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Periodically driven facilitated high-efficiency dissipative entanglement with Rydberg atoms
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A time-dependent periodical field can be utilized to efficiently modify the Rabi coupling of system, exhibiting
nontrivial dynamics. We propose a scheme to show that this feature can be utilized for speeding up the formation
of dissipative steady entanglement based on the Rydberg antiblockade mechanism. When the modulation
frequency is exactly equal to the central frequency of the driving field, a sufficient residence time of the two-
excitation Rydberg state is allowed for an irreversible spontaneous decay onto the target state, leading to a steady
entanglement with a high fidelity ∼0.98 and a shorter generation time <400 μs. We show that a global maximal
fidelity benefits from a consistence of microwave-field coupling and spontaneous decay strengths. The scheme
manifests robust insensitivities towards the imperfect initialization, the fluctuations of van der Waals interaction,
and the modulation frequency. This simple approach to facilitate the generation of dissipative entangled
two-qubit states may guide an experimental direction in Rydberg quantum technology and quantum information.
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I. INTRODUCTION

Dissipative mechanism, in contrast to its natural idea that
leads to the destruction of quantum effects de-coherently, can
counterintuitively serve as an important resource for imple-
menting quantum information task and controlled quantum
state preparation [1–8]. Experimental achievements towards
dissipative production of entangled states have been imple-
mented in trapped ions [9,10], superconducting quantum bits
[11,12], and macroscopic atomic ensembles [13].

It is remarkable that pioneer works demonstrating prepa-
ration of dissipative steady entanglement from an uppermost
Rydberg level were proposed by Saffman [14] and Mølmer
[15], providing great potentials for applications of quantum
computation and engineering by Rydberg dissipation [16,17].
However, a typical period needed for this dissipative prepa-
ration exceeded hundreds of milliseconds due to the use of a
high-lying long-lived Rydberg level with principle quantum
number n ∼ 125; e.g., see [18,19]. So far great efforts are
devoted to accelerate the formation of an entangled steady
state by the method of Rydberg electromagnetically induced
transparency [15]. In the method a fast-decaying middle
state in the presence of Rydberg interactions permits a rapid
entangled-state generation. Nevertheless, this approach still
has not been realized in experiment due to the complexity of
coupling strategy of laser fields and energy levels [20–22].

Other alternative approaches are proposed by employing
an optical cavity to trigger the entanglement formation, be-
cause the cavity decay treating as an auxiliary loss channel
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towards the target state can permit a reduced stabilization time
which is smaller than tens of microseconds [23–27]. More
recently an intriguing improvement for realizing a ten-times
faster generation of entanglement was reported in the cav-
ity, arising an exponential enhancement for the atom-cavity
coupling strength [22]. Nevertheless these schemes based on
cavity-trapped atoms require a stronger atom-cavity coupling
associated with a precise control, which remains uneasy for
real implementations.

In parallel, periodically driven systems are well known in
quantum physics arising a wealth of versatile quantum phe-
nomena [28–31]. For example, the simplest two-level atom
system having a periodically modulated driving can signifi-
cantly modify the time evolution of the system [32,33]. That
fact has raised intriguing effects including persistent atomic
trapping in excited state [34], an excited two-level emitter
[35], multiphoton resonance and response [36], maximal pop-
ulation transfer [29], discrete time crystals [37,38], and so
on. In addition, periodically driven dissipative (open) systems
offer various prospects for the new-class feature of out-of-
equilibrium physics which are inaccessible for equilibrium
ensembles [39–41], covering promising applications from
topological states to experimental optomechanics [42–45].
Besides combining periodically driven with a Rydberg atom
array is found to produce the localization of a quantum many-
body state [46]. And, more recently, a mechanism relying on
an amplitude-modulated periodic field is exploited for gen-
erating dissipative steady-state entanglement in a solid-state
qubit system [47], bringing more perspectives for nontrivial
periodically driven Rydberg features.

In the present work, we develop a simplified scheme for
speeding up the dissipative preparation of a maximal steady
entangled state |S〉 = 1√

2
(|10〉 − |01〉), essentially based on a
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periodic pump driving as well as the Rydberg antiblockade
mechanism. Remarkably, if an external modulation frequency
is consistent with the characteristic frequency of the effective
two-state system, it will arise to a significant change to the
Rabi behavior of the two-excitation Rydberg state in the
laser pumping process, which benefits from a fast decaying
onto the target state due to a longer residence time. Ac-
companied by a suitable adjustment for other dissipative rate
and microwave coupling strength, the resulting entanglement
formation reveals a stepwise acceleration towards the target
entangled state acquiring a very high fidelity ∼0.98, where
the required convergence time can be shorter than ∼400 μs.
Because a stepwise-improving entangled-state accumulation
rate will appear within these durations, in contrast to the
case of a continuous driving in which the rate of population
accumulation persists slowly. Additionally we demonstrate an
easy way for further acceleration by increasing the effective
Rabi coupling strength in the pumping, and stress the robust
insensitivities of the scheme to arbitrary initial preparation,
variable interaction, and driving frequency under real experi-
mental parameters.

II. THEORETICAL FORMULATION

A. Single original four-level atom

To verify the validity of our effective five-level scheme as
adopted in Fig. 2(b), we first begin with an original four-level
atom with ground state |1〉, middle state |p〉, and Rydberg state
|r〉 composing a two-photon excitation [48], where the Rabi
frequencies are denoted by �p and �s(t ) (time dependent) and
the corresponding detunings are �1 and �2. State |0〉 serves
as an auxiliary ground state introduced to achieve a weak
microwave coupling g with state |1〉. Alternatively, this could
also be accomplished with a Raman process with respect to
|p〉; e.g., see Fig. 1(c).

