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Relationship between subjecting the qubit to dynamical decoupling
and to a sequence of projective measurements
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We consider a qubit coupled to another system (its environment) and discuss the relationship between
the effects of subjecting the qubit to either a dynamical decoupling sequence of unitary operations or a
sequence of projective measurements. We give a formal statement concerning the equivalence of a sequence
of coherent operations on a qubit, precisely operations from a minimal set {1Q, σ̂x}, and a sequence of projective
measurements of observable σ̂x . Using it we show that when the qubit is subjected to n such successive projective
measurements at certain times, the expectation value of the last measurement can be expressed as a linear
combination of expectation values of σ̂x observed after subjecting the qubit to dynamical decoupling sequences
of π pulses, with k � n of them applied at subsets of these times. Performing a sequence of measurements on
the qubit gives then access to the same properties of the environment and qubit-environment coupling that are
affecting the coherence observed in a dynamical decoupling experiment. Analyzing the latter has been widely
used to characterize the environmental dynamics (perform so-called noise spectroscopy), so our result shows how
the results obtained with dynamical-decoupling-based protocols are related to those that can be obtained just by
performing multiple measurements on the qubit. We also discuss in more detail the application of the general
result to the case of the qubit undergoing pure dephasing and outline possible extensions to higher-dimensional
systems (a qudit or multiple qubits).
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I. INTRODUCTION

Unitary operations on an open quantum system are com-
monly employed in information manipulation since they pre-
serve the purity of the state. They are used for control of
quantum information [1–3] encoded initially in the system,
and the open nature of the system is most often treated as
a nuisance, a source of decoherence [4]. Good definitions
of the quantum system S and its environment E are in fact
based on the possibility of exerting unitary control: S can
be subjected to any desired unitary operation, while E can
only be manipulated in a very limited way (if at all). Here
we also assume that S can also be subjected to projective
measurements, while its E is inaccessible to both unitary
operations and measurements. The only way then to learn any-
thing about E is through the manipulations and measurements
of S. Gaining information about the dynamics of E could
then be used to devise system control protocols that perform
desired tasks while being more resilient to decoherence [5–9].
Furthermore, characterization of a microscopic (but still not
directly controllable) environment of certain qubits, e.g., nu-
clear spins of molecules localized close to a nitrogen-vacancy
center qubit [10–16], is of interest in itself, as it allows one
to use the coherent control and readout of a small quantum
system to gain insight into the physics of another, larger,
quantum system.
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In recent years the most popular qubit-based environment
characterization method, that based on applying a sequence
of short unitary operations, e.g., π pulses corresponding to
the application of σ̂k (k = x, y, z) operators, at a chosen
set of times, followed by a single measurement of the qubit
[10,11,17–26], has been intensively developed. Such a proce-
dure is known as dynamical decoupling (DD) [27,28], as it
was originally devised to protect the qubit from decoherence
by decoupling it from E , but in the context relevant here
the goal is to decouple the qubit (or qubits) from all the
environmental noise, except for noise at certain frequencies,
and thus turn the quantum system into a spectrometer of this
noise [10,17,19,29,30]. In the case of pure dephasing of the
qubit, with E being either a source of external classical noise
or (possibly quantum) Gaussian noise, the relation between
the DD signals and the properties of the environmental dy-
namics is well established [10,17,31,32]. By an appropriate
choice [21,33] of DD sequences one can reconstruct the power
spectral density of Gaussian noise, and characterization of
polyspectra of non-Gaussian noise is also possible, although
more challenging [31,34,35]. Note that this basic setup for
E characterization is similar to the one used in quantum
metrology [36], where one employs protocols consisting of
unitary operations on the multiqubit system followed by a
single measurement [37–39] or of periods of unitary evolution
interlaced with measurements used for error correction of the
state of the qubits [40–42].

Projective measurements, on the other hand, are of entan-
glement breaking character and never allow for continuity of
the correlation between S and E in further steps of the protocol
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[43–45]. This class of operations is most often employed for
characterization of the system [46,47]. It is possible to exert
some degree of control over the system by subjecting it to a
sequence of measurements, often also involving postselection
[48–52]. While multiple measurements on a qubit are known
to allow for characterization and changing the state of E
that is static during its interaction with the qubit [53–56],
only quite recently has the possibility of performing such a
characterization of the dynamics of E by performing only
measurements on S attracted more attention [15,16,57–65].
Building on earlier results [58], we have recently established
a close connection between the DD-based and multiple-
measurement-based noise spectroscopy, in the case of pure
dephasing due to external classical noise [65]. However, the
model in which a quantum E is replaced by a source of
classical noise, while apparently often accounting well for
observations in the pure dephasing case [10,11,17,19–26], is
obviously a drastic approximation of the microscopic descrip-
tion of the open quantum system dynamics. The issue of ap-
plicability of multiple measurements to the characterization of
a quantum E coupled to the controlled system is thus a subject
of current interest; see, e.g., a recent work on reconstruction
of arbitrary higher-order environmental correlation functions
from sequential measurements on the qubit [61].

There are several pieces of evidence showing that the two
above-mentioned classes of operations can provide similar
characteristics of the environment, when several sequences
of measurements are together taken into account. Examples
include the observation that positive-operator-valued mea-
sures can be explained in terms of projective measurements
[66,67], derivation of noisy quantum channel decoding ef-
ficiency bound via the expansion over projective sequential
measurements [68], projective measurement(-preparation) re-
construction of non-Markovian dynamics over limited con-
trols [69], and explanation of non-Markovian control in terms
of alternative formalism of a quantum stochastic process
constructed from a set of measurement-preparation pairs [45].

