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Subspace stabilization analysis for a class of non-Markovian open quantum systems
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Studied in this article is non-Markovian open quantum systems parametrized by Hamiltonian H , coupling
operator L, and memory kernel function γ , which is a proper candidate for describing the dynamics of various
solid-state quantum information processing devices. We look into the subspace stabilization problem of the
system from the perspective of dynamical systems and control. The problem translates itself into finding analytic
conditions that characterize invariant and attractive subspaces. Necessary and sufficient conditions are found
for subspace invariance based on algebraic computations, and sufficient conditions are derived for subspace
attractivity by applying a double integral Lyapunov functional. Mathematical proof is given for those conditions
and a numerical example is provided to illustrate the theoretical result.
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I. INTRODUCTION

Human beings are now in a century when we can not
only observe and describe quantum systems, but also alter
and control them so as to harness their power unparalleled
by classical resources. A promising application lies in quan-
tum information processing (QIP), where exponentially faster
computation and provably safer communication are possible
to be realized [1]. In the recent decade, effective QIP devices
have been known including silicon photonic crystals [2],
trapped ions [3], and superconducting quantum circuits [4].

“Quantum information” in the digital world must be rep-
resented by, stored in, and manipulated through actual phys-
ical systems, whose states evolve according to the laws of
quantum mechanics and even quantum field theory. Therefore,
rigorously analyzing and actively tuning the dynamics of
those systems are among the fundamental building blocks
of quantum information engineering. This coincides with the
basic objective of systems and control science, which is to
predict the evolution of dynamical systems and make them
behave in the way we desire. As a result, quantum control (cy-
bernetics) [5–7], born at the intersection of quantum physics,
control science, and applied mathematics, becomes a useful
tool to achieve successful QIP and other quantum engineering
applications.

In this work, we take an in-depth look into the subspace
stabilization problem which lies in the realm of systems
and control theory and finds applications in a wide range
of QIP problems, e.g., initialization of qubit, generation of
entangled states, and realization of decoherence-free quantum
information. This problem was first studied in [8], where it
was analyzed in the framework of subspace invariance and
attractivity. The authors in [8] presented a set of algebraic
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conditions that characterize invariant and attractive subspaces.
Moreover, in [9], sufficient and necessary conditions were
derived for invariance and attractivity as opposed to mostly
necessary conditions in [8]. As subsequent works, the authors
in [10] constructively designed system parameters (H, L) to
stabilize generic quantum states, and Ref. [11] introduced
a computable algorithm to verify those previously proposed
conditions and analyzed the speed of convergence.

The existing results on the subspace stabilization problem,
to date, mainly cover Lindblad systems [12]. Among the sev-
eral assumptions that lead to the Lindblad master equation lies
the Markovian assumption, which requires that environmental
correlations be sufficiently short compared with the system’s
characteristic timescale. This results in a memoryless, or in
other words, Markovian, system where information only flows
in one direction. Yet this assumption does not apply to all
scenarios. For instance, the modeling of mesoscopic quantum
circuits, where field propagation time delay and nonclassical
input states are considered, often sees the breakdown of the
Markovian assumption [13]. It is thereby natural to extend
the analysis of subspace stabilization into the non-Markovian
regime.

In the recent decade, non-Markovian quantum systems
have attracted increasing interest from the academia. A large
amount of work has been done on deriving proper mathe-
matical models, defining and measuring non-Markovianity,
and analyzing complete positivity (see [14] for an excellent
review). However, very few results have addressed the prop-
erties of system dynamics given a non-Markovian master
equation, which is a topic of major focus for systems and
control theorists. Here we study the subspace stabilization
problem for non-Markovian quantum systems as an investi-
gation of quantum dynamics with memory and for achieving
QIP tasks on physical devices with significant non-Markovian
effects.

The master equation on which our work is based was de-
rived in [15] for non-Markovian input-output networks. It ap-
plies to atomlike structures in radiation fields; for example, the
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superconducting circuit and microwave system. The resulting
equation is a time-convolutional one where the derivative of
current state depends on all history states and environmental
interactions, as opposed to its Markovian (Lindblad) counter-
part where only the present state matters. The mathematical
object behind time-convolutional non-Markovian equations is
the integro-differential system (see [16]).

The rest of the article is organized as follows. In Sec. II, we
introduce the non-Markovian master equation to be studied
and define the scope of system parameters to our interest.
This is followed by Sec. III, where the definition of invariant
subspaces is given and its iff conditions are provided and
proved. Section IV presents the definition and sufficient con-
ditions of subspace attractivity, and Sec. V gives an example
of a three-level system followed by numerical simulation.
The article is concluded in Sec. VI, which summarizes the
work and suggests future directions. Moreover, Sec. VI covers
some important physical implications which are worth deeper
investigation.

II. NON-MARKOVIAN SYSTEM MODEL

In this article, we study non-Markovian open quantum
systems described by the following time-convolutional master
equation, which was derived in [15] by applying the Born
approximation.