Converting into the interaction picture, the Hamiltonian
of the single atom reads as Ĥ1 = Ĥ1d + g/2(|1〉〈0| + |0〉〈1|)
with the atom-light interaction term Ĥ1d taking the form of

Ĥ1d = �p

2
e−i�1t |p〉〈1| + �s(t )

2
e−i�2t |r〉〈p| + H.c. (1)

By assuming the condition of two-photon resonance �1 +
�2 = 0 by δ = |�1,2|, if a big detuning to |p〉 is used by
satisfying δ � �p,�s(t ), it is reasonable to eliminate state
|p〉 in an adiabatic way [49], leading to a direct coupling
between |1〉 and |r〉. Then the Hamiltonian Ĥ1d is modified
to be

Ĥ′
1d = �2

p

4δ
|1〉〈1| + �2

s (t )

4δ
|r〉〈r| + �p�s(t )

4δ
(|r〉〈1| + |1〉〈r|).

(2)
After some organization the entire single-atom Hamilto-

nian Ĥ1 can be rewritten in a reduced form only referring to
states {|1〉, |r〉, |0〉}, as

Ĥ1 = −�(t )|r〉〈r| +
(

�(t )

2
|r〉〈1| + g

2
|1〉〈0| + H.c.

)
, (3)

with the two effective parameters [50]

�(t ) = �p�s(t )

2δ
, �(t ) = �2

p − �2
s (t )

4δ
,

FIG. 1. (a), (b) Schematic of an effective three-level atom deriv-
ing from its original form of a four-level configuration. See texts for
detailed parameter descriptions. (c) For example, the two hyperfine
ground states |1〉 = |5s, f = 1, mf = 0〉, |0〉 = |5s, f = 2, mf = 0〉
are coupled by a weakly resonant Raman coupling with respect to the
middle state |p〉 = |5p〉, or by a direct microwave coupling g between
|0〉 and |1〉.

as represented in Fig. 1(b). State |1〉 is straightforwardly
excited to the highly excited level |r〉 via a time-dependent
Rabi frequency �(t ), detuned by �. Noting if �p � |�s(t )|
the detuning � approximately preserves a constant �2

p/4δ that
does not depend on the time t . The microwave coupling g is
too small to affect the strong atom-light interaction, safely
leaving it unvaried in Eq. (3). All spontaneous dissipations
from |r〉, |p〉 are considered, denoted by γ , �, respectively.
A numerical verification for the correctness of the effective
model will be left for discussion in Appendix A, by comparing
to the results directly from the original system.

B. Pair of reduced three-level atoms

We proceed to show more essences of energy structure
when a pair of effective three-level atoms are involved. The
relevant energy levels interested have been represented in
Fig. 2(a) composing two reduced three-level � interacting
atoms [Fig. 1(b)]. For each atom consisting of two ground
states |0〉, |1〉 and one Rydberg state |r〉, the hyperfine states
|0〉 and |1〉 suffering from dipole forbidden are coupled by
a microwave field with strength g, which can receive the
population from |r〉 through stochastic spontaneous emission
decays by rate γ . Population accumulated on other hyperfine
ground states rather than |0〉 and |1〉 can be repumped onto |0〉
or |1〉 by recycling lasers (not shown) [14]. Special attention
is paid to the optical transition between |1〉 and |r〉 driven by a
time-dependent field �(t ), accompanied by a big detuning �

[assuming � � �(t )/
√

2] for realizing a complete suppres-
sion to the singly excited collective states. Urr describes the
two-atom van der Waals (vdW) -type interaction, making it
dynamically compensate the detuning of |rr〉 by Urr = 2�,
which can facilitate a direct resonant coupling �(t )2/2�

between |11〉 and |rr〉 via adiabatically eliminating the middle
single-excitation Rydberg states, as shown in Fig. 2(b).

In a rotating-wave frame, the basic Hamiltonian for a pair
of three-level atoms involving the single-atom Hamiltonian
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FIG. 2. Schematic diagram of a high-fidelity facilitated entanglement preparation. (a) A detailed two-atom energy-level structure. For each
atom, two ground states |1〉 and |0〉 are coupled by a continuous microwave field g, and |1〉 is far-off resonantly coupled to the Rydberg state |r〉
via a periodically modulated optical field with the Rabi frequency �(t ). Assuming that the detuning � can compensate the interaction induced
energy shift Urr by satisfying the antiblockade condition Urr = 2� persistently, |11〉 is directly coupled to |rr〉 via a two-photon excitation
with an effective value �2(t )/2�. (b) The effective five-level diagram from a pair of three-level atoms shows the real atom-field interactions
and spontaneous decays, where the four singly excited states (gray shadow area) are safely discarded due to � � �(t )/

√
2. |S〉 is a target

dark entangled state, unidirectionally receiving the population from |rr〉 through spontaneous emission. The amplitude of �eff (t ) is illustrated
in the inset where blue-solid and black-dashed curves stand for weak and strong frequency modulations, respectively. (c) The experimental
setup (proposal; see Sec. V for detailed experimental parameters). Two atoms are trapped in dipolar traps formed by tightly focused laser
beams (optical tweezers) with interatomic distance R close to the critical value Rc, leading to the strength of van der Waals–type interaction
Urr = C6/R6 between two individual atoms. They are also persistently driven by a microwave field g as well as a periodically modulated
optical field �(t ), realized by an acousto-optical modulator in the experimental implementation. The variation of interaction δU (t ) due to the
imperfect position confinement in the foci of optical tweezers typically <1 μm will be discussed in Sec. VI B.

Ĥ1 reads

Ĥ = Ĥ1 ⊗ Î + Î ⊗ Ĥ1 + ν̂, (4)

where Î is a 3 × 3 unit operator. ν̂ describes the two-atom
Rydberg interaction given by ν̂ = Urr|rr〉〈rr|.

