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Optimal clock speed of qubit gate operations on open quantum systems
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Efficient implementation of quantum algorithms requires single- or multiple-qubit gates with high fidelity.
Here we report that the fidelity of gate operations on open quantum systems has a maximum value corresponding
to an optimum value of the drive amplitude in the presence of drive-induced decoherence. To demonstrate this, we
use a previously reported fluctuation-regulated quantum master equation [A. Chakrabarti and R. Bhattacharyya,
Phys. Rev. A 97, 063837 (2018)]. The fidelity is found to be a function of the drive-induced dissipative
terms as well as the relaxation terms arising from the qubit-environment coupling; as a result, it behaves
nonmonotonically with the drive amplitude. The existence of an optimum drive amplitude implies that the qubit
gate operations on open quantum systems would have an optimal clock speed. We demonstrate the universality
of the results for the gate operations on single- and multiple-qubit gates.
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I. INTRODUCTION

Several quantum algorithms have been proved to be com-
putationally superior to their classical counterparts [1–4].
Consequently, the physical realization of quantum computers
has been a major area of research in the past couple of decades
[5–12]. The conditions required for the physical realization of
quantum computers were laid out by DiVincenzo [13], who
argued that the operation time of quantum gates should be
much smaller than the timescale of decoherence. Moreover,
successful implementation of quantum algorithms requires
not only the fulfillment of the DiVincenzo criteria, but also
quantum gates of high fidelity to achieve reasonable fault
tolerance. As a result, recent years have witnessed significant
improvements in the implementation of high-fidelity gates on
various architectures [10–12,14,15].

Among the recent works on high-fidelity gates, Ballance
et al. implemented two-qubit and single-qubit logic gates
using hyperfine trapped-ion qubits driven by Raman laser
beams [14]. They experimentally found the maximum gate
fidelity for a certain value of the gate time. The source of
the variation in the value of the fidelity was attributed to the
imperfection of the gate operations. In another recent work,
Song et al. experimentally generated a ten-qubit entangled
Greenberger-Horne-Zeilinger state using a superconducting
circuit with the qubit-qubit interaction mediated by a bus
resonator and created a ten-qubit quantum gate with a fidelity
of 0.668 ± 0.025 [15]. Also, Huang et al. reported two-qubit
randomized benchmarking with an average Clifford gate fi-
delity of 94.7% and an average controlled-rotation fidelity of
98% on silicon-based quantum dots [12].
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These experiments were on systems of different physical
origin and hence the varying fidelity could be due to either
imperfect implementation of the gates because of instrumental
imperfections or the dissipative nature of the systems due to
coupling with the environment. While the former could be
minimized in principle, the latter is much harder to remove,
since no quantum system could be truly isolated. As such,
one resorts to the standard description of driven-dissipative
systems using the quantum master equation, which takes into
account the relaxation terms originating from the environment
to describe the nonunitary dynamics of the system. In the
usual quantum master equations, the external drives on the
system are included in the first order, whereas the system-
environment coupling provides second-order nonunitary dis-
sipators.

Recently, Chakrabarti and Bhattacharyya formulated a
quantum master equation where an explicitly added environ-
mental fluctuation provides a regulator in the dissipator terms
[16]. This fluctuation-regulated quantum master equation
(FRQME) has the Gorini-Kossakowski-Lindblad-Sudarshan
(GKLS) form and hence is trace preserving and completely
positive. The major advantage of such a formulation is that
the external drives can also be included in the second order
without requiring a rotating-wave approximation. The second-
order contributions of the external drives have been shown to
be of two types: (i) a shift term, which under an appropriate
limit provides the dynamic Stark shift for detuned drives (and
a Bloch-Siegert shift for a nonresonant component of the
linearly polarized drive), and (ii) Kramers-Kronig pairs of the
shift term which provides a pure dissipator which does not
depend on the system-environment coupling strength. This
dissipator originating from the drive has also been verified
experimentally [17].

Previously, Bertaina et al. experimentally observed the
decay of Rabi oscillations of spin qubits based on rare-earth
ions and reported that the decay rate was found to depend
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on the drive (microwave) power [18]. Similar drive-induced
dissipation has earlier been observed experimentally in a vari-
ety of systems [19–22]. It has been shown how drive-induced
dissipation can explain such behaviors reported in the above
volume of works [16].