ρ̇ = −i[H, ρ] +
∫ t

0
{γ ∗(t − τ )[Lρ(τ ), L†

H (τ − t )]

+ γ (t − τ )[LH (τ − t ), ρ(τ )L†]}dτ,

(1)

where

LH (t ) = eiHt Le−iHt . (2)

There are three parameters in the system model. The Her-
mitian operator H stands for system Hamiltonian, which
generates internal dynamics for the system. Meanwhile, L rep-
resents the coupling operator, which describes the interaction
interface between the quantum system and its environment.
Finally, the memory kernel function γ (t ) demonstrates the
non-Markovianity of the system by weighing the influence of
all history system-environment interactions.

Physically, this is a type of perturbative non-Markovian
master equation for a localized quantum system interacting
with its environment. As opposed to Markovian systems
driven by quantum white noise [17] which has a flat spectrum,
non-Markovian systems are driven by colored noise whose
spectral density varies with frequency [18]. This distinc-
tion is what results in a memory kernel function in master
equation (1), which is derived under certain assumptions for
colored noise perturbed systems.

In terms of microwave-superconducting circuit systems
[13,15], the input field (modeled as white noise) does not
interact directly with the central superconducting qubit (local-
ized system), but with an intermediate bath which transforms
it into colored noise. As complicated as the structure of the
bath might be, as long as we can pin down its spectrum,
the dynamics of the qubit can be approximately described

by (1). Therefore, the study of dynamics described by (1) is
instructive to the manipulation of quantum computation units
with a similar mechanism.

For the sake of simplicity, only real, continuous, and finite
kernel functions are considered in this work. It is also assumed
that γ (0) �= 0 and γ ∈ L1[0,∞). More restrictions on γ may
need to be considered to guarantee complete positivity of
the non-Markovian master equation. However, deriving such
conditions is beyond the scope of this article. In fact, complete
positivity has been proven in the case of Lorentz spectrum
quantum noises (exponentially decaying memory kernels)
[15], which indicates that completely positive dynamics can
be induced by a set of kernel functions that subsumes the
exponential family. Therefore, we make a further assumption
that γ belongs to this set.

It is worthwhile noticing the linkage between this master
equation and the well-known Lindblad master equation:

ρ̇ = −i[H, ρ] + LρL† − 1
2 L†Lρ − 1

2ρL†L. (3)

It is intuitively convenient to view (3) as a “limit” when the
finite memory kernel function γ (t ) is squeezed higher and
higher around the origin, yielding Dirac δ(t ) and a Markovian
master equation.

Given that the open system evolves under (1), its sub-
space stabilization problem is divided into invariance and
attractivity analysis, which will be discussed separately in the
following sections.

III. SUBSPACE INVARIANCE

This section involves the first half of the subspace stabi-
lization problem, subspace invariance. We give a definition
of invariant subspaces and present necessary and sufficient
conditions that characterize them.

Let HI be a finite dimensional Hilbert space, and D(HI )
be the set of all semipositive, trace-one, Hermitian linear
bounded operators on HI (density matrices), which forms the
state space for quantum system (1). The Hilbert space admits
the following decomposition:

HI = HS ⊕ HR, (4)

where HS = span{|ϕS
j 〉}m

j=0 and HR = span{|ψR
k 〉}n

k=0. All ba-
sis vectors are orthonormal. According to this subspace de-
composition, each operator in (1) has a block matrix repre-
sentation given this set of bases. We denote those matrices as
follows:

H =
(

HS HP

HQ HR

)
, L =

(
LS LP

LQ LR

)
,

ρ(t ) =
(

ρS (t ) ρP(t )

ρQ(t ) ρR(t )

)
,

LH (t ) =
(

LS
H (t ) LP

H (t )

LQ
H (t ) LR

H (t )

)
.

The Hermiticity of H and ρ implies that HQ = H†
P and

ρQ(t ) = ρ
†
P(t ).
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We now define what an invariant subspace is. It can be
verified that our definition is equivalent to that in [8] and
[9]. However, we simplify the narration in those works by
suppressing the notion of quantum subsystems.

Definition 1 (Subspace invariance). Let the quantum sys-
tem evolve under (1). Hilbert space HS is an invariant sub-
space if the following condition is satisfied:

if ρ(0) =
(

ρ0
S 0

0 0

)
, ∀ρ0

S ∈ D(HS ),

then ρ(t ) =
(

ρS (t ) 0

0 0

)
, ∀t � 0.

The following lemma completely characterizes invariant
subspaces.

Lemma 1 (Subspace invariance). The following conditions
(i), (ii), and (iii) are necessary and sufficient for HS to be an
invariant subspace.