Using the two-atom base vectors that contain one doubly
excited state |rr〉, four singly excited states |r1〉, |1r〉, |r0〉,
|0r〉, and four ground states |00〉, |11〉, |T 〉, |S〉, the complete
decay behavior (dissipation) can be expressed by the regular
Lindblad operators,

L̂1 = √
γ [|11〉〈r1| + (|T 〉 + |S〉)〈r0| + |1r〉〈rr|],

L̂2 = √
γ [|11〉〈1r| + (|T 〉 − |S〉)〈0r| + |r1〉〈rr|], (5)

L̂3 = √
γ [|00〉〈r0| + (|T 〉 − |S〉)〈r1| + |0r〉〈rr|],

L̂4 = √
γ [|00〉〈0r| + (|T 〉 + |S〉)〈1r| + |r0〉〈rr|],

corresponding to the spontaneous decay channels of |r〉 →
|1〉 (L̂1,2) and of |r〉 → |0〉 (L̂3,4), respectively. Note that the

ground states |01〉, |10〉 have been re-organized into the col-
lective singlet states |S〉 = (|10〉 − |01〉)/

√
2, |T 〉 = (|10〉 +

|01〉)/
√

2, where |S〉 is a unique dark state, absolutely decou-
pled from other two-atom ground base vectors by 〈S|Ĥ1|i j〉 ≡
0 (i j ∈ {T, 00, 11}).

Consequently it is reliable to prepare the maximal en-
tangled state |S〉 through a unidirectional spontaneous loss
from the doubly excited state |rr〉 as shown by a thick red
arrow in Fig. 2(b). Here the singly excited states have been
safely discarded due to a big detuning � with respect to |r〉;
the preparation efficiency for entanglement formation mainly
depends on the competition between excitation or deexcitation
rates of |11〉 ↔ |rr〉 and the unidirectional decay process (∝
γ ) from |rr〉 to |S〉.

Remarkably, in the presence of a periodical modulation
to the amplitude of �(t ), the Rabi behavior between |11〉
and |rr〉 will be significantly changed, producing complex
multifrequency oscillations [33]. We verify that the resulting
formation of target ground state |S〉 can be dramatically
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accelerated under an optimization for relevant frequency pa-
rameters.

C. Effective five-level system

The physical essence for robustly fast preparation based
on a simplified five-level scheme [see Fig. 2(b); note that the
four singly excited states are adiabatically discarded due to
the far-off one-photon resonance] can be understood in three
steps.

(i) State initialization. Prepare two atoms in ground states,
e.g., |11〉 (robustness of scheme to arbitrary initial states will
be discussed in Sec. VI A).

(ii) Circular unitary dynamics and microwave coupling.
A two-state unitary dynamics leads to exchanged population
(excitation and deexcitation) by an engineered Rabi oscilla-
tion between |11〉 and |rr〉, governed by a reduced two-state
Hamiltonian

Ĥeff,uni = �eff (t )(|11〉 + |rr〉)(〈11| + 〈rr|), (6)

where �eff (t ) = �(t )2/2�. Here the driving field �(t ) is
time dependent, accompanied by a microwave coupling g
persistently transferring population among |11〉, |T 〉, and |00〉.
Notice that |11〉 and |00〉 are indirectly coupled via the state
|T 〉. This process can be expressed by Hamiltonian Ĥeff,mw

Ĥeff,mw = g√
2

(|11〉〈T | + |T 〉〈00|) + H.c. (7)

(iii) Dissipative formation. Owing to the limited lifetime
of |rr〉, in the effective five-level frame population on |rr〉
suffers from a big spontaneous loss, randomly decaying into
four ground states. Once it possibly decays into the unique
dark state |S〉, population will be irreversibly accumulated on
it; otherwise, they repeatedly experience circular steps (ii) �
(iii) by following the route of returning to step (ii) again, until
the system is finally stabilized onto state |S〉.

Shortly concluded, ideally the target entangled state |S〉
can be deterministically created for a sufficiently long time,
robustly insensitive to arbitrary optical and microwave driv-
ings. In fact this time could be endless which is impossible
for real experimental measurement during a finite detection
time. So achieving a fast and high-fidelity entanglement de-
pending on a simplified and feasible protocol with Rydberg
atoms remains challenging, having attracted numerous efforts
in theory [20–22,51]. Presently we show another way by
implementing a periodical modulation to the amplitude of the
pump field, revealing a dramatic facilitation to the circular
process between (ii) � (iii), which finally breaks until the
unique entangled state |S〉 is entirely populated. Our results
have verified that the formation time for a high-fidelity steady
entanglement can be accelerated by orders of magnitude
compared with the case of no modulation.

In addition, a further extension for the entanglement forma-
tion between two mesoscopic atomic ensembles can be con-
sidered by two Rydberg superatoms that allow for only sin-
gle collective Rydberg excitation within the blockade radius.
In fact, it is more attractive to utilize the dissipation-based
method in experiment due to its deterministic implementation,
and the first demonstration of dissipative entanglement gen-
eration with two ground atomic ensembles has been reported

[13]. As for two Rydberg superatoms, the computational basis
states of each ensemble can be expressed as [52,53]

|G1〉 = |11, . . . , 1N 〉, (8)

|G0〉 = 1√
N

N∑
k=1

|1112, . . . , 0k, . . . , 1N 〉, (9)

|R〉 = 1√
N

N∑
k=1

|1112, . . . , rk, . . . , 1N 〉, (10)

with two collective ground states |G1〉, |G0〉 and a collective
singly excited state |R〉 of the Rydberg superatom, formed by
strong blockade to prohibit the multiatom excitation in the
ensemble. These new basis states are convincible only when
the dephasing effect of state coming from atomic motions can
be negligible. Luckily as we know a typical relaxation time of
atomic ensemble for the temperature at T = 50 μK is about
tens of milliseconds [54], which is longer than the formation
time required in our protocol by orders of magnitude. Hence,
in the new basis spanned by {|G1〉, |G0〉, |R〉}, one can also
introduce a � configuration for demonstrating the Rydberg
superatom [55], giving rise to the single-atom Hamiltonian Ĥ1

replaced by a new form Ĥsa,

Ĥsa = −�(t )|R〉〈R| +
(

�(t )

2
|R〉〈G1| + g

2
|G1〉〈G0| + H.c.