In the case of a resonant circularly polarized drive, the
drive-induced dissipation (DID) survives, but the dynamic
Stark shift term vanishes. As such, here we investigate the role
of the DID in the realization of quantum gate operations. We
show that the fast gate operations and achieving high fidelity
may not be two independent processes in the presence of
DID. We show that the competition between the two sources
of decoherence, namely, system-environment coupling and
second-order effects of the drive, naturally leads to an opti-
mum value of the speed of single- or multiple-qubit gates. We
will also introduce a simple measure of nonunitarity which
helps quantify the performances of the gates.

II. DRIVEN-DISSIPATIVE DYNAMICS UNDER
REGULARIZATION BY FLUCTUATIONS

Since the FRQME is relatively new in the history of quan-
tum master equations, we present a brief sketch of its deriva-
tion. One begins with the premise that the thermal fluctuations
take place in a thermal reservoir and could be explicitly
represented by a suitably chosen Hamiltonian to complete the
description of the local environment of a driven-dissipative
system. As such, the general form of the Hamiltonian for the
system and the local environment in the frequency unit may
be written as

H (t ) = H ◦
S + H ◦

E + HSE + HS(t ) + HE(t ), (1)

where H ◦
S is the time-independent Hamiltonian of the sys-

tem, H ◦
E is the time-independent Hamiltonian of the local

environment, HSE is the coupling between the system and the
local environment with strength ωSE, HS(t ) is the external
drive applied to the system with amplitude ω1, and HE(t )
denotes the fluctuations in the local environment. Since the
fluctuations should not drive the lattice away from equilib-
rium, HE(t ) is chosen to be diagonal in the eigenbasis {|φ j〉}
of H ◦

E , represented by

HE(t ) =
∑

j

f j (t )|φ j〉〈φ j |, (2)

where f j (t ) is assumed to be independent, Gaussian, δ-
correlated stochastic variables with zero mean and standard
deviation κ , i.e., f j (t ) = 0 and f j (t1) f j (t2) = κ2δ(t1 − t2).

The Liouville–von Neumann equation for the single sys-
tem and its environment is given by

d

dt
ρ̃(t ) = −i[H (t ), ρ̃(t )], (3)

where ρ̃(t ) denotes the density matrix of the system-
environment pair in the interaction representation and H (t ) is
the time-dependent part of the Hamiltonian expressed in the
interaction representation. To express the solution of Eq. (3)
for a finite time-interval from t to t + �t (used later as
a course-graining interval) for the dynamics of the system
part (denoted by S), we take the trace over the environment

variables (denoted by TrE) to obtain

ρ̃S(t + �t ) = ρ̃S(t ) − i
∫ t+�t

t
dt1TrE[Heff(t1), ρ̃(t1)], (4)

where ρ̃S(t ) denotes the system density matrix in the in-
teraction representation Heff(t ) = HS(t ) + HSE(t ), with the
Hamiltonians in the roman font denoting their forms in the
interaction representation. The commutator involving HE(t1)
vanishes due to the partial trace over the environment’s de-
grees of freedom. On the right-hand side, the density matrix at
time t1 can be written as ρ̃(t1) = U (t1, t )ρ̃(t )U †(t1, t ), where
U (t1, t ) denotes the propagator for the system and the environ-
ment pair from time t to t1 in the Hilbert space. The trailing t in
the propagator is omitted for notational simplicity in the rest
of the paper. Starting from the Schrödinger equation, U (t1)
can be expressed as

U (t1) = I − i
∫ t1

t
H (t2)U (t2)dt2,

U (t1) = I − i
∫ t1

t
Heff(t2)U (t2)dt2 − i

∫ t1

t
HE(t2)U (t2)dt2.