In this work we show that a close relationship between
dynamical decoupling of Q from E and the protocols based
on multiple measurements on Q is in fact very general: It
holds on the operational level without making any assumption
on the initial state of the total system, the Q-E coupling,
and the quantum or effectively classical nature of environ-
mental dynamics. Specifically, we consider control over a
qubit generated from a minimal set of two operations {1Q, σ̂x}
and we show how arbitrary sequences of such operations
interlaced with unitary evolutions of the composite (Q + E )
system can be expressed as linear combinations of operations
in which these basic unitary operations on Q are replaced by
measurements of its σ̂x (and vice versa). The main result of
experimental significance is the establishment of a relation
between signals obtained using a class of protocols based
on multiple measurements, and measurements of coherence
of a qubit subjected to a DD sequence of π pulses (i.e.,
σ̂x operations). We expect this result to contribute to the
recently ongoing theoretical efforts aimed at understanding
what characteristics of the quantum environment one can ob-
tain from multiple measurements on the qubit [61,70,71] and
at extending the DD-based noise spectroscopy paradigm to
the case of general qubit-environment coupling [72]. We also

discuss the relevance of this relation for noise spectroscopy
in the pure dephasing case and outline the generalization to
higher-dimensional systems.

The paper is organized in the following way. The basic
setup of the considered composite system, the mathematical
framework, and conventions for coherent control and sequen-
tial measurement protocol are given in Sec. II. In Sec. III we
derive the main formal result: We express the operation done
on the composite system by a sequence of measurements as a
linear combination over DD unitary evolutions followed by a
single measurement and conversely we express the operation
done by a sequence of σ̂x unitaries as a linear combination of
projections interlaced with unitary evolutions. In Sec. IV we
focus on the application of this result to the observables most
easily accessible in the experiment: the decoherence signal
after a DD sequence and expectation of the last measurement
in a sequence of projections. We also discuss some features
specific to the often-encountered case of pure dephasing of the
qubit, as this is the case for which most of DD-based noise
spectroscopy theory was developed (for a recent exception
see [72]). Some possible generalizations to measurements
along multiple axes and a higher-dimensional system case are
sketched in Sec. V, while in Sec. VI, apart from summarizing
the main results, we put them in the context of recent works
on characterization of the dynamics of open quantum systems
using the process tensor [44,73].

II. FRAMEWORK

A. Open system subjected to interventions

Our main focus here is a qubit Q coupled to an environment
E . The Hamiltonian of the composite Q + E system is

HC = HQ ⊗ 1E + 1Q ⊗ HE +
∑

k=x,y,z

σ̂k ⊗ Vk,

where HQ(E ) are Hamiltonians of Q(E ), σ̂k are Pauli op-
erators of the qubit, and Vk are environmental operators.
Between times tk−1 and tk the evolution of the system is gen-
erated either by this Hamiltonian, with UC

k = exp[−iHC (tk −
tk−1)], or by the Hamiltonian of the environment only: UE

k =
exp[−iHE (tk − tk−1)]. The latter occurs when the Q-E cou-
pling and the qubit Hamiltonian are turned off for a finite
time. Such a temporary vanishing of the Q-E interaction often
occurs naturally in setups in which measurements on Q at
some of tk times are considered; these measurements could
be destructive or their execution might require changing the
system in such a way that Q and E become decoupled.

We consider now various types of interventions at times
tk , all of them being operations local on Q, as only the latter
is considered to be directly accessible. The goal is to choose
these operations, the intervention times, and the pattern of
types of unitary evolutions between these times (UC

k or UE
k )

in a way allowing for recovery of certain properties of both E
(its Hamiltonian and initial state) and the Q-E coupling from
measurements on the final state of Q. More generally, one
might want to look at patterns in correlations between the re-
sults of this measurement and the input state of the composite
system. Both quantum metrology (where typically more than
one qubit forms the system and E is replaced by a real number
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x on which UC
k depends) and E characterization with π pulses

applied to the qubit are examples. In the former, the most
accurate estimation of x is the goal. In the latter, it is harder
to state in general terms what the quantity of interest is. From
a body of work on DD-based noise spectroscopy [10,17], we
know that for a qubit initialized in a superposition of pointer
states, periodic application of a sequence of unitary operations
on the qubit, possibly interlaced with operations that decouple
it from E (see [58,65,71,74] for examples), followed by a
measurement of qubit’s coherence, gives access to physically
interesting properties of the dynamics caused by HC and HE .
We would like now to formulate a more general framework
of controlling the evolution of the composite system by a
series of interventions concerning Q only, with the DD-based
scheme being one particular example.

B. Operational formalism

In order to treat various types of interventions on equal
footing, we will use an operational formalism, in which both
unitary evolution and measurement on a system described by
the state operator ρ are identified with superoperators acting
on ρ. For example, a unitary evolution U corresponds to the
operation U , the action of which is U [ρ] = Uρ̂U†.

Aside from formal convenience, this formalism allows for
transparent separation of discussion concerning the operation
on the total system, caused by our interventions and its intrin-
sic dynamics, and consideration of the input state and the final
measurement that constitutes the “signal” obtained from a
given procedure. We will show that relations between distinct
classes of interventions can be formulated by considering only
the operational layer; they hold for all the input states.

We consider a qubit Q, with an arbitrary environment E ,
undergoing unitary evolution U acting on a state ρ ∈ S (HQ ⊗
HE ) = {ρ ∈ B(HQ ⊗ HE ) : tr(ρ) = 1, ρ � 0, ρ = ρ†}. Let
us define a sequence of n time steps (tn, tn−1, . . . , t1), with
tn > tn−1 > · · · > t1, and write Uk = U (tk, tk−1) for all k =
1, . . . , n. As discussed previously, they can correspond either
to an evolution in the presence of the Q-E interaction or to
the evolution of E only. We call an operation on B(H) an
operator thereon equipped with Hilbert-Schmidt algebra that
obeys the conditions of complete positivity [3,75] and we call
the operation local on the subsystem Q if B(HQ) ⊗ B, where
B is an environment operator, is closed under the operation.