)
.

(11)
Here Ĥsa describes a Rydberg superatom interacting with

light or microwave fields, serving as a starting point for a
future consideration of steady dissipative entanglement be-
tween two long-range � Rydberg superatoms. Without loss
of generality we will focus on the system with two individual
atoms in the present work.

III. UNITARY DYNAMICS

A. Frequency modulation

In step (ii) we consider a reduced subspace with only two
states |11〉 and |rr〉 [yellow box in Fig. 2(b)], in order to
explore the frequency-modulated excitation dynamics. Intu-
itively when the reduced two-state system is driven via a
continuous coupling, the system is a standard Rabi problem,
revealing regular single-frequency oscillations (including ex-
citation and deexcitation) of population between two states,
where the oscillating frequency is exactly the same as the
Rabi frequency. A striking difference arises once the driving
is modulated to be time dependent dramatically modifying the
Rabi behavior, leading to unexpected dynamics [56].

First we introduce a cosinoidal driving field �(t ), denoted
as

�(t ) = �0 cos(ωt ), (12)

focusing on the regime where the external modulation fre-
quency ω is compatible with the characteristic frequency of
the system. Such a time-dependent amplitude modulation for
the peak Rabi frequency �0 can be experimentally imple-
mented via an acousto-optical modulator triggered via an elec-
tronic waveform generator controlling the acoustic profile,
which can output shaped pulses [57]. Letting ω = 0 leads to
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�(t ) = �0, which stands for the case of a continuous pump
that is the same as considered in previous works [19].

A brief introduction to the derivation of effective two-
state Hamiltonian (6) can be understood in the subspace of
{|11〉, |M〉, |rr〉} with the singly excited collective state |M〉 =
(|1r〉 + |r1〉)/

√
2. The original two-state Hamiltonian Ĥuni is

Ĥuni = �(t )√
2

(|11〉〈M|ei�t + |M〉〈rr|ei�t + H.c.) + ν̂. (13)

Working in a rotating-wave frame with respect to the rota-
tional transformation Û = e−iUrr |rr〉〈rr|t , the above Hamiltonian
can be reexpressed in a more concise form,

Ĥ′
eff,uni = �(t )2

2�
(|11〉〈rr| + |rr〉〈11|) − �(t )2

�
|M〉〈M|,

(14)
where Urr = 2� and � � �(t )/

√
2 are assumed. Comparing

(6) and (14), we ignore the second term −�(t )2

�
|M〉〈M| owing

to its decoupling effect of state |M〉. The effective coupling
strength �(t )2

2�
between |11〉 and |rr〉 can be expressed as

�eff (t ) = �2
0

4�
+ �2

0

4�
cos(2ωt ), (15)

which includes the base frequency component ω0 = �2
0

4�
and

the real-time modulated component ω0 cos(2ωt ), giving to
the peak amplitude belonging to [0, 2ω0], as shown in the
inset of Fig. 2(b). If ω � ω0, the modulation term adds
a fast high-frequency oscillation to the base frequency ω0,
whose effect can be averagely canceled within a suffi-
cient time, i.e.,

∫ ∞
0 ω0 cos(2ωt )dt = (ω0/2ω) sin(2ωt )|∞0 →

0, arising a dominant base frequency ω0 only; otherwise,
the non-negligible modulated component will induce several
modulated-frequency sidebands with separation ω to the cen-
tral frequency ω0, revealing complex multifrequency dynami-
cal behavior.

B. Frequency spectrum analysis

By numerically solving the master equation ρ̇uni =
i[ρ̂uni, Ĥeff,uni], we detect the observable quantity Prr (t )

Prr (t ) = 〈rr|ρ̂uni(t )|rr〉 (16)

for the time-dependent population probability on state |rr〉,
where ρ̂uni(t ) is the density matrix of the two-state subspace,
as globally plotted in Fig. 3(a) versus time t and the relative
modulation frequency ω/ω0. Besides Fig. 3(b) describes a
global view for the frequency spectrum of dynamics by im-
plementing a Fourier transform Frr (ω) = ∫ +∞

−∞ Prr (t )e−iωt dt .
From Eq. (15) and Fig. 3(b) it is obvious that the presence
of modulation ω can add frequency sidebands to the base
frequency ω0, which is also the characteristic frequency of
the system, giving rise to the multiple frequencies ωn =
ω0 ± nω with n = 0, 1, 2, . . ., symmetrically located with
respect to ω0 [58]. As ω increases the dynamics become
regular with one dominant base frequency ω0 because a
high-modulation-frequency ω will cause an average cancel-
lation to the accumulated quantity by the frequency modu-
lation |(ω0/2ω) sin(2ωt )t→∞| → 0 as ω � ω0. The inset of
Fig. 2(b) comparably shows the Rabi oscillation behavior

FIG. 3. Global output for (a) Prr (t ) and (b) Frr (ω) versus the time
t ∈ (0, 60) and the relative modulation frequency ω/ω0 ∈ (0, 2.5).
Parameters are �0 = 57.6, Urr = 1658.88, and � = 829.44 and ω0

(ω−1
0 ) is the frequency (time) unit. Dissipation is ignored in calculat-

ing the unitary dynamics.

of �eff under weak (blue-solid) and strong (black-dashed)
modulation frequencies.