(5)

It is assumed that t1 − t � 1
ω1

, 1
ωSE

and the evolution due to
Heff during the interval from t to t2 is negligible; the density
matrix evolves from t to t2 solely under HE with a propagator
denoted by UE(t2). With this approximation Eq. (5) can be
written as

U (t1) ≈ I − i
∫ t1

t
Heff(t2)UE(t2)dt2 − i

∫ t1

t
HE(t2)UE(t2)dt2,

U (t1) ≈ UE(t1) − i
∫ t1

t
Heff(t2)UE(t2)dt2, (6)

where UE(t1) = I − i
∫ t1

t HE(t2)UE(t2)dt2.
It is evident from the expression (6) that the propagator is

finite in the instances of fluctuations (through the presence of
UE) and infinitesimal in Heff (only a first-order appearance).
Substituting Eq. (6) in Eq. (4), we get

ρ̃S(t + �t )

= ρ̃S(t ) − i
∫ t+�t

t
dt1TrE[Heff (t1),UL(t1)ρ̃(t )U †

L (t1)]

−
∫ t+�t

t
dt1

∫ t1

t
dt2TrE[Heff(t1), Heff(t2)UE(t2)ρ̃(t )U †

E (t1)

− UE(t1)ρ̃(t )U †
L (t2)Heff(t2)] + O

(
H3

eff

)
, (7)

where O(H3
eff ) indicates terms of the order of cubic or higher

powers of Heff, which we ignore. Next the Born approximation
is used, i.e., at the beginning of the coarse-graining interval,
the density matrix for the whole ensemble is factorized into
that of the system and the environment, as

ρ(t ) = ρS (t ) ⊗ ρ
eq
E , (8)

where ρ(t ) = ρ̃(t ). The Born approximation and the assump-
tion of the nature of the fluctuation provide the desired regu-
lator in the second order under an ensemble average as

UE(t1)ρ̃(t )U †
E (t2) = ρS(t ) ⊗ ρ

eq
E e−κ2|t1−t2|/2. (9)
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Substituting Eq. (9) in Eq. (7) and performing the regular
course-graining procedure [23], we obtain the FRQME given
in the form

d

dt
ρS(t ) = −i TrE

[
Heff (t ), ρS(t ) ⊗ ρ

eq
E

]sec

−
∫ ∞

0
dτ TrE

[
Heff (t ),

× [
Heff (t − τ ), ρS(t ) ⊗ ρ

eq
E

]]sec
e−|τ |/τc , (10)

where τc = 2/κ2 and the superscript sec stands for secular
approximation that involves ignoring the fast oscillating terms
in the quantum master equation. We note that since Heff

contains the drive term, the DID originates from the double
commutator under the integral in Eq. (10). Equation (10) is in
GKLS form, preserves the trace of the density matrix, and is
completely positive. We note that the above master equation is
derived under the assumption of a timescale separation which
had been used while constructing the propagator. In terms
of the variables used above, the timescale separation can be
written as ω1τc � 1 and ωSEτc � 1, i.e., the characteristic
timescale of the decay of the autocorrelation of the fluctua-
tions (τc) is assumed to be much shorter than the timescale
over which the system evolves.

III. DRIVEN-DISSIPATIVE DYNAMICS
OF A SINGLE QUBIT

To investigate the effect of DID on quantum gate opera-
tions, we apply the FRQME on a single-qubit system coupled
to its local environment. As a particular physical realization of
the qubit, we consider spin-1/2 systems having gyromagnetic
ratio γ and placed in a static, homogeneous magnetic field
B◦ = B◦k̂ and an external resonant circularly polarized drive

of the form B1 = B1[cos(ωt + φ)î + sin(ωt + φ) ĵ] [where ω

is the frequency of the drive, chosen to be equal to the Larmor
frequency of the system (ω◦ = −γ B◦) and at time t = 0, and
B1 makes an angle φ with respect to the x axis] is applied on
the system. In the above, î, ĵ, and k̂ indicate the unit vectors
in the x, y, and z directions, respectively, in a right-handed
coordinate system.

The system-environment coupling can be modeled as a
passive coupling described by a Jaynes-Cummings Hamilto-
nian of the form HSE = ωSE(I+L− + I−L+), where I and L
are the spin angular momentum operators of the system and
the corresponding operators of the local environment, respec-
tively, with I± = (Ix ± iIy) and similar definitions for the L
counterparts. The choice of a Jaynes-Cummings Hamiltonian
over a Caldeira-Leggett form is to account for both the lon-
gitudinal and the transverse relaxation appearing in the relax-
ation superoperator, as shown later [24,25]. We observe that
TrE{L±ρ

eq
E } = 0 leads to vanishing first-order contribution of

HSE to system dynamics. On the other hand, TrE{L±L∓ρ
eq
E } =

(1 ± m)/2 leads to an equilibrium polarization of the system
of m.