We consider two types of local operations: coherent ones
and projective ones. The first preserve the purity of the state
in the qubit subsystem, i.e., tr{[trE (A[ρ])]2} = tr{[trE (ρ)]2},
where trE is a partial trace over the environmental degrees
of freedom. For a qubit, we will focus on a restricted class
consisting of an idle operation I[ρ] = ρ and a single-axis
π -pulse operation X [ρ] = (σ̂x ⊗ 1E )ρ(σ̂x ⊗ 1E ), where σ̂x is
a Pauli X operator. In this language the evolution of the
composite system modulated by a sequence of length n − 1
of coherent operations on Q is given by

UA
sn−1,...,s1

= Un ◦ Asn−1 ◦ · · · ◦ U2 ◦ As1 ◦ U1, (1)

where Ask = I for sk = (i) and X for sk = (x), and sk ∈
{(i), (x)} denotes the sequence of the idle (i) and the echo (x)
operation at time steps labeled by k. For example, a spin echo
sequence [29] corresponds to the operation U2 ◦ X ◦ U1, with

UC
1

UE
1

UC
2

UE
2

P̂±x P̂±x

· · · UC
n

UC
1

UE
1

UC
2

(a)

(b)

UE
2

A1 A2

· · · UC
n

FIG. 1. Schematics of sequences of (a) coherent operations and
(b) sequential measurements. The modules above represent the oper-
ations on the composite states, while the input state and output state
(observable) are arbitrary. The upper rail of the scheme describes
the evolution of the environment, while the lower rail of the scheme
describes the operations done on the qubit. Here UC

k operations
correspond to joint evolution of the qubit and the environment caused
by their interaction, while UE

k operations correspond to evolution of
E uncoupled from the qubit.

U2 = U1 = UC (τ ) describing the evolution of the composite
system for time τ , while a two-pulse Carr-Purcell sequence
[76] corresponds to the operation U3 ◦ X ◦ U2 ◦ X ◦ U1 with
identical generators of the evolutions and their durations being
τ , 2τ , and τ , consecutively. A schematic representation of
a sequence of local coherent X operations, with evolution
of either the interacting Q-E composite system or E only
occurring between these operations, is shown in Fig. 1(a).

Another class of operations is of the projective type. In
accordance with our focus on the X operation above, we
consider the measurement in the X basis done by projections
P± onto the |+〉 and |−〉 eigenstates of σ̂x, i.e., σ̂x|±〉 = ±|±〉,
associated with a measurement outcome m = ±1. The cor-
responding operation is Pm[ρ] = (Pm ⊗ 1E )ρ(Pm ⊗ 1E ). It
corresponds to an entanglement breaking channel [43], since a
correlated state will become separable after the measurement,
i.e., the purity of the composite state will be increasing. In a
concatenated form, a sequence of n measurements interlaced
with n evolutions is given by

Pmn,...,m1 = Pmn ◦ Un ◦ Pmn−1 ◦ · · · ◦ U2 ◦ Pm1 ◦ U1, (2)

where mk ∈ {+1,−1} denotes a measurement result at time
step k and the sequence of unitary evolutions Un, . . . ,U1 is
the same as in Eq. (1) [see Fig. 1(b)].

III. RELATION BETWEEN COHERENT OPERATIONS
AND SEQUENTIAL MEASUREMENTS

Since Pm and σ̂x commute, one may describe the op-
eration from one class as a combination of the operations
from the other class. In particular we have the relation
X = 2(P+ + P−) − I (see Fig. 2 for the schematics), or
conversely Pm = 1

4 (I + X + mDX ), where DX [ρ] = (σ̂x ⊗
1E )ρ + ρ(σ̂x ⊗ 1E ). Thus, it follows that

Pmn,...,m1 = 1

4n
[(I + X + mnDX ) ◦ Un

◦ · · · ◦ (I + X + m1DX ) ◦ U1].
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I + X = 2
P̂+x

+
P̂−x

FIG. 2. Schematic of the relation of the building blocks for the
equivalence of two types of manipulation. The left-hand side is a
combination of coherent operations on the qubit and the right-hand
side is a combination of projective measurements on it.

As one can see, on the operation level, the direct expansion of
Pmn,...,m1 will contain DX in the sequences. However, we can
avoid this feature if we consider an operation On defined by

On(mn) =
∑

mn−1,...,m1

Pmn,...,m1 ,

which corresponds to making n − 1 nonselective measure-
ments [48,77–79] (or measurements without outcome evalu-
ation) at times t1, . . . , tn−1, followed by projection on mn at
time tn. It is easy to see now that

On(mn) = 1

2n−1

(
Pmn ◦

∑
sn−1,...,s1

UA
sn−1,...,s1

)
. (3)

The operation On(mn) is effectively a composition of all
possible 2n−1 sequences of coherent operations applied to the
qubit at times t1, . . . , tn−1, defined in Eq. (1), followed by
a measurement giving the mn result at tn. We remark that∑

m mC = 0 for any outcome-independent operation C. The
relation (3) means that a measurement Pmn at time tn preceded
by earlier n − 1 nonselective measurements, represented by
On(mn), transforms the whole composite system in the same
way as a procedure in which we perform unitary transforma-
tions UA

sn−1,...,s1
with probabilities 1/2n−1 and follow each of

them by the Pmn measurement. For example, for a sequence
of two measurements performed at times t1 and t2, we have

O2(m2) =
∑
m1

Pm2 ◦ U2 ◦ Pm1 ◦ U1

= 1

2

(
Pm2 ◦ U2 ◦ U1 + Pm2 ◦ U2 ◦ X ◦ U1

)
,

showing that the state after two measurements can be written
as a convex combination of states obtained by making a single
measurement at time t2 with no control pulse and at time
t1 with a pulse π . This relation is the basis of the classical
environmental noise characterization scheme by two single-
shot measurements described in [58].