As far as we know when the modulation is exactly an
integral multiple of characteristic frequency ω0, i.e., ω = nω0,
the system exists as a dramatic frequency match, revealing
unexpected behavior. To show this, we select n = 0, 1, 2 and
represent the corresponding unitary dynamics and frequency
spectrum in Figs. 4(a) and 4(b). Except for ω = 0 that it
reveals a complete single-frequency Rabi oscillation with
frequency 2ω0 [�eff (t ) ≡ 2ω0], the external frequency mod-
ulation ω[ �= 0] will give rise to sideband frequencies aside
from the base frequency ω0, with a tunable separation ω. The
resulting unitary dynamics changes significantly by meeting
different frequency matching conditions.

Comparing to the case of no modulation, it is observable
that for ω = ω0 (black-solid) the population dynamics Prr (t )
benefits from a sufficiently longer residence sustaining on the
uppermost two-excitation state |rr〉, promising an efficient
population dissipation onto the target state through spon-
taneous emission as long as the decay rate γ is suitable.
Hence the frequency match offers an essential reason for the
accelerated dissipative formation in step (iii). Furthermore,
as ω increases, the system again tends to a single-frequency
oscillation with the oscillating frequency ω0, revealing reg-
ular modulated Rabi behavior. For example, if ω = 2ω0
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FIG. 4. (a), (b) Unitary dynamics Prr (t ) and frequency spectrum
Frr (ω) are comparably presented for ω = 0 (blue-dotted), ω = ω0

(black-solid), and ω = 2ω0 (red-dashed) within a short time period
of ω0t ∈ (0, 15). Other parameters are the same as adopted in Fig. 3.

(red-dashed) Prr (t ) suffers from a faster excitation and de-
excitation processes without any stagnation on the upper
state, leading to the population exchange in step (ii) between
|11〉 ↔ |rr〉 repeatedly. The resulting dissipative entangle-
ment preparation is quite inefficient.

Based on the above analysis, we will adopt this optimal
resonant modulation frequency ω = ω0 for studying the ac-
celerated entanglement preparation.

IV. FACILITATED ENTANGLEMENT FORMATION

The unitary dynamic evolution of the reduced two-state
model can be guided to solve the complete master equation
ρ̇ = −i[Ĥ, ρ̂] + L[ρ̂] for the entire system of a pair of three-
level atoms, with the basic Hamiltonian Ĥ [see Eq. (4)] as
well as the Lindblad dissipation operators described by

L[ρ̂] =
4∑

i=1

[
L̂iρ̂L̂†

i − 1

2
(L̂†

i L̂iρ̂ + ρ̂L̂†
i L̂i )

]
(17)

presenting the four spontaneous decay channels as shown in
Fig. 2(a). According to the above discussion it is confirmed
that |S〉 is an absolute unique steady state, arising the system
ideally staying on that state as long as the evolution time is
sufficient. However, due to the competition between unitary
dynamics and the spontaneous dissipative process, the forma-
tion time can be endless, which is far beyond the detection
time in a real implementation. Remember the typical time for
entanglement formation basing on similar schemes is more
than tens of milliseconds by using continuous driving with
higher Rydberg levels n > 100 [59]. Here, with the help of

FIG. 5. Population of target entangled state PS (t ) versus time
t under the modulation frequency ω = ω0 (red-solid) and ω = 0
(green-dashed). A detailed plot of the relationship of the accumulated
population in every duration τ on |rr〉 and unitary dynamics Prr (t ) are
comparably represented for time t ∈ [0, 20] in the inset below. Inset
inside shows an extensive plot by enlarging the time range to 104

where the final population for the case of no modulation �(t ) = �0

is kept to be a saturation ∼0.96. Except the optimal parameters as
discussed in Sec. III, here we choose γ = 0.4, g = 0.85 and set
P11(t = 0) = 1.0 at the initial time.

a periodic amplitude modulation to the pump laser, it is ob-
served that a clear entanglement facilitation can be confirmed,
accompanied by a reduced detecting time ∼100/ω0.

Figure 5 exhibits the real-time dynamics for population on
target state |S〉, defined by PS (t ) = 〈S|ρ̂(t )|S〉, with the mod-
ulation frequency ω = ω0 (red-solid) or without modulation
ω = 0 (green-dashed). Clearly without periodical modulation,
PS (t ) represents a smoothly increasing curve but saturating
towards 0.96 for t → ∞; see the inset inside for an extensive
range within t ∈ [0, 104]/ω0. However, with ω = ω0, PS (t )
exhibits a fast stepwise increase, even catching up with the
case of ω = 0 at t = 14.3/ω0, finally being stabilized to be as
high as 0.98. That result benefits from an optimal frequency
modulation, because for ω = 0 it is impossible to reach 0.98
during the finite detection time. The reason accounting for
this facilitation can be understood by finding longer durations
τ in every oscillation period on state |rr〉 that is able to
provide enough time of dissipation into the target state. As
indicated clearly in the inset below, during each duration
time τ [Prr (τ ) = 1.0], PS (t ) exhibits a dramatic enhancement
especially at the initial time when the sufficient population can
be exchanged between |11〉 and |rr〉.
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FIG. 6. Fidelity of final target entangled state FS[= PS (t = 100)]
versus the simultaneous adjustments for microwave coupling g and
spontaneous decay γ . A global maximum of FS is denoted in the plot.
Here ω0 (ω−1

0 ) is the frequency (time) unit.