An application of the FRQME on this system results in the
equation in the Liouville space

d ρ̂S

dt
= ˆ̂
ρ̂S = [−i ˆ̂L(1)

drive − ˆ̂L(2)
drive − ˆ̂L(2)

system-env

]
ρ̂S, (11)

where −i ˆ̂L(1)
drive is the Liouville superoperator or Liouvillian

for the corresponding −i[HS, ρS] term in the master equation.
We assume that the system-environment coupling does not
appear in the first order and no cross term between HS and

HSE survives the ensemble average. In addition, ˆ̂L(2)
drive and

ˆ̂L(2)
system-env are the second-order drive-induced decoherence

and regular relaxation terms, respectively. With the explicit

form of the complete superoperator, ˆ̂
 in Eq. (11) can be
expressed as

d

dt

⎛
⎜⎝

ρS,11

ρS,12

ρS,21

ρS,22

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

−ω2
1τc

2 − 1−m
2T1

ξ ξ� ω2
1τc

2 + 1+m
2T1

−ξ� −ω2
1τc

2 − 1
T2

η� ξ�

−ξ η −ω2
1τc

2 − 1
T2

ξ
ω2

1τc

2 + 1−m
2T1

−ξ −ξ� −ω2
1τc

2 − 1+m
2T1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎝

ρS,11

ρS,12

ρS,21

ρS,22

⎞
⎟⎠. (12)

This dynamical equation contains three types of terms,
viz., (i) the first-order nutation terms, given by ξ = ieiφω1/2,
where ω1 = −γ B1 is the drive amplitude in the angular
frequency units (the axis of the drive may be chosen by
suitably adjusting φ); (ii) the second-order DID terms on
the diagonal and on the antidiagonal, given by ω2

1τc and
η = e2iφω2

1τc/2, respectively; and (iii) the second-order re-
laxation terms, which include T1 and T2 to denote longitu-
dinal and transverse relaxation times, respectively [16]. The
longitudinal and the transverse relaxation times (T1 and T2,
respectively) are defined to be the characteristic times with
which the expectation values of Iz and I± relax back to their
respective equilibrium values. We note that the cross terms

between HS and HSE vanish since TrE{HSEρ
eq
E } = 0. In the

interaction picture, HSE leads to the Lorentzian forms of
the spectral densities in the expressions of the relaxation
rates with a strength of ω2

SEτc due to the presence of the
regulator exp(−|τ |/τc). We estimate T1 and T2 as proportional
to ω2

SEτc using this model to obtain the dependence of the
relaxation terms on the regulator which appears from the
fluctuations in the environment. The assumption is amply
justified if the only energy levels of the environment con-
tribute significantly to the system dynamics whose energy
separation (ωE in angular frequency units) matches the energy
spacing of the system, in which case the Lorentzian factor
1/(1 + ω2

◦Eτ 2
c ), with ω◦E = ω◦ − ωE and ω◦ ∼ ωE, reduces

to 1.
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In the above, the drive was applied on resonance with the
spin Larmor frequency. If the drive is applied with a resonance
offset �ω, then the strengths of the real and imaginary parts
of the second-order contribution of the drive in a rotating
frame of ω◦ + �ω are given by −ω2

1τc/C and ω2
1�ωτ 2

c /C, re-
spectively, where C = 1 + �ω2τ 2

c . The imaginary component
indicates the dynamic Stark shift or the light shift and the real
part is the DID. As such, the drive-induced dissipation and
the light shifts are nothing but a Kramers-Kronig pair. The
expression of the dynamic Stark shift reduces to the familiar
form of ω2

1/�ω when �ωτc � 1. We note that the DID being
the Kramers-Kronig pair of the light shift is different from the
previously known forms of drive-dependent dissipation and
had been discussed in detail in the work of Chakrabarti and
Bhattacharyya [16].

