuine tripartite entanglement sharing by multiple observers.

Before concluding, it may be noted that the issue of sharing
genuine nonlocality in the above scenario has been studied
earlier [34]. Hence, it would be interesting to investigate this
issue in the intermediate context between entanglement and
Bell nonlocality, viz., sharing of genuine multipartite quantum
steering [77–79] by multiple observers measuring sequen-
tially on the same particle. Finally, exploring information
theoretic applications of the present paper is another direction
for future research.
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APPENDIX A: EXPLICIT DECOMPOSITION OF THE WITNESS OPERATOR WW INTO A SUM OF TENSOR PRODUCTS
OF LOCAL OPERATORS

The witness operator WW given by Eq. (5) can be decomposed as follows:

WW = 1

24
[13 I ⊗ I ⊗ I + 3 σz ⊗ I ⊗ I + 3 I ⊗ σz ⊗ I + 3 I ⊗ I ⊗ σz + 5 σz ⊗ σz ⊗ I + 5 σz ⊗ I ⊗ σz + 5 I ⊗ σz ⊗ σz

+ 7 σz ⊗ σz ⊗ σz − I ⊗ I ⊗ (σz + σx ) − I ⊗ (σz + σx ) ⊗ I − (σz + σx ) ⊗ I ⊗ I − I ⊗ (σz + σx ) ⊗ (σz + σx )

− (σz + σx ) ⊗ I ⊗ (σz + σx ) − (σz + σx ) ⊗ (σz + σx ) ⊗ I − (σz + σx ) ⊗ (σz + σx ) ⊗ (σz + σx ) − I ⊗ I ⊗ (σz − σx )

− I ⊗ (σz − σx ) ⊗ I − (σz − σx ) ⊗ I ⊗ I − I ⊗ (σz − σx ) ⊗ (σz − σx ) − (σz − σx ) ⊗ I ⊗ (σz − σx )

− (σz − σx ) ⊗ (σz − σx ) ⊗ I − (σz − σx ) ⊗ (σz − σx ) ⊗ (σz − σx ) − I ⊗ I ⊗ (σz + σy) − I ⊗ (σz + σy) ⊗ I

− (σz + σy) ⊗ I ⊗ I − I ⊗ (σz + σy) ⊗ (σz + σy) − (σz + σy) ⊗ I ⊗ (σz + σy) − (σz + σy) ⊗ (σz + σy) ⊗ I

− (σz + σy) ⊗ (σz + σy) ⊗ (σz + σy) − I ⊗ I ⊗ (σz − σy) − I ⊗ (σz − σy) ⊗ I − (σz − σy) ⊗ I ⊗ I

− I ⊗ (σz − σy) ⊗ (σz − σy) − (σz − σy) ⊗ I ⊗ (σz − σy) − (σz − σy) ⊗ (σz − σy) ⊗ I

− (σz − σy) ⊗ (σz − σy) ⊗ (σz − σy)]. (A1)

Note that all the correlations of measurements like σz ⊗ σz ⊗ σz, σz ⊗ σz ⊗ I, σz ⊗ I ⊗ σz, I ⊗ σz ⊗ σz, σz ⊗ I ⊗ I, I ⊗ σz ⊗ I,
and I ⊗ I ⊗ σz can be determined from the same data. Hence, the above decomposition requires measurements of five
correlations:

σz ⊗ σz ⊗ σz,(
σz + σx√

2

)
⊗

(
σz + σx√

2

)
⊗

(
σz + σx√

2

)
,

(
σz − σx√

2

)
⊗

(
σz − σx√

2

)
⊗

(
σz − σx√

2

)
,

(
σz + σy√

2

)
⊗

(
σz + σy√

2

)
⊗

(
σz + σy√

2

)
,

(
σz − σy√

2

)
⊗

(
σz − σy√

2

)
⊗

(
σz − σy√

2

)
.

APPENDIX B: EXPLICIT DECOMPOSITION OF THE WITNESS OPERATOR WGHZ INTO A SUM OF TENSOR PRODUCTS
OF LOCAL OPERATORS

The witness operator WGHZ given by Eq. (6) can be written in the following decomposition:

WGHZ = 1

8

[
3 I ⊗ I ⊗ I − I ⊗ σz ⊗ σz − σz ⊗ I ⊗ σz − σz ⊗ σz ⊗ I − 2 σx ⊗ σx ⊗ σx

+ 1

2
(σx + σy) ⊗ (σx + σy) ⊗ (σx + σy) + 1

2
(σx − σy) ⊗ (σx − σy) ⊗ (σx − σy)

]
. (B1)

The above decomposition requires measurements of four correlations:

σz ⊗ σz ⊗ σz,

σx ⊗ σx ⊗ σx,(
σx + σy√

2

)
⊗

(
σx + σy√

2

)
⊗

(
σx + σy√

2

)
,

(
σx − σy√

2

)
⊗

(
σx − σy√

2

)
⊗

(
σx − σy√

2

)
.
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APPENDIX C: SINGLE SIDED UNSHARP VERSION OF THE WITNESS OPERATOR WW

Using the substitution 〈σxi ⊗ σy j ⊗ σ
λm
zm

k
〉 → λm〈σxi ⊗ σy j ⊗ σzm

k
〉 in the case of a general λm [25], the decomposition (A1) of

the genuine entanglement witness operator WW can be written as

Wλm
W = 1

24
[13 I ⊗ I ⊗ I + 3 σz ⊗ I ⊗ I + 3 I ⊗ σz ⊗ I + 3 I ⊗ I ⊗ λm σz + 5 σz ⊗ σz ⊗ I + 5 σz ⊗ I ⊗ λm σz