Also we stress the importance of competition among the
unitary dynamics, spontaneous dissipation, and microwave
coupling that leads to an accelerated entanglement formation.
Therefore, we globally change the rates of dissipation γ and
microwave coupling g in order to see the essential importance
of frequency match to the fidelity of entanglement, character-
ized by the final fidelity FS = 〈S|ρ̂(t = 100/ω0)|S〉. In Fig. 6,
by varying γ and g within a same range (0.1, 2.0)ω0 there
exists a global maximum region with FS ≈ 0.98 persistently,
where the values of γ and g have a best matching. In con-
trast, beyond that range FS reveals a considerable reduction,
especially for a small g value arising a significantly poor
transfer rate among |11〉, |T 〉, |00〉 that cannot catch up with
the (de)excitation and dissipation rates, leading to a very
low entanglement production FS < 0.5. In other words, the
realization of an accelerated entanglement formation needs an
optimal modulation frequency ω implemented by an external
pump laser, together with a perfect frequency consistence be-
tween the dissipative rate γ and microwave coupling strength
g.

V. EXPERIMENTAL FEASIBILITY FOR
FURTHER FACILITATION

In experiment the configuration like Fig. 2(a) can be im-
plemented in two rubidium atoms where the hyperfine en-
ergy levels are |1〉 = |5s1/2, f = 1, m = 0〉, |0〉 = |5s1/2, f =
2, m = 0〉 that can be excited to the Rydberg state |r〉 =
|100s〉 via a two-photon transition mediated by, e.g., |5p1/2〉.
A practical calculation involving |5p1/2〉 would be consid-
ered in the Appendix. Here the effective two-photon Rabi
frequency is achieved to be a reasonable value �0 = 2π ×
2.5 MHz [27], with which the ground state |1〉 is coupled
to the |r〉 by a big detuning � = 2π × 36 MHz, giving rise
to the characteristic frequency of system ω0 = �2

0/4� =
0.273 MHz. In the design two atoms can be trapped sepa-
rately with an interatomic distance R = 9.5 μm for realizing a
considerable vdW interaction Urr = 2π × 72 MHz (C6/2π =
5.3 × 1013 s−1μm6), driven by a periodically time-dependent
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FIG. 7. Time-dependent population of the target state PS (t ) ver-
sus t (μs) for different �0 and � values. Note that the conditions of
Urr = 2� and ω = ω0 are kept.

laser beam �(t ) with amplitude �0 and modulation frequency
ω = ω0 = 0.273 MHz. Under an optimization for other fre-
quency parameters we have γ = 2π × 17 kHz [60] and g =
2π × 36.9 kHz that enable a well coincidence with the unitary
dynamics; the final fidelity for entangled state formation can
attain as high as FS = 0.981 within a shortened operation time
TS = 366.3 μs. From Fig. 6 these values γ and g can also be
tunable in a global maximum region, e.g., γ = 2π × 10 kHz
and g = 2π × 34.8 kHz, leading to FS = 0.977 within a same
time TS .

In addition, note that the optimal dynamics of PS (t ) as
displayed in Fig. 5 (red solid) reveals a stepwise-increasing
behavior, dominantly decided by the increasing rate during the
residence time τ on |rr〉 in the case of unitary dynamics. As a
result an intuitive way for further facilitation to entanglement
is increasing the effective coupling strength ω0 between |11〉
and |rr〉, accelerating the accumulated rate of population on
the target state during each residence. Figure 7 exhibits that,
if �0 increases or � decreases, leading to a stronger coupling
value ω0 for the excitation and deexcitation transitions during
the laser pumping process, PS (t ) can achieve a further acceler-
ated growth, quickly saturating to a high-fidelity value ∼0.98
within a shorter time. It is confirmed that the case denoted by
a green-dashed curve under (�0,�) = 2π × (3.0, 30) MHz
shows a fastest speed to saturation. That fact provides an easy
facilitation optimization in this scheme when other relevant
frequency parameters are already suitable.

VI. ROBUST INSENSITIVITY OF SCHEME

A. Imperfect initialization

For exploring the relation of initial population distribution
and the final fidelity of the target state we show the final
fidelity under different initial population P00(0), PT (0), and
P11(0), meeting the normalized condition P11(0) + PT (0) +
P00(0) = 1.0. We need to point out that in plotting Fig. 8
we have calculated an average F̄S value covering a duration
of 100 μs for overcoming the slight population fluctuations
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FIG. 8. Final fidelity F̄S for a duration of t ∈ [TS − 100, TS]μs,
versus the variation of initial population probability on ground states
|00〉, |T 〉, and |11〉, defined by P00(t = 0), PT (t = 0), and P11(t = 0),
satisfying the conserved normalization P11(0) + PT (0) + P00(0) =
1.0. The target state |S〉 is initially unoccupied.

in its dynamics towards the saturation, which comes from a
modified Rabi oscillation as in Fig. 5.

For atom initially occupying a determined state |11〉, i.e.,
P11(0) = 1.0, the unitary dynamics in step (ii) between |11〉
and |rr〉 is straightforward, leading to a maximal average
fidelity F̄S ∼ 0.9767, as indicated by a dark red dot in Fig. 8.
However, in an opposite case if atoms are entirely prepared in
|00〉 that promises a fully indirect transfer to |11〉 mediated
by |T 〉, a very small decrease by an amplitude of �FS ∼
0.001 is observed for the average fidelity, strongly proving the
robustness of fidelity insensitivity against this imperfect ini-
tialization. Otherwise, when the initial population is prepared
imperfectly in a superposition state of |00〉, |T 〉, |11〉 except
the target state |S〉, a continuous coupling by the microwave
field g among them would suffer from a persistent population
transfer towards |11〉, causing a gradual varying of average
fidelity between the former two cases. Intuitively, e.g., for a
given P00 value, FS continuously grows with the increase of
P11, which is directly connected to |rr〉. The above results
again stress the flexibility and insensitivity of our scheme
with respect to the system imperfect initialization, promising
a feasible way for the generation of steady entanglement in
the current experimental environment.