For the converse relation, it suffices to consider only the
case of ((x), (x), . . . , (x)), because an insertion of an idle
operation between two unitary evolutions can be absorbed
in a redefinition of unitary evolution Uk ◦ I ◦ Uk−1 → Uk−1

with shifting of indices k + 1 �→ k, mapping the original
operation sequence to a shorter one containing only X opera-
tions. For example, the sequence ((x), (i), (x)) can be written
as ((x), (x)) by the redefinition U3 ◦ I ◦ U2 → U2 from the
original sequence. For n − 1 operations X interlaced with n

unitary evolutions, we have

UA
(x),...,(x) =

n−1∑
k=0

(−1)n−1−k2k U ′
(t� )k

◦
∑

(t� )k∈Tn−1

∑
mk ,...,m1

P ′
mk ,...,m1

,

(4)

where Tn−1 is the set of all possible subsequences (t�)k of
length k, for k = 1, . . . , n − 1, of the sequence of operation
times (tn−1, . . . , t1), U ′

(t� )k
is a composition of all the unitary

evolutions after the last measurement in the subsequence
(t�)k , and P ′

mk ,...,m1
= ∏k

�=1(Pm�
◦ U ′

�), with U ′
� = U� ◦ · · · ◦

U�−1 being the composition of all unitary evolutions between
measurement time steps t�−1 and t� in the subsequence (t�)k ,
at which the measurements Pm�

are evaluated. For example,
the operation that corresponds to the spin echo sequence is

U2 ◦ X ◦ U1 = −U2 ◦ U1 + 2(U2 ◦ P+ ◦ U1 + U2 ◦ P− ◦ U1).

Thus, the operation effected by letting the composite system
evolve for time t1, applying X to the qubit, and then letting
the system evolve for time t2 − t1, can be written as a linear
combination of three other operations: evolution for time t2,
evolution for t1 followed by projection on the |+〉 state and
subsequent evolution for t2 − t1, and an analogous operation
with projection on the |−〉 state at t1. For the evolution
interrupted by two pulses we have

U3 ◦ X ◦ U2 ◦ X ◦ U1

= U3 ◦ U2 ◦ U1

− 2(U3 ◦ U2 ◦ P+ ◦ U1 + U3 ◦ U2 ◦ P− ◦ U1)

− 2(U3 ◦ P+ ◦ U2 ◦ U1 + U3 ◦ P− ◦ U2 ◦ U1)

+ 4(U3 ◦ P+ ◦ U2 ◦ P+ ◦ U1 + U3 ◦ P− ◦ U2 ◦ P− ◦ U1

+ U3 ◦ P+ ◦ U2 ◦ P− ◦ U1 + U3 ◦ P− ◦ U2 ◦ P+ ◦ U1).

Note that the right-hand sides of the two above equations
are not convex combinations of operations and consequently
one cannot perform an experiment in which the operations
effected by π rotations on the qubit are performed with
qubit measurements only. In the next section we discuss the
observable consequences of these relations.

IV. DECOHERENCE SIGNALS AND REPREPARATIONS
FOR PURE DEPHASING

Our main results, Eqs. (3) and (4), show that the rela-
tion between sequences of coherent operations and projective
measurements on the qubit can be expressed at the level of
operations on the composite system. However, it is more
practical to consider an expectation of a particular observable
of the qubit, which can be studied in experiments.

A. Relation between dynamical-decoupling-induced
decoherence signal and probabilities of sequential measurements

Let us apply Eqs. (3) and (4) to a system initially
in the state ρ = P+ ⊗ ρE and consider the expectation
value of the qubit’s σ̂x. In a sequential measurement pro-
tocol, we calculate an expectation of the nth measurement
On(tn, . . . , t1) = ∑

mn
mntr{On(mn)[ρ]} [see Fig. 3(a)]. It can

be written as On(tn, . . . , t1) = ∑
mn,...,m1

mnP (mn, . . . , m1),
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(b)
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· · · UC
n

〈mn〉
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1
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2
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P̂+x X X
· · · UC

n 〈σ̂x〉

ρB
0

UC
1

UE
1

UC
2

P̂+x P̂+x

m1

· · · UC
n

mn

FIG. 3. Schemes of three protocols leading to signals observable
on the qubit discussed in Sec. IV: (a) average of final measurement
results from the collection of measurements without repreparation,
(b) decoherence signal induced by the dynamical decoupling process,
and (c) correlation of the collection of measurements with reprepara-
tion of the qubit state. The signal from protocol (a) can be expressed
as a linear combination of signals from (b), and vice versa, for any
form of qubit-environment coupling. The signals from (b) and (c) are
equal to one another for a qubit exposed to pure dephasing due to
coupling of its σ̂z operator to the environment.

where P (mn, . . . , m1) = Pmn,...,m1 [ρ] is the probability of a
sequence of results.