+ 5 I ⊗ σz ⊗ λm σz + 7 σz ⊗ σz ⊗ λm σz − I ⊗ I ⊗ λm (σz + σx ) − I ⊗ (σz + σx ) ⊗ I − (σz + σx ) ⊗ I ⊗ I

− I ⊗ (σz + σx ) ⊗ λm (σz + σx ) − (σz + σx ) ⊗ I ⊗ λm (σz + σx ) − (σz + σx ) ⊗ (σz + σx ) ⊗ I

− (σz + σx ) ⊗ (σz + σx ) ⊗ λm (σz + σx ) − I ⊗ I ⊗ λm (σz − σx ) − I ⊗ (σz − σx ) ⊗ I − (σz − σx ) ⊗ I ⊗ I

− I ⊗ (σz − σx ) ⊗ λm (σz − σx ) − (σz − σx ) ⊗ I ⊗ λm (σz − σx ) − (σz − σx ) ⊗ (σz − σx ) ⊗ I

− (σz − σx ) ⊗ (σz − σx ) ⊗ λm (σz − σx ) − I ⊗ I ⊗ λm (σz + σy) − I ⊗ (σz + σy) ⊗ I − (σz + σy) ⊗ I ⊗ I

− I ⊗ (σz + σy) ⊗ λm (σz + σy) − (σz + σy) ⊗ I ⊗ λm (σz + σy) − (σz + σy) ⊗ (σz + σy) ⊗ I

− (σz + σy) ⊗ (σz + σy) ⊗ λm (σz + σy) − I ⊗ I ⊗ λm (σz − σy) − I ⊗ (σz − σy) ⊗ I − (σz − σy) ⊗ I ⊗ I

− I ⊗ (σz − σy) ⊗ λm (σz − σy) − (σz − σy) ⊗ I ⊗ λm (σz − σy) − (σz − σy) ⊗ (σz − σy) ⊗ I

− (σz − σy) ⊗ (σz − σy) ⊗ λm (σz − σy)]. (C1)

Now, since we have Tr[WW ρBS] � 0 ∀ ρBS ∈ BS (where BS is the set of all biseparable states) and 0 < λm � 1, we can write
the following:

Tr
[
Wλm

W ρBS
]

= λmTr[WW ρBS] + 1

24
(1 − λm)(13 + 3 Tr[ρBS(σz ⊗ I ⊗ I)] + 3 Tr[ρBS(I ⊗ σz ⊗ I)] + 5 Tr[ρBS(σz ⊗ σz ⊗ I)]

− Tr{ρBS[I ⊗ (σz + σx ) ⊗ I]} − Tr{ ρBS[(σz + σx ) ⊗ I ⊗ I]} − Tr{ ρBS[(σz + σx ) ⊗ (σz + σx ) ⊗ I]}
− Tr{ρBS[I ⊗ (σz − σx ) ⊗ I]} − Tr{ρBS[(σz − σx ) ⊗ I ⊗ I]} − Tr{ρBS[(σz − σx ) ⊗ (σz − σx ) ⊗ I]}
− Tr{ρBS[I ⊗ (σz + σy) ⊗ I]} − Tr{ρBS[(σz + σy) ⊗ I ⊗ I]} − Tr{ρBS[(σz + σy) ⊗ (σz + σy) ⊗ I]}
− Tr{ρBS[(σz − σy) ⊗ I ⊗ I]} − Tr{ρBS[I ⊗ (σz − σy) ⊗ I]} − Tr{ρBS[(σz − σy) ⊗ (σz − σy) ⊗ I]})

= λmTr[WW ρBS] + 1

24
(1 − λm)(13 − 〈σz ⊗ I ⊗ I〉 − 〈I ⊗ σz ⊗ I〉 + 〈σz ⊗ σz ⊗ I〉 − 2〈σx ⊗ σx ⊗ I〉 − 2〈σy ⊗ σy ⊗ I〉)

� λmTr[WW ρBS] + 1

4
(1 − λm) � 0 ∀ ρBS ∈ BS. (C2)

The first inequality in the last line of (C2) is obtained by minimizing all the expectation values.

APPENDIX D: SINGLE SIDED UNSHARP VERSION OF THE WITNESS OPERATOR WGHZ

After the substitution 〈σxi ⊗ σy j ⊗ σ
λm
zm

k
〉 → λm〈σxi ⊗ σy j ⊗ σzm

k
〉, the decomposition (B1) of the witness operator WGHZ takes

the following form:

Wλm
GHZ = 1

8

[
3 I ⊗ I ⊗ I − I ⊗ σz ⊗ λm σz − σz ⊗ I ⊗ λm σz − σz ⊗ σz ⊗ I − 2 σx ⊗ σx ⊗ λm σx

+ 1

2
(σx + σy) ⊗ (σx + σy) ⊗ λm (σx + σy) + 1

2
(σx − σy) ⊗ (σx − σy) ⊗ λm (σx − σy)

]
.

Now, since we have Tr[WGHZρBS] � 0 ∀ ρBS ∈ BS and 0 < λm � 1, we can write the following:

Tr
[
Wλm

GHZρBS
] = λmTr[WGHZρBS] + 1

8
(1 − λm)(3 − 〈σz ⊗ σz ⊗ I〉)

� λmTr[WGHZρBS] + 1

4
(1 − λm)

� 0 ∀ ρBS ∈ BS. (D1)
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