(i)

H =
(

HS 0

0 HR

)
;

(ii)

L =
(

LS LP

0 LR

)
;

(iii) Denote by ρS (t ; ρ0
S ) the trajectory, with initial value

ρ0
S , which satisfies the following integro-differential equation

ρ̇S = −i[HS, ρS] +
∫ t

0
γ ∗(t − τ )

[
LSρS (τ ), LS†

H (τ − t )
]

+ (H.c.)dτ, (5)

where

LS
H (t ) = eiHSt LSe−iHSt . (6)

Then, ∀ρ0
S ∈ D(HS ),∫ t

0
γ (t − τ )ρS (τ ; ρ0

S )L†
SLP

H (τ − t )dτ = 0. (7)

Proof. (Necessity). Suppose HS is an invariant sub-
space. Then, we have the following relationship according to
Definition 1:

ρ(t ) =
(

ρS
(
t ; ρ0

S

)
0

0 0

)
, ∀t � 0, ∀ρ0

S ∈ D(HS );

ρ̇(t ) =
(

ρ̇S
(
t ; ρ0

S

)
0

0 0

)
=

(
S(t ) P(t )

Q(t ) R(t )

)
, ∀t � 0.

Hermiticity of the state density matrix and its derivative imply
that Q(t ) = P†(t ). We proceed to compute explicitly the S, P,

and R blocks.

S(t ) = −i[HS, ρS] +
∫ t

0

{
γ ∗(t − τ )

[
LSρS (τ ), LS†

H (τ − t )
]

− LQ†
H (τ − t )LQρS (τ )

} + (H.c.)dτ, (8)

P(t ) = iρSHP +
∫ t

0
γ ∗(t − τ )LSρS (τ )LQ†

H (τ − t )

+ γ (t − τ )
{
LS

H (τ − t )ρS (τ )L†
Q

− ρS (τ )
[
L†

SLP
H (τ − t ) + L†

QLR
H (τ − t )

]}
dτ, (9)

R(t ) =
∫ t

0
γ ∗(t − τ )LQρS (τ )LQ†

H (τ − t ) + (H.c.)dτ. (10)

Since R(t ) ≡ 0, then Ṙ(t ) ≡ 0, and Ṙ(0) = 0. Changing the
integration variable yields

R(t ) =
∫ t

0
γ ∗(τ )LQρS (t − τ )LQ

H (−τ ) + (H.c.)dτ, (11)

Ṙ(t ) =
∫ t

0
γ ∗(τ )LQ∂tρS (t − τ )LQ

H (−τ ) + (H.c.)dτ

+ γ ∗(t )LQρ0
S LQ†

H (−t ) + H.c., (12)

Ṙ(0) = [γ ∗(0) + γ (0)]LQρ0
S L†

Q = 0, ∀ρ0
S ∈ D(HS ). (13)

Therefore, LQ = 0. The S and P blocks are thus reduced to

S(t ) = −i[HS, ρS] +
∫ t

0
γ ∗(t − τ )

[
LSρS (τ ), LS†

H (τ − t )
]

+ (H.c.)dτ, (14)

P(t ) = iρSHP +
∫ t

0
γ ∗(t − τ )LSρS (τ )LQ†

H (τ − t )

− γ (t − τ )ρS (τ )L†
SLP

H (τ − t )dτ. (15)

Moreover, since P(0) = iρ0
S HP = 0, the arbitrariness of ρ0

S
indicates that HP = 0. It follows that H must have a block
diagonal structure, thus leading to the explicit form of LH (t ):

LH (t ) =
(

eiHSt LSe−iHSt eiHSt LPe−iHRt

0 eiHRt LRe−iHRt

)
. (16)

This structure implies that LQ
H (t ) = 0, which further reduces

the P block to

P(t ) = −
∫ t

0
γ (t − τ )ρS (τ, ρ0

S )L†
SLP

H (τ − t )dτ ≡ 0. (17)

Necessity is thus proved.
Sufficiency. Suppose that conditions (i), (ii), and (iii) are

satisfied. Direct calculation yields the following integro-
differential equations for subblocks of the state density
matrix:

ρ̇S (t ) = −i[HS, ρS] +
∫ t

0
γ ∗(t − τ )

{[
LSρS (τ ) + LPρ

†
P(τ ), LS†

H (τ − t )
] + [LSρP(τ ) + LPρR(τ )]LP†

H (τ − t )
} + (H.c.)dτ, (18)
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ρ̇P(t ) = −i(HSρP − ρPHR) +
∫ t

0
γ ∗(t − τ )

{
[LSρP(τ ) + LPρR(τ )]LR†

H (τ − t ) − LS†
H (τ − t )[LSρP(τ ) + LPρR(τ )]

}
+ γ (t − τ )

{[
LS

H (τ − t )ρP(τ ) + LP
H (τ − t )ρR(τ )

]
L†

R − [ρS (τ )L†
S + ρR(τ )L†

P]LP
H (τ − t ) − ρR(τ )L†

RLR
H (τ − t )

}
dτ, (19)

and

ρ̇R(t ) = −i[HR, ρR] +
∫ t

0
γ ∗(t − τ )

{[
LRρR(τ ), LR†

H (τ − t )
] − LP†

H (τ − t )[LSρP(τ ) + LPρR(τ )]
} + (H.c.)dτ. (20)

It suffices to verify that ρ(t ; ρ0
S ), ρP(t ) ≡ 0, and ρR(t ) ≡ 0 are

solutions of (18), (19), and (20). It is clear that (18) and (20)
are satisfied, while (19) leads to