In contrast, we consider an expectation value of σ̂x of the
qubit at time tn, evaluated after the qubit was subjected to a
sequence of coherent operations UA

sn−1,...,s1
,

Wsn−1,...,s1 (tn, . . . , t1) := tr
{
(σ̂x ⊗ 1E )UA

sn−1,...,s1
[ρ]

}
[see Fig. 3(b)]. This function measures coherence between
eigenstates of σ̂z for a qubit initialized in their superposition
and subjected to a DD sequence of π pulses about the x axis.
From Eq. (3) we obtain a simple relation between the results
of the two experiments

On(tn, . . . , t1) = 1

2n−1

∑
sn−1,...,s1

Wsn−1,...,s1 (tn, . . . , t1). (5)

This is a generalization of a relation obtained in [65] for a
qubit experiencing pure dephasing due to external classical
noise. However, here we do not assume anything about the
form of qubit-environment coupling and the environment is
treated quantum mechanically. These relations show that the
collection of expectations of σ̂x, given by all measurement
subsequences of length k < n, reveals the same characteristics
of the environment as those which are commonly extracted
from a collection of decoherence signals obtained in DD
experiments with n − 1 or fewer pulses.

Let us consider the converse relation, as we have done on
the operation level. Let us define an operation in which the
first k − 1 measurements are done at times specified by the
subsequence (t�)k−1 of (tn−1, . . . , t1) and the kth measurement
is done at time tn,

Ok (mk; tn ⊕ (t�)k−1) =
∑

mk−1,...,m1

Pmk ◦ U ′
(t� )k−1

◦ P ′
mk−1,...,m1

,

and the corresponding expectation value of the kth measure-
ment

Ok[tn ⊕ (t�)k−1] =
∑

mk ,...,m1

mktr{Ok (mk; tn ⊕ (t�)k−1)[ρ]}.

In this language Eq. (4) leads to

W(x),...,(x)(tn . . . , t1)

=
n−1∑
k=0

(−1)n−1−k2k
∑

(t� )k−1∈Tn−1

Ok[tn ⊕ (t�)k−1]. (6)

For example, the decoherence signals from a spin echo pro-
tocol (the decoherence signal as a function of t2 with a pulse
applied at t1) can be written as a composition of results of two
measurement protocols

W(x)(t2, t1) = 2O2(t2, t1) − O1(t2), (7)

where O2(t2, t1) is an expectation value of σ̂x measured at time
t2 when a previous measurement of this observable was done
at time t1, while O1(t2) is an expectation value of σ̂x measured
at time t2 that was not preceded by another measurement. The
converse relation, obtained from Eq. (5), is simply

O2(t2, t1) = 1
2 [W(i)(t2, t1) + W(x)(t2, t1)], (8)

where W(x)(t2, t1) [W(i)(t2, t1)] is the expectation value of σ̂x

measured at time t2 when a π -pulse (identity) operation was
applied at time t1, so in fact the t1 argument in W(i)(t2, t1) is
spurious.

Another example is a three-measurement protocol for
which the expectation value of the last measurement is

O3(t3, t2, t1) = 1
4 [W(i),(i)(t3, t2, t1) + W(x),(i)(t3, t2, t1)

+ W(i),(x)(t3, t2, t1) + W(x),(x)(t3, t2, t1)], (9)

with interventions done at t2 and t1 and coherence measured at
t3. On the other hand, for the two-pulse Carr-Purcell sequence
with interpulse delays given by τ , 2τ , and τ we have

WCP2(4τ ) = O1(4τ ) − 2[O2(4τ, τ ) + O2(4τ, 3τ )]

+ 4O3(4τ, 3τ, τ ), (10)

where measurements are done at times given as arguments of
Ok functions.

B. Relation between measurement protocols with and without
repreparation in the case of pure dephasing

Above we have considered the sequence of projective mea-
surements without any repreparation of the states. However,
in practice one may desire an insertion of repreparation of
a particular state. This is the case when the measurement is
destructive, and the qubit needs to be reprepared in a fresh
state such as P+. The measurement operation will then be
followed by a repreparation operation R[ρ] = P+ ⊗ trQ{ρ}.
The measurement protocol with repreparation will be given
by

PR
m′

n,...,m
′
1
= Pm′

n
◦ Un ◦ R ◦ Pm′

n−1
◦ · · · ◦ U2 ◦ R ◦ Pm′

1
◦ U1,

(11)
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where the prime indicates the measurement results in this
protocol. This is schematically illustrated in Fig. 3(c).

Let us focus now on the often-encountered case of pure
dephasing evolution, in which one can find a basis for Q
that consists of pointer states unperturbed by coupling to
E [4,80,81], and only the superposition of these states is
subjected to a dephasing. The Hamiltonian is then of the form
H = azσ̂z ⊗ Vz + a11Q ⊗ V1, where σ̂z and 1Q are the Pauli
Z and identity operators on the qubit, Vz(1) is an operator
acting on HE , and az(1) is a (possibly time-dependent) real
number. This Hamiltonian describes a dominant decoherence
mechanism for a wide class of qubits [10,11,17–26,82]. The
unitary evolution is given then by a conjugation with U =
|↑〉〈↑| ⊗ U↑ + |↓〉〈↓| ⊗ U↓, where |↑〉〈↑| and |↓〉〈↓| are pro-
jections onto eigenstates of σ̂z.

We observe the relabeling relation between measurement
sequences (2) and (11) at the level of probabilities

PR(m′
n, m′

n−1, . . . , m′
1) ≡ P (mnmn−1, . . . , m2m1, m1), (12)

where PR is the probability of obtaining a sequence of results
in the protocol with repreparation. The input state P± will
be relabeled as P∓ if the previous measurement result is P−
and not be relabeled otherwise. Note that this relabelling
simply corresponds to a change of assignment convention of
the measurement results to the measurement sequences. A
derivation of this relation is given in the Appendix.