B. Variable vdW interactions

Consider in a real implementation the pair of atoms can be
individually trapped in optical tweezers separated by a tunable
distance R, enabled by changing the incidence angle of the for-
mation beams. That achieves a large vdW interaction between
the doubly excited Rydberg state |rr〉, well compensated by
the detuning �, i.e., 2� = Urr = C6/R6 (antiblockade). The
current technique can control the distance R between the two
atoms with a μm-scale accuracy; however, it is still possible to
slightly vary the positions of the individual atoms under 1 μm
during the entanglement formation of a few hundreds of μs,
actually making the antiblockade condition unpreserved.

FIG. 9. Real time dependence of population PS (t ) (red solid) on
the target state |S〉 with variable vdW interactions Urr (t ) realized by
a slight change δU (t ) around its critical value Urr,c. In case (i) δU (t )
shows a sinusoidal function with amplitudes (a) U0 = 0.1Urr,c and
(b) U0 = 0.2Urr,c. Turning to case (ii), δU (t ) is obtained randomly
from [−U0,U0] with (c) U0 = 0.1Urr,c and (d) U0 = 0.2Urr,c.

To simulate the realistic dynamics under a variable interac-
tion coming from the slight change of a two-atom distance,
we add a time-dependent fluctuation δU (t ) to the critical
value Urr,c by meeting Urr (t ) = Urr,c + δU (t ). Here the exact
antiblockade relation becomes Urr,c = 2�. For comparison
the variation δU (t ) is assumed to take two different forms,
as follows.

(i) A regular sinusoidal function

δU (t ) = U0 sin(ω′
0t ) (18)

with the frequency ω′
0 = 200ω0.

(ii) A stochastic function δU (t ) generated from

δU (t ) ∈ [−U0,U0] (19)

under small fluctuation amplitudes Figs. 9(a) and 9(c) U0 =
0.1Urr,c and Figs. 9(b) and 9(d) U0 = 0.2Urr,c, corresponding
to the slight change of relative positions around 0.32 μm and
0.64 μm, respectively. Based on the assumptions we calculate
the population dynamics FS (t ) with time (units of μs) on the
target state |S〉, with respect to the time-dependent variation
of interaction δU (t ) (see insets), as represented in Figs. 9(a)–
9(d).

By carrying out a regular sinusoidal modification to the
two-atom interaction as in case (i), the population of target
state reveals a clear fall with the increase of modified ampli-
tude U0, which is verified by comparing Figs. 9(a) and 9(b)
that the final fidelity FS (TS ) is only 0.88 when U0 is increased
to 0.2Urr,c. However, the real fluctuation of two-atom distance
in experiment is unpredictable, leading to a better considera-
tion of the stochastic change of vdW interaction between the
two atoms; see Figs. 9(c) and 9(d), where random fluctua-
tions δU (t ) ∈ [−U0,U0] are adopted. In the calculations we
individually generate five sets of random data with (c) U0 =
0.1Urr,c and (d) U0 = 0.2Urr,c, and the final target population
labeled by red curves is achieved by a numerical fitting of all
data (black dots). In fact, it is remarkable that the final fidelity
of entangled state |S〉 has a surprising enhancement when the
fluctuation of interactions is random in experiment, confirmed
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FIG. 10. Final fidelity FS at TS = 366.3 μs versus a small varia-
tion of perturbation δω0 to the periodic driving frequency ω0, denoted
by δω0/ω0 ∈ [−0.1, 0.1], i.e., the driving frequency changes from
0.9ω0 to 1.1ω0. Inset stands for an extensive range by modifying the
range to δω0/ω0 ∈ [−1.0, 1.0].

by (d) where Fs(Ts) persists to be as high as 0.97 [note that
Fs(Ts) = 0.88 in (b)] by using U0 = 0.2Urr,c, promising a
perfect insensitivity of robust entanglement generation to a
slight change of two-atom distance (variable interactions) in
a real implementation of our scheme.

C. Deviation of periodic driving frequency

To show the robustness of scheme we consider it works
under small deviations δω0 of the periodic driving from
its base modification frequency ω0, and verify a powerful
insensitivity towards the variation of driving frequency as
presented in Fig. 10. In the calculation by adding a small
deviation ±0.1ω0 achieving the change of driving frequency
from 0.9ω0 to 1.1ω0, the final fidelity FS reveals a slight
oscillation with the peak-peak oscillating amplitude smaller
than 0.005, which offers a flexible way to determine the value
of modification frequency in a realistic implementation. A
bigger deviation of driving frequency extending to the range
of δω0/ω0 ∈ [−1.0, 1.0] will cause a deep fall of the output
fidelity accompanied by a stronger oscillation with amplitude
one order of magnitude larger, see the inset of Fig. 10, again
confirming the importance of using suitable driving frequen-
cies that can facilitate not only the entanglement production
efficiency but also a fast speed towards the final steady state.

VII. CONCLUSION

Originating from a pair of practical two four-level �-type
Rydberg atoms, we show that when a periodically modulated
pump laser is used one can achieve an accelerated formation
of dissipative entangled steady state, arising an unprecedented
facilitation mechanism that has never been considered in
previous similar schemes. The merit of our scheme lies on
the chosen of an external modulation frequency that exactly
agrees with the characteristic frequency of the system, re-
sulting in a dramatic modulation to the behavior of unitary

dynamics in the optical pumping process. The modified Rabi
oscillation behavior benefits from a longer residence time on
the two-excitation Rydberg state, promising a fast decaying
onto the target entangled state when the spontaneous emission
rate and the microwave transferring rate are both tuned to be
consistent at the same time. Under parameter optimization
we successfully raise the fidelity to ∼0.98 with a formation
time shorter than 400 μs. Comparably if no modulation is
carried out it is found that the fidelity persists ∼0.96 for a
sufficient time of tens of milliseconds, unenabling the realiza-
tion of a higher entanglement within a limited detection time.
Additionally we propose a way for further accelerating the
convergence time by enhancing the effective coupling strength
in the optical pump, and put forward to detailed discussions of
the robust insensitivity of high fidelity against the imperfect
preparation of initial states and the variable vdW interactions,
as well as the deviation of modulated frequency in a real
implementation.