−
∫ t

0
γ (t − τ )ρS

(
τ ; ρ0

S

)
L†

SLP
H (τ − t )dτ = 0, (21)

which is satisfied because of condition (iii). This completes
the proof of sufficiency. �

Remark 1. Lemma 1 can be readily generalized to non-
Markovian quantum systems with multiple environmental
coupling operators (multiple noise input channels). The mas-
ter equation is expressed as

ρ̇ = −i[H, ρ] +
n∑

k=1

∫ t

0
{γ ∗(t − τ )[Lkρ(τ ), L†

H,k (τ − t )]

+ γ (t − τ )[LH,k (τ − t ), ρ(τ )L†
k ]}dτ, (22)

where

LH,k (t ) = eiHt Lke−iHt , k = 1, 2, . . . , n. (23)

We list the iff conditions (i′), (ii′), and (iii′) for subspace in-
variance regarding (22) without proving them, since the proof
can be completed by following exactly the same procedure as
that of Theorem 1.

(i′) = (i)
(ii′)

Lk =
(

LS,k LP,k

0 LR,k

)
, k = 1, 2, . . . , n;

(iii′) Denote by ρS (t ; ρ0
S ) the trajectory, with initial value

ρ0
S , which satisfies the following integro-differential equation

ρ̇S = −i[HS, ρS] +
n∑

k=1

∫ t

0
γ ∗(t − τ )

[
LS,kρS (τ ), LS†

H,k (τ − t )
]

+ (H.c.)dτ, (24)

where

LS
H,k (t ) = eiHSt LS,ke−iHSt , k = 1, 2, . . . , n. (25)

Then, ∀ρ0
S ∈ D(HS ),∫ t

0
γ (t − τ )ρS

(
τ ; ρ0

S

) n∑
k=1

L†
S,kLP

H,k (τ − t )dτ = 0, (26)

where

LP
H,k (t ) = eiHSt LP,ke−iHRt , k = 1, 2, . . . , n. (27)

Although the conditions given in Lemma 1 are necessary
and sufficient, condition (iii) may be difficult to verify for sys-

tems with high dimensions. Therefore, some useful necessary
(not sufficient) and sufficient (not necessary) conditions are
provided as theorems of this section.

Theorem 1. Consider the following conditions (iv), (v), and
(vi):

(iv) L†
SLP = 0;

(v) [L†
S , HS] = 0;

(vi) HSLP = LPHR.
(iv) is necessary for HS to be invariant. (i), (ii), (iv), and (v)

are sufficient for subspace invariance. Moreover, (i), (ii), (iv),
and (vi) are also sufficient.

Proof. We begin by showing that (iv) is necessary.
Calculating the derivative of P(t ) at t = 0 yields

Ṗ(0) = −γ (0)ρ0
S L†

SLP = 0,

which holds for arbitrary ρ0
S . This implies that L†

SLP = 0.
For the sufficiency of (i), (ii), (iv), and (v), we prove that

(iv) and (v) lead to (iii).
This is clear since

L†
SLP

H (τ − t ) = L†
SeiHS (τ−t )LPe−iHR (τ−t )

= eiHS (τ−t )L†
SLPe−iHR (τ−t )

= 0.

Similarly, it can also be proven that (iv) and (vi) lead
to (iii). This follows from the fact L†

SLP
H (τ − t ) = L†

SLP = 0
under conditions (iv) and (vi).

Thus we end the proof of Theorem 1. �
At this point, it should be noted that the conditions for

subspace invariance regarding the Markovian case (Lindblad
equation) [8] are LQ = 0 and iHP − 1/2L†

SLP = 0, where
a single noise input channel is considered for simplicity.
These conditions are apparently weaker than that in our non-
Markovian case (see Lemma 1), consistent with the fact that
stronger assumptions are required to derive Lindblad master
equations in the first place [12]. Technically, by replacing γ (t )
in (15) with δ(t ) and substituting LQ = 0 (a condition required
in both cases), we have P(0) = ρS (0)(iHP − 1/2L†

SLP ). The
requirement that P(0) = 0 and arbitrariness of ρS (0) together
yield the Markovian condition.

After defining and characterizing invariant subspaces, it
can be seen that each of them determines an “invariant set”
in D(HI ), which is the set of density matrices that are “com-
pressed” within the top left S block. If the initial state locates
in this set, all future states will remain in it as long as the
system evolves under (1). Invariant subspaces thus correspond
to preserved quantum information: initial quantum states sup-
ported by them will not decohere into the maximally mixed
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state. Moreover, they pave the way for subspace attractivity,
which will be discussed in the next section.

IV. SUBSPACE ATTRACTIVITY

Building on the analysis of subspace invariance in the pre-
vious section, we proceed to define and characterize attractive
subspaces. It can also be checked that this is equivalent to the
definition in [8].

Definition 2 (Subspace attractivity). Let ρ(t ) evolve under
(1). If

lim
t→+∞

[
ρ(t ) −

(
ρS (t ) 0

0 0

)]
= 0

for all initial states in D(HI ), and HS is invariant, then HS is
said to be an attractive subspace.

It is straightforward from this definition that an attractive
subspace HS is related to an invariant and attractive set of
density matrices.