The previously considered expectation value On corre-
sponds then to a correlation of all the measurement results
in the repreparation case:

On(tn, . . . , t1) =
∑

mn,...,m1

mnP (mn, . . . , m1)

=
∑

m′
n,...,m

′
1

(
n∏

k=1

m′
k

)
PR(m′

n, . . . , m′
1).

Consequently, the relations between decoherence signals in-
duced by sequences of π pulses and expectations over mea-
surement sequences can also be applied to the protocol with
repreparation when the expectation On is replaced by the cor-
relation of all the measurements in the sequence. Schematic
representations of the measurement protocol without reprepa-
ration, dynamical decoupling, and measurement protocol with
repreparation are given in Fig. 3.

In an experiment with two measurements, we have
O2(t2, t1) = 〈σ̂x(t2)σ̂x(t1)〉, and using Eq. (8) we arrive at the
result obtained in [58] for E being a source of classical noise.
Here we have shown, without making any assumption about
the nature of E , that a correlation of n measurements of σ̂x,
each followed by a reinitialization of the qubit in the |+〉 state,
is related to measurements of coherence of qubits subjected to
dynamical decoupling according to Eq. (5). This generalizes
the relationships derived in [65] for classical environmental
noise to quantum environments.

V. SOME POSSIBLE GENERALIZATIONS

A. Two-axis manipulation

Apart from the minimal control algebra {1Q, σ̂x}, pulses
about other axes can also be considered. For example, in the

sequences of coherent operations one may replace some of
Ak by Y operations in the protocols without repreparation.
In the corresponding measurement protocol we will use then
the relations Y = 2(PY

+ + PY
−) − I and PY

mY
= 1

4 (I + Y −
imYDY ), where the outcomes mY have ±i values assigned
in order to distinguish them from the PX

mX
measurement and

the elementary operations are defined as for the X axis. One
can see that the coherent sequences, as well as the sequential
measurements with an additional measurement axis Y , can be
considered as an intertwining of sequences from the control
sets {1Q, σ̂x} and {1Q, σ̂y}. For instance, a sequence AY ◦ U ◦
AX , in which AX (Y ) is a π pulse with respect to the X (Y )
axis, can be related to PY

mY
◦ U ◦ PX

mX
in a similar fashion as

in Eqs. (3) and (4) without additional difficulty. This agrees
with the results in Ref. [61], where the higher-order bath
correlations (which can be obtained by pulse sequences in
principle; see, e.g., [31]) are extracted from measurements
along multiple axes.

However, in the pure dephasing case and for the protocol
with repreparations, the relabeling procedure becomes now
more complicated, since some sequences will contain sub-
sequent operations along distinct axes, e.g., Y ◦ U ◦ X . The
repreparation operation R will map the four possible out-
comes P± and PY

± into P+. The relabeling will be possible in
both single-axis and two-axis cases, because {+1,−1,+i,−i}
is still closed under multiplication, and one can construct a
relabeling convention similar to the one in Eq. (12). Further-
more, P± together with PY

± can be considered as a tomography
basis for the subsystem evolution of the qubit, where the set
of all positive-value operators {P±, PY

±} will no longer be fully
orthogonal, but symmetric and informationally complete [83].
Hence it would be interesting to consider another choice of
measurement for the expansions of coherent operations, e.g.,
a tetrahedral basis in the Bloch sphere [83].

B. Multiqubit manipulation

We have focused so far on the case of a single qubit, but
the situation in which multiple qubits are coupled to E , and
coherent operations and measurements on all of them are
used to characterize it, has been a subject of recent works
on multiqubit generalizations of DD-based E characterization
protocols [32,84–87]. Let us show now that in this case we
can also find a relation between the evolution of the system
due to X operations and P± measurements on the qubits. This
is easily seen from the relation I + X ( j) = 2(P ( j)

+ + P ( j)
− ),

where the superscript denotes the qubit number. Note that we
consider now the situation in which only local X ( j) operations
are applied and we do not consider nonlocal operations such
as two-qubit swaps, taken into account in some multiqubit
generalization of DD-based protocols [32]. The global opera-
tion is then given by

n∏
j=1

(I + X ( j) ) = 2n
n∏

j=1

(P ( j)
+ + P ( j)

− ) (13)

and the expansion on both sides will lead to the basic relation
for single-step intervention on n qubits. For example, with two
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I

I

+ X

I

+ I

X

+ X

X

= 4

(
P̂+x

P̂+x

+ P̂−x

P̂+x

+ P̂+x

P̂−x

+ P̂−x

P̂−x

)

FIG. 4. Schematic of the relation of the building blocks for the equivalence of two types of manipulation in the two-qubit case.

qubits we obtain

I + X (1) + X (2) + X (1) ◦ X (2)

= 4(P (1)
+ ◦ P (2)

+ + P (1)
− ◦ P (2)

+

+ P (1)
+ ◦ P (2)

− + P (1)
− ◦ P (2)

− ). (14)

The circuit representation of this relation is given in
Fig. 4. The concatenation form and interlacing with system-
environment interaction evolution U I

k will follow in a fashion
similar to that in the single-qubit case. From this observation,
we see that a local π -pulse manipulation protocol on the mul-
tiqubit system can be related to the statistics of measurements
on multiple qubits. Importantly, since we have considered
only local coherent operations, in the above relation we need
only local measurements, as each P ( j)

± is a measurement
operation concerning only the jth qubit.

C. Multidimensional system

For a general finite system, the expansion of coherent
operations in terms of identity operations and measurement
operations can be implemented in several ways, depending
on the control algebra. One of the simplest examples is
a sequential shifting protocol [45,88] over a d-dimensional
system with the control set {1, S1, . . . , Sd−1} generated by
Sk = gk , with a shifting generator

g =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
0 0 1 · · · 0

...
. . .