For realizing a fast and high-fidelity dissipative steady
entanglement, our proposal offers one step closer to this goal,
simultaneously overcoming the obstacles from a complex
energy-level structure (EIT approaches) or a long forma-
tion time (traditional Rydberg antiblockade approaches) in
a number of previous works, which may provide different
prospectives for experimentalists to create a maximal and de-
terministic steady entangled state via dissipation in interacting
Rydberg systems.

ACKNOWLEDGMENTS

This work was supported by the NSFC under Grants No.
11474094, No. 11104076, and No. 11804308, by the China
Postdoctoral Science Foundation Grant No. 2018T110735,
by the Science and Technology Commission of Shanghai
Municipality under Grant No. 18ZR1412800, and by the
Academic Competence Funds for the outstanding doctoral
students under Grant No. YBNLTS2019-023.

APPENDIX: UNITARY DYNAMICS
OF FOUR-LEVEL ATOMS

In order to verify the feasibility of our simpler scheme
in the text, we carry out a comparable calculation for the
unitary dynamics between |11〉 and |rr〉 based on the orig-
inal level structures [see Fig. 11(a)], adopted from two ru-
bidium atoms with states |1〉 = |5s1/2, f = 1, m = 0〉, |0〉 =
|5s1/2, f = 2, m = 0〉, |p〉 = |5p1/2〉, and |r〉 = |100s〉. Rabi
frequencies �p and �s are used for characterizing the optical
couplings of |1〉 � |p〉 and |p〉 � |r〉 transitions. Here, the
microwave coupling as well as all decays labeled by purple
dashed curves in Fig. 11(a) are ignored. Remember in the
frame of the effective system one has introduced two impor-
tant parameters �(t ) = �p�s/2δ = �0 cos(ω0t ) and �(t ) =
(�2

p − �2
s )/4δ ≈ const (compensated by Urr = 2�) by which

a high-fidelity entangled state |S〉 can be finally attained due
to dissipation. Returning to the frame of an original atom-field
interaction it requires the condition of δ = |�1,2| � �p,s and
�1 = −�2 = δ. For comparison here we adopt two sets of
parameters �p, �s, δ, as represented in Figs. 11(b) and 11(c),
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FIG. 11. Entire energy-level diagram of a pair of original four-
level atoms. The unitary dynamics between |11〉 and |rr〉 as shown
in the yellow box is mediated by two laser fields �p,s and de-
tunings �1,2. An effective five-level model that consists of states
{|11〉, |T 〉, |S〉, |00〉, |rr〉} is finally obtained in the main text, by
discarding all middle states for the off-resonant detunings |�1,2| �
�p, �s. (b), (c) Two different designs of laser fields �p,s and de-
tuning δ = |�1,2|, coinciding with the parameters �(t ), �(t ) in the
effective two three-level atom system.

which are (b)

�s(t ) = �s0 cos(ω0t ), �p = �p0 (A1)

and (c)

�p(t ) = �p0 cos(ω0t ), �s = �s0, (A2)

with �p0/2π = 2.88 GHz, �s0/2π = 100 MHz, δ/2π =
57.7 GHz, and ω0 = 0.273 MHz. Note that Urr = 2� is set
to be preserved in the calculation no matter whether � is time
dependent or not. Cases (b) and (c) only differ by a periodic
modulation term cos(ω0t ) whether it is implemented on the
weak field �s or the strong field �p.

By then we can calculate the original time-dependent uni-
tary dynamics between the ground state |11〉 and the doubly
excited state |rr〉 in an exact numerical way, as shown in
Fig. 12, where the results from the effective system are
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FIG. 12. Unitary dynamics of Prr (t ) (red dashed) in an original
pair of four-level atoms versus time (units of μs) under (a) a
periodically modulated field �s(t ) and (b) a periodically modulated
field �p(t ). Parameters are described in the text. The black solid
curve stands for the unitary dynamics Prr (t ) in the case of an effective
system the same as presented in Fig. 4(a).

plotted by black solid curves for contrast. Clearly when the
coupling field �s is modulated timely, a close consistence
between the unitary dynamics of two models (original and
effective) can be preserved, enabling a sufficient residence
time on |rr〉 for the dissipation of population onto the target
state. That fact could be understood by the well defined
parameters �(t ) = �s(t )�p/2δ = (�p0�s0/2δ) cos(ω0t ) and
�(t ) = [�2

p0 − �2
s0 cos2(ω0t )]/4δ ≈ �2

p0/4δ = const due to
�p0 � �s0. However, if the pump laser �p(t ) is modu-
lated, �(t ) is also well defined yet �(t ) = [�2

p0 cos2(ω0t ) −
�2

s0]/4δ ≈ (�2
p0/4δ) cos2(ω0t ) becomes a strongly oscillating

function with amplitude �2
p0/4δ that cannot keep the require-

ment of a big detuning to the singly excited states as time
evolves, arising a significant destruction for the unitary dy-
namics of |11〉 � |rr〉, since the effective system by discard-
ing all singly excited states is unreasonable then. Therefore,
we can robustly verify the validity of our simpler effective
scheme compared with a real system in the experimental
implementation.
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