Suppose [L†
S , HS] = 0. Then (20) reduces to the following

equation considering real γ functions.

ρ̇R(t ) = −i[HR, ρR] +
∫ t

0
γ (t − τ )

{[
LRρR(τ ), LR†

H (τ − t )
]

+[
LR

H (τ − t ), ρR(τ )L†
R

]}
dτ +

∫ t

0
γ (t − τ )

× [−LP†
H (τ − t )LPρR(τ ) − ρR(τ )L†

PLP
H (τ − t )

]
dτ.

(28)

This implies that the evolution of ρR is independent, as
opposed to (20), where it also relies on ρP.

We cast (28) into superoperator form:

ρ̇R = AρR +
∫ t

0
B(t − τ )ρR(τ )dτ +

∫ t

0
K(t − τ )ρR(τ )dτ,

(29)
where

A[·] = −i[HR, ·],
B(t )[·] = γ (t )

{[
LR·, LR†

H (−t )
] + [

LR
H (−t ), ·L†

R

]}
,

K(t )[·] = −γ (t )
[
LP†

H (−t )LP · + · L†
PLP

H (−t )
]
.

Before presenting the main theorem of this section, we shall
first prove a useful lemma.

Lemma 2. Let f (t ) be a continuously differentiable func-
tion on [0,∞), and f (t ) � 0. If ḟ (t ) � φ(t ), where φ(t ) � 0
and φ ∈ L1[0,∞), then f (t ) must have a finite limit when t
tends to infinity.

Proof. We first prove that the statement is correct when ḟ (t )
has a finite number of zero points.

Let tmax be the largest zero point. On (tmax,∞), ḟ (t ) must
either remain negative or positive. If it remains negative,
then f (t ) must have a limit since it is descending and lower
bounded by 0 on (tmax,∞). If it remains positive, consider the

following inequalities.

f (t ) = f (0) +
∫ t

0
ḟ (s)ds

� f (0) +
∫ t

0
φ(s)ds

� f (0) +
∫ ∞

0
φ(s)ds. (30)

Because φ ∈ L1[0,∞), f (t ) is upper bounded. It thus has a
limit since it is increasing on (tmax,∞).

We then proceed to consider the case where ḟ (t ) has an
infinite number of zero points. The statement can be proved
by contradiction. Suppose that f (t ) has no limits. Then we
have

U = lim
t→+∞ f (t ) > lim

t→+∞
f (t ) = L.

Denote the sequence of peaks by {un}∞n=1, and the sequence of
valleys by {ln}∞n=1. The definition of limit superior and limit
inferior implies that

U = lim
t→+∞ f (t ) = lim

n→+∞ un,

L = lim
t→+∞

f (t ) = lim
n→+∞

ln.

The equivalent definition of superior and inferior limits indi-
cates that there exist

{unk }∞k=1 ⊂ {un}∞n=1, lim
k→+∞

unk = U ;

{lnk }∞k=1 ⊂ {ln}∞n=1, lim
k→+∞

lnk = L.

We also have that ∀t, s > 0, t � s,

f (t ) − f (s) =
∫ t

s
ḟ (τ )dτ �

∫ t

s
φ(τ )dτ.

Since φ ∈ L1[0,∞), f (t ) − f (s) tends to 0 when t and s
tend to infinity. However, if we pick {unki

}∞i=1 ⊂ {unk }∞k=1, s.t.
lni � unki

, ∀i ∈ N+, we have

lim
i→+∞

[
f
(
unki

) − f
(
lni

)] = U − L > 0.

This results in a contradiction. Therefore, f (t ) must have a
limit. �

We are now in the position to present the main result on
subspace attractivity.

Theorem 2 (Subspace attractivity). If [L†
S , HS] = 0, and

there exists a negative number α, s.t.

−2γ (0)L†
PLP +

∫ ∞

t
‖�(τ, t )‖dτ I � αI

for all t � 0, then HS is an attractive subspace. �(·, ·) is a
two-variable superoperator expressed as

�(t, s) = K(t − s) − ∂sK(t − s) − K(t − s)A

−
∫ t

s
K(t − u)[K(u − s) + B(u − s)]du, (31)

and ‖ · ‖ denotes the norm of superoperators on the Banach
space of all Hermitian matrices.
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Proof. Since ρ(t ) is always positive, it suffices to show
that the origin is asymptotically stable (all solutions tend to
0) for (28) and (29). The variation of parameters technique of
integro-differential equations (see [16]) allows us to swap (29)
into an equivalent equation:

σ̇ = Nσ +
∫ t

0
L(t, s)σ (s)ds + K(t )σ0, (32)

where

N = A − K(0),

and

L = �(t, s) + B(t, s).