...
0 1

1 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (15)

Eigenprojections {P0, P1, . . . , Pd−1} of the matrix g define the
corresponding measurement axes, while eigenvalues belong
to the set {m0 = 1, m1, . . . , md−1}; all possible dth roots of
1, namely, the solutions of zd = 1, will be assigned as mea-
surement values to all projections. From the structure of the
measurement outcomes, one can deduce that 1 + ∑d−1

j=1 mj =
0, |mj | = 1 for all j, and {mj}d−1

j=1 is closed under multiplica-

tion and complex conjugation. Now we write Sk[ρ] = SkρS†
k ,

Sk = ∑d−1
i=0 mk

i Pi, Pi[ρ] = PiρPi, and Qi j[ρ] = PiρP j . It fol-
lows that

I +
d−1∑
k=1

Sk = d
d−1∑
i=0

Pi +
d−1∑
i=0

∑
j �=i

(
1 +

d−1∑
k=1

(mim j )
k

)
Qi j,

(16)

where m is a complex conjugate of m. The element mim j is
also a root of unity. If all roots except 1 are primitive, e.g., d

is a prime number, the set {mj}d−1
j=0 will be equal to {mk

j}d−1
k=0 for

any mj , j �= 0 [89]. Hence the terms in the double summation
vanish and we obtain an analog of I + X = 2(P+ + P−) as

I +
d−1∑
k=1

Sk = d
d−1∑
i=0

Pi, (17)

or, simply speaking, the overall shifting procedure can be
reproduced by sequential measurements in the same basis.
For the case with more than one nonprimitive root mj , the
structure may be folded into a subcycle of shorter length for
the order of its division. For example, with d = 4 we find that
{1,−1, i,−i}2 = {−1, 1}, which is the set of measurement
outcomes for two dimensions, and the elements in the double
sum still vanish in this case. In addition, from Eq. (17),
contrary to I + X = 2(P+ + P−), for dimension d > 2 one
cannot fully express the effect from single shifting operation,
e.g., Sk for some k, in terms of only measurement operations
and identity operations, but operations of all orders (e.g., Sk

for every k) need to be taken into account.

VI. DISCUSSION AND CONCLUSION

We have presented two main results concerning the com-
posite system of a qubit Q and its environment E . The first
is a formal statement on the equivalence of effects from the
sequence of coherent local operations (for the minimal set
of control {1S, σ̂x}) on the qubit and sequential projective
measurements on it. We have shown that the operation ef-
fected on the composite system in one of these ways can be
expressed as a linear combination of operations from the other
class. This holds for any initial state of the whole system
(including correlated qubit-environment states) and for any
form of qubit-environment interaction.

The second result, following from the first one, is the
relation between observables obtained in two kinds of exper-
iments: one involving n projective measurements (at times
t1, . . . , tn) of σ̂x on the qubit and the other involving appli-
cation of k < n rotations by π about the x axis (σ̂x opera-
tions) at times forming a subset of times of the first n − 1
measurements, followed by measurement of σ̂x at time tn. For
an initially uncorrelated Q-E state, the expectation value of
the last measurement in the first experiment can be expressed
as a linear combination of expectations values of σ̂x in the
second experiment. We have also shown the converse result:
The decoherence signal measured after subjecting the qubit to
a sequence of π pulses can be replicated by using observables
obtained from multiple sequences of measurements on the
qubit.

In the commonly encountered case of pure dephasing
of the qubit (with E coupling only to the σz operator of
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the qubit), sequences of π pulses about the x axis lead to
frequency-selective dynamical decoupling of Q from its E ,
which has been widely used to characterize the environmental
dynamics [10,11,17–26]. We have thus shown how all the
results for DD-based spectroscopy of qubits undergoing pure
dephasing (with all the π pulses about the same axis) can
be recovered with protocols in which the qubit is subjected
solely to multiple measurements, and this holds for a general
environment described quantum mechanically.

We have also discussed the protocol considered in [58,65],
in which the qubit is reinitialized in a chosen state after
each measurement, and correlations between the results of
multiple measurements are considered. In the pure dephasing
case its results are related to the linear combination of DD
signals in the same way as the result of the above-discussed
multiple-measurement protocol. As a consequence, the noise
spectroscopy protocols considered in [58,65] for the case of
the E being a source of classical noise can also be employed
for a truly quantum environment.

A natural framework for the discussion of these results
is provided by the concept of a process tensor introduced in
Refs. [44,73]. It is the mapping from the sequence of opera-
tions �1, . . . , �n−1 (e.g., coherent operations or measurement
sequence) to the final state at time tn. The dynamics of the
quantum system and its initial state can be treated as a single
unknown entity that one wants to study, by subjecting it to
arbitrary quantum operations at a set of times t1, . . . , tn−1.
In the setup considered in the paper, the system consists
of a subsystem that we can control and measure (a qubit,
or a higher-dimensional system as discussed in Secs. V B
and V C) and a subsystem that is not accessible directly (an
environment). The goal then is to characterize the process
tensor of the composite system by performing operations on
the controllable subsystem only and then, after taking into
account additional information on the initial state of this
subsystem, to characterize the influence of the environment
on this subsystem.