To validate the FRQME, we use Eq. (12) to analyze a
three-pulse block R3 = {π,−2π, π}, previously described in
Chakrabarti and Bhattacharyya’s work [17]. A straightforward
analysis assuming ω1 � 1

T1
, 1

T2
, which holds for the aforemen-

tioned experiment, shows that after application of the pulse
block, the magnetization, which is proportional to Tr{σzρS}, is
reduced by a factor of e−(Reff +ω2

1τc )T , where T is the duration of
the three-pulse block and Reff denotes 1

T1
+ 1

T2
. We will use the

above assumption in the subsequent calculations as well, since
this does not impose an upper bound on the drive amplitude.
In order to arrive at this factor, Eq. (12) has been consecutively
solved for three successive pulses and finally the z component
of magnetization has been computed. This expression exactly
describes the behavior of the nutating magnetization of the
aforementioned three-pulse block [17].

IV. FIDELITY OF THE HADAMARD GATE

A. Analytical approach

We consider the situation of a single Hadamard gate ap-
plied on a mixed state written in a pseudopure form ρ0 =
(1−m)

2 I + m|0〉〈0|. A Hadamard gate is realized by the uni-
tary propagator UHadamard = eiIy (π/2)e−iIxπ [26]. The practical
realization of this gate on a single spin qubit will require two
square pulses to be applied about the x axis and −y axis for
durations π/ω1 and π/2ω1, respectively. If the system evolves
without any dissipation during the application of the gate, the
final density matrix would be ρ = 1

2 (I + mσx ).
On the other hand, if we consider the dissipative evolution

of the system (from the initial ρ0) as dictated by Eq. (12),
we obtain a mixed-state density matrix ρ ′ = 1

2 (I + ma σx )
at the end of the gate operation, where a = exp[− 3π

2 ( Reff
ω1

+
ω1τc)]. To estimate the departure from the unitary behavior,
we calculate the fidelity using the definition [27,28]

F (ρ, ρ ′) = (
Tr

√√
ρρ ′√ρ

)2
. (13)

The fidelity between the expected density matrix ρ and the
obtained density matrix ρ ′, for this particular case, turns out
to be

F = 1
2 [(1 + m2a) +

√
(1 − m2)(1 − m2a2)]. (14)

FIG. 1. Filled contours showing the fidelity as a function of ω
(s)
1

and τ (s)
c . We note that the maximum value of the fidelity does not

depend on m; for τ (s)
c → 0, we obtain the maximum fidelity to be

1 for all values of m. In this plot, m has been chosen as 0.1 (which
appears only in the initial density matrix). The central vertical grid
at ω

(s)
1 = 1 shows the position of the optimum drive amplitude. For

a particular value of ω
(s)
1 , the value of fidelity increases with the

lowering of τ (s)
c . We note that τ (s)

c → 0 corresponds to the complete
absence of all second-order terms, in which case the evolution of the
qubit is unitary. Under this condition, the fidelity is 1 for all values
of ω1 as shown by the yellow (light gray) region at the bottom of the
plot. The range of values for which a single color has been used in
the plot is shown in the colorbar on the right with the upper and lower
bounds of the range.

The above form of fidelity has a maximum value for an
optimum value of the drive amplitude ω

opt
1 , given by

ω
opt
1 =

√
Reff/τc ≈ ωSE, (15)

where, to obtain the expression (15), a simplifying form
Reff = 1

T1
+ 1

T2
∼ ω2

SEτc is assumed.
To show the dependence of the fidelity on the drive ampli-

tude ω1 in units of ωSE, we rewrite the expression for a as a =
exp{− 3π

2 τ (s)
c (ω(s)

1 + 1/ω
(s)
1 )}, where τ (s)

c = ωSEτc denotes a
scaled value of τc and ω

(s)
1 = ω1/ωSE denotes a scaled value

of ω1. In Fig. 1 the filled contours depict the fidelity of the
Hadamard gate from Eq. (14) for various combinations of τ (s)

c

and ω
(s)
1 . For a given τ (s)

c the maximum fidelity is achieved
for ω

(s)
1 = 1, i.e., for ω1 = ωSE. It is also evident that for

smaller τ (s)
c , the fidelity attains a higher value with a wider

range of the drive amplitude. Therefore, the fidelity attains a
maximum value when the drive amplitude ω1 is of the order
of the system-environment coupling ωSE.

B. Numerical approach

In the previous treatment, we obtained a simplified ex-
pression for the fidelity of the Hadamard gate under a few
simplifying assumptions. In this section, we numerically solve
Eq. (12) for the two pulses of the Hadamard gate without the
aforementioned assumptions.

The fidelity has been calculated numerically using Eq. (13)
and plotted as a function of the scaled variables