Consider the following Lyapunov functional:

V [t, σ (·)] = tr(σ ) +
∫ t

0

∫ ∞

t
‖�(τ, s)‖dτ tr[σ (s)]ds. (33)

Taking the derivative of this functional with respect to t yields

V̇ [t, σ (·)] = tr{[A − K(0)]σ } + tr

[∫ t

0
�(t, s)σ (s)ds

]

+ tr

[∫ t

0
B(t, s)σ (s)ds

]
+ tr[K(t )σ0]

−
∫ t

0
‖�(t, s)‖tr[σ (s)]ds

+
∫ ∞

t
‖�(τ, t )‖dτ tr(σ ). (34)

Using the fact that tr(A[·]) = 0 and tr{B(t, s)[·]} = 0, and
applying the norm inequality we obtain

V̇ [t, σ (·)] � −tr[K(0)σ ] + tr

[ ∫ t

0
‖�(t, s)‖σ (s)ds

]

+tr[K(t )σ0] −
∫ t

0
‖�(t, s)‖tr[σ (s)]ds

+
∫ ∞

t
‖�(τ, t )‖dτ tr(σ )

= tr

([
−2γ (0)L†

PLP +
∫ ∞

t
‖�(τ, t )‖dτ I

]
σ

)
+ tr[K(t )σ0].

The negative definiteness of

−2γ (0)L†
PLP +

∫ ∞

t
‖�(τ, t )‖dτ I

implies that V̇ [t, σ (·)] � tr[K(t )σ0], which is a scalar func-
tion in L1[0,∞) because γ ∈ L1[0,∞) and all other time-
dependent terms are oscillatory and bounded.

Therefore, by applying Lemma 2, we know that the Lya-
punov functional (32) must have a finite limit when t tends to
infinity. The natural boundedness of density matrices implies
that the second derivative of V with respect to t is also
bounded. Barbalat’s lemma thus tells us that V̇ tends to zero.
This leads to the fact that

lim
t→+∞ tr

([
−2γ (0)L†

PLP +
∫ ∞

t
‖�(τ, t )‖dτ I

]
σ

)
= 0

because tr[K(t )σ0] tends to 0. The upper bounded negative
definiteness again says that σ (t ) → 0, which completes the
proof. �

Remark 2. Theorem 2 can also be generalized to the case
of multiple noise operators (22). We present without proof
the sufficient conditions (a) and (b) for subspace attractivity
regarding the invariant subspace HS of (22).

(a) [L†
S,k, HS] = 0, k = 1, 2, . . . , n.

(b) The matrix

−2γ (0)
n∑

k=1

L†
P,kLP,k +

∫ ∞

t
‖�̃(τ, t )‖dτ I

is negative definite for all t � 0. �̃(·, ·) is a two-variable
superoperator expressed as

�̃(t, s) = K̃(t − s) − ∂sK̃(t − s) − K̃(t − s)A

−
∫ t

s
K̃(t − u)[K̃(u − s) + B̃(u − s)]du, (35)

where

B̃(t )[·] = γ (t )
n∑

k=1

{[
LR,k ·, LR†

H,k (−t )
] + [

LR
H,k (−t ), ·L†

R,k

]}
,

K̃(t )[·] = −γ (t )
n∑

k=1

[
LP†

H,k (−t )LP,k · + · L†
P,kLP

H,k (−t )
]
.

Remark 3. In an attractive subspace, the invariant set
determined by the subspace is autonomously stabilized for
all initial states. This is interesting for QIP applications,
where quantum information may be manipulated and free
from decoherence. If the attractive subspace is only one-
dimensional, then the set shrinks to a single pure state that
spans the subspace. Tasks such as qubit initialization, cooling,
and entanglement generation can be realized if we choose a
proper subspace decomposition.

V. NUMERICAL EXAMPLE AND SIMULATION

In this section, an example with numerical simulation is
presented to illustrate the results.

Although standard qubits are theoretically two-level quan-
tum systems, it is inevitable that when realizing them with
actual physical systems, those with higher level excitations are
encountered [19–24]. To perform computation designed for
two-level qubits, we need to truncate higher levels, or in other
words, avoid unwanted excitations. This objective is naturally
achieved if the subspace that supports the qubit states is
constructed to be attractive. The problem is now translated
into finding system parameters that satisfy the conditions
proposed in previous sections.

We consider a three-level quantum system evolving under
(1) as the physical realization of a qubit. If the follow-
ing parameters could be experimentally designed (we have
set h̄ = 1), quantum information will be preserved in the
qubit subspace. The kernel function is γ (t ) = κ2e−3κt , where
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FIG. 1. Four different initial values for tr(ρR): 1, 0.75, 0.5, and
0.25 are chosen. Simulation results show that tr(ρR ) vanishes as time
elapses, demonstrating subspace attractivity. κ carries the unit of
hertz.

κ � 1, and

H =
⎛
⎝1/2 0 0

0 −1/2 0

0 0 −1/2

⎞
⎠, L =

⎛
⎝1 0 0

0 0 1

0 0 0

⎞
⎠.

The S block corresponds to the 2×2 block on the top left.
The corresponding subspace HS is thus two-dimensional. Its
attractivity is demonstrated via simulation. It can be verified
directly that the matrices satisfy sufficient conditions for
invariance proposed in Sec. III. Direct calculation yields

− 2γ (0)L†
PLP +

∫ ∞

t
‖�(τ, t )‖dτ

� −2κ2 + κ2
∫ ∞

0
e−3κu|−2 + 6κ − 4κ2u|du

� −2κ2 + κ2

(
2 − 2

9κ

)

= −2

9
κ

< 0.

Therefore, sufficient conditions for attractivity are also
met. We plot tr(ρR) with respect to time in Fig. 1 for four
different initial values. Figure 1 shows that the values of tr(ρR)
converge to 0, meaning that HS is attractive.

VI. CONCLUSION AND DISCUSSION

We have made an analysis of subspace invariance and
attractivity for a class of non-Markovian quantum systems.
The results may be useful to understand asymptotic dynami-
cal properties of non-Markovian quantum systems. In future
research, other non-Markovian models with potential QIP
applications will be investigated. It is also worthwhile inves-
tigating whether non-Markovian quantum systems may have
other undefined dynamical properties compared with their
Markovian counterpart, which makes future studies much
more intriguing.

Moreover, the work in this article inspires us that it is
worth further investigating the physicality of the two master
equation models of Lindblad equations and memory kernel
(finite, nonzero, and continuous at t = 0) master equations.
This inspiration comes from the following observation. If
Dirac δ(t ) is viewed as a “limit” of a sequence of finite
memory kernel functions γn(t ) with increasingly heavier dis-
tribution around the origin, the condition iHP − 1/2L†

SLP = 0
is clearly not sufficient for subspace invariance in terms of sys-
tems involving each member of the sequence. It is sufficient,
however, for the limiting Markovian case, thus presenting a
“discontinuity” despite the correctness of [8] and our work.
It can also be verified that iHP − 1/2L†

SLP = 0 holds even
when considering the invariance of Lindblad equations under
transformations L = L + αI and H = H − i/2(α∗L − αL†)
for any complex number α [12].

Therefore, the above-mentioned discontinuity suggests that
at least one of the two master equation models might be
unphysical. It could be that Lindblad equations correspond
to an unphysical limit, or that all physical open systems are
described by memory kernels that diverge at t = 0, or even
that both equations are unphysical.

It is beyond the scope of this article to investigate which
model (or both) is unphysical, but we believe that the phys-
ical implication itself should as least be of equal impor-
tance to other results in this article. The physical intuition
that non-Markovian systems should yield consistent results
with Markovian systems is worth further examination. Also,
the physicality issue should be clarified before one designs
control protocols for open quantum systems based on these
mathematical models.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foun-
dation (NNSF) of China under Grants No. 61603040, No.
61828303, No. 61873034, and No. 61433003. It is partially
supported by the Australian Research Council’s Discovery
Projects Funding Scheme under Project DP190101566, Bei-
jing Natural Science Foundation under Grant No. 4182057,
and Yunnan Provincial Science and Technology Department
Key Research Program (Engineering) (2018BA070).

[1] M. A. Nielsen and I. L. Chuang, in Quantum Computation
and Quantum Information, 10th anniversary ed. (Cambridge
University Press, Cambridge, UK, 2010), pp. 1–59.

[2] A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J.
Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng
et al., Nature (London) 556, 349 (2018).

042327-7

https://doi.org/10.1038/s41586-018-0028-z
https://doi.org/10.1038/s41586-018-0028-z
https://doi.org/10.1038/s41586-018-0028-z
https://doi.org/10.1038/s41586-018-0028-z


ZHANG, LIU, DONG, FENG, AND PAN PHYSICAL REVIEW A 101, 042327 (2020)

[3] M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher,
and J. Eschner, Nat. Commun. 9, 1998 (2018).

[4] S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla,
U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H.
Devoret, Nature (London) 504, 419 (2013).

[5] D. Dong and I. R. Petersen, IET Control Theory Appl. 4, 2651
(2010).

[6] C. Altafini and F. Ticozzi, IEEE Trans. Autom. Control 57, 1898
(2012).

[7] J. Zhang, Y.-X. Liu, R. B. Wu, K. Jacobs, and F. Nori,
Phys. Rep. 679, 1 (2017).

[8] F. Ticozzi and L. Viola, IEEE Trans. Autom. Control 53, 2048
(2008).

[9] F. Ticozzi and L. Viola, Automatica 45, 2002 (2009).
[10] F. Ticozzi, S. G. Schirmer, and X. Wang, IEEE Trans. Autom.

Control 55, 2901 (2010).
[11] F. Ticozzi, R. Lucchese, P. Cappellaro, and L. Viola,

IEEE Trans. Autom. Control 57, 1931 (2012).
[12] H. P. Breuer and F. Petruccione, in The Theory of Open

Quantum Systems (Oxford University Press, New York, 2002),
pp. 117–124.

[13] J. Combes, J. Kerckhoff, and M. Sarovar, Adv. Phys.: X 2, 784
(2016).

[14] I. de Vega and D. Alonso, Rev. Mod. Phys. 89, 015001 (2017).
[15] J. Zhang, Y.-X. Liu, R.-B. Wu, K. Jacobs, and F. Nori,

Phys. Rev. A 87, 032117 (2013).
[16] V. Lakshmikantham, Theory of Integro-Differential Equa-

tions, Stability and Control (CRC Press, Boca Raton, FL,
1995).

[17] C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761 (1985).
[18] S. Xue, M. R. Hush, and I. R. Petersen, IEEE Trans. Control

Syst. Technol. 25, 1552 (2017).
[19] R. Bianchetti, S. Filipp, M. Baur, J. M. Fink, C. Lang, L.

Steffen, M. Boissonneault, A. Blais, and A. Wallraff, Phys. Rev.
Lett. 105, 223601 (2010).

[20] M. B. Kenmoe and L. C. Fai, Phys. Rev. B 94, 125101 (2016).
[21] P. Pechukas, Phys. Rev. Lett. 73, 1060 (1994).
[22] Y. Pan and T. Nguyen, IEEE Trans. Autom. Control 62, 4625

(2017).
[23] B. Vacchini, Phys. Rev. Lett. 117, 230401 (2016).
[24] S.-B. Xue, R.-B. Wu, W.-M. Zhang, J. Zhang, C.-W. Li, and

T.-J. Tarn, Phys. Rev. A 86, 052304 (2012).

042327-8

https://doi.org/10.1038/s41467-018-04341-2
https://doi.org/10.1038/s41467-018-04341-2
https://doi.org/10.1038/s41467-018-04341-2
https://doi.org/10.1038/s41467-018-04341-2
https://doi.org/10.1038/nature12802
https://doi.org/10.1038/nature12802
https://doi.org/10.1038/nature12802
https://doi.org/10.1038/nature12802
https://doi.org/10.1049/iet-cta.2009.0508
https://doi.org/10.1049/iet-cta.2009.0508
https://doi.org/10.1049/iet-cta.2009.0508
https://doi.org/10.1049/iet-cta.2009.0508
https://doi.org/10.1109/TAC.2012.2195830
https://doi.org/10.1109/TAC.2012.2195830
https://doi.org/10.1109/TAC.2012.2195830
https://doi.org/10.1109/TAC.2012.2195830
https://doi.org/10.1016/j.physrep.2017.02.003
https://doi.org/10.1016/j.physrep.2017.02.003
https://doi.org/10.1016/j.physrep.2017.02.003
https://doi.org/10.1016/j.physrep.2017.02.003
https://doi.org/10.1109/TAC.2008.929399
https://doi.org/10.1109/TAC.2008.929399
https://doi.org/10.1109/TAC.2008.929399
https://doi.org/10.1109/TAC.2008.929399
https://doi.org/10.1016/j.automatica.2009.05.005
https://doi.org/10.1016/j.automatica.2009.05.005
https://doi.org/10.1016/j.automatica.2009.05.005
https://doi.org/10.1016/j.automatica.2009.05.005
https://doi.org/10.1109/TAC.2010.2079532
https://doi.org/10.1109/TAC.2010.2079532
https://doi.org/10.1109/TAC.2010.2079532
https://doi.org/10.1109/TAC.2010.2079532
https://doi.org/10.1109/TAC.2012.2195858
https://doi.org/10.1109/TAC.2012.2195858
https://doi.org/10.1109/TAC.2012.2195858
https://doi.org/10.1109/TAC.2012.2195858
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/PhysRevA.87.032117
https://doi.org/10.1103/PhysRevA.87.032117
https://doi.org/10.1103/PhysRevA.87.032117
https://doi.org/10.1103/PhysRevA.87.032117
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1109/TCST.2016.2614834
https://doi.org/10.1109/TCST.2016.2614834
https://doi.org/10.1109/TCST.2016.2614834
https://doi.org/10.1109/TCST.2016.2614834
https://doi.org/10.1103/PhysRevLett.105.223601
https://doi.org/10.1103/PhysRevLett.105.223601
https://doi.org/10.1103/PhysRevLett.105.223601
https://doi.org/10.1103/PhysRevLett.105.223601
https://doi.org/10.1103/PhysRevB.94.125101
https://doi.org/10.1103/PhysRevB.94.125101
https://doi.org/10.1103/PhysRevB.94.125101
https://doi.org/10.1103/PhysRevB.94.125101
https://doi.org/10.1103/PhysRevLett.73.1060
https://doi.org/10.1103/PhysRevLett.73.1060
https://doi.org/10.1103/PhysRevLett.73.1060
https://doi.org/10.1103/PhysRevLett.73.1060
https://doi.org/10.1109/TAC.2016.2622694
https://doi.org/10.1109/TAC.2016.2622694
https://doi.org/10.1109/TAC.2016.2622694
https://doi.org/10.1109/TAC.2016.2622694
https://doi.org/10.1103/PhysRevLett.117.230401
https://doi.org/10.1103/PhysRevLett.117.230401
https://doi.org/10.1103/PhysRevLett.117.230401
https://doi.org/10.1103/PhysRevLett.117.230401
https://doi.org/10.1103/PhysRevA.86.052304
https://doi.org/10.1103/PhysRevA.86.052304
https://doi.org/10.1103/PhysRevA.86.052304
https://doi.org/10.1103/PhysRevA.86.052304