The first main result of the paper shows how the mappings
corresponding to unitary operations on the qubit are related
to those corresponding to measurements, i.e., it concerns the
general structure of the process tensor of such a composite
system. The projective measurements on the qubit break the
entanglement between the qubit and environment, so it seems
then that some information about the character of the compos-
ite system dynamics will be lost when we consider a single
sequence of projections. However, as we have shown here,
by combining the sequences of projections in a specific way,
given in Eq. (3), we can recover the effect that one obtains
from a sequence of unitary interventions. This means that, at
least for the minimal set of control operations considered here,
using coherent operations on the qubit does not provide any
theoretical advantage (practically, it might of course be more
efficient to implement) in the characterization of the process
tensor of the open quantum system.

Compared to the case of the qubit, extending the formula-
tion to the case of higher-dimensional systems is challenging,
with a system of n qubits subjected to local π pulses being
an exception. For qubits we have discussed a specific case
of shifting protocols, but for arbitrary control sets the formu-
lation of an analogous relation between a class of protocols

based on coherent operations on a subsystem and on measure-
ments on this subsystem should be considered on a case by
case basis. Further work in this direction and establishing a
more general connection between the two modes of manip-
ulation of open quantum systems remains open for further
investigation.

ACKNOWLEDGMENTS

We thank Jan Krzywda, Damian Kwiatkowski, and Piotr
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APPENDIX: RELATION BETWEEN PROTOCOLS WITH
AND WITHOUT REINITIALIZATION OF THE QUBIT

In this Appendix we will consider in more detail the
evolution of the composite system generated by H = azσ̂z ⊗
Vz + a11Q ⊗ V1 in the main text. We know that the state after
the (k − 1)th measurement will be of the form 1

2 (1 + pk σ̂x ) ⊗
ρB

k−1, where pk = ±1 according to the measurement outcome
of the (k − 1)th measurement. After an evolution Uk followed
by measurement in the state 1

2 (1 + mk σ̂x ), the unnormalized
state will be

1
2 (1 + mk σ̂x ) ⊗ ρB

k = 1
2 (1 + mk σ̂x ) ⊗ (

Kmk ,pk

[
ρB

k−1

])
, (A1)

where Kmk ,pk [ρB] = Kmk ,pk ρ
BK†

mk ,pk
, Kmk ,pk = 1

2 [U↑(τk ) +
pkmkU↓(τk )], and U↑(↓)(τk ) = e−iτk (a1V1±azVz ) with duration of
the evolution given by τk .

From the environmental point of view, as can be deduced
from the reduced map K, it can be said that the effect on the
environment from the measurement does not truly depend on
the outcome state |±〉, but on the difference in sign between
the outcome and the incoming state; in other words, one can
write Kmk ,pk = Kmkmk−1,+. This holds for the pure dephasing
case, since the average dynamical map is unital, and the Bloch
ball can be separated into two subspaces concerning the (1, Z )
and (X,Y ) planes. Consequently, the transformation (x, y) �→
(−x,−y) while the z is kept can be done without disturbing
the structure of the dynamics [75].

Using this notation, in addition to the measurement se-
quence we can consider (p1, . . . , pn) as a sequence of prepa-
rations and then the probability of getting the measure-
ment sequence (m1, . . . , mn) given a sequence of preparation
(p1, . . . , pn) reads

P (mn, . . . , m1| pn, . . . , p1) = tr

{(
1∏

k=n

Kmk ,pk

)[
ρB

0

]}
. (A2)

The protocol without repreparation (the scheme considered in
Secs. III and IV A) can be described by the set of parameters
p1 = +1 and pk = mk−1 for k > 1, while the protocol with
repreparation in |+〉 (considered in Sec. IV B) will be defined
as pk = +1 for all k � 1. From the observations in the pre-
ceding paragraph one can see that

P (m1, . . . , mn| +1, . . . ,+1)

= P (m1, m1m2, . . . , mnmn−1| +1, m1, . . . , mn−1), (A3)
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so the probabilities from the protocol with repreparation can
be bijectively mapped to that from the protocol with reprepa-
ration in only |+〉.

From a statistical point of view, it is clear that a moment
or measurement correlation observed from the procedure with
repreparation can be obtained from the statistics of the pro-
tocol without repreparation. For instance, an n measurement
correlation in the case with repreparation 〈∏n

k=1 mk〉R can
be reproduced from the expectation of the last measurement
result from the protocol without repreparation,

〈
n∏

k=1

mk

〉
R

=
∑
mk

(
n∏

k=1

mk

)
P (m1, . . . , mn|+, . . . ,+)

=
∑
mk

mn

(
n−1∏
k=1

m2
k

)

× P (m1, m2, . . . , mn|+, m1, . . . , mn−1),

(A4)

〈
n∏

k=1

mk

〉
R

= 〈mn〉 = On(tn, . . . , t1), (A5)

where 〈A〉 = ∑
mk

AP (mn, . . . , m1| pn, . . . , p1).
We remark again that this property holds due to two

factors: (i) The manipulated system is a qubit, so the choice
of measured and prepared states is limited to {+1,−1} and
they can be related easily, and (ii) we consider the pure
dephasing Hamiltonian, so the plane subspace (X,Y ) and
invariant subspace (1, Z ) will evolve separately. In order to
intuitively understand the origin of this relation, the basic idea
is that in the protocol without repreparation, the probability to
get a particular measurement result at any time step depends
on the previous measurement results. Consequently, the signal
obtained from the last measurement result will contain the
characteristics of the whole measurement sequence. On the
other hand, in the protocol with repreparation this situation
cannot occur, so the experimenter needs to collect all the
measurement results to obtain the same statistics as in the
previous case.
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94, 012109 (2016).
[85] G. A. Paz-Silva, S.-W. Lee, T. J. Green, and L. Viola, New J.

Phys. 18, 073020 (2016).
[86] M. M. Müller, S. Gherardini, and F. Caruso, Sci. Rep. 8, 14278

(2018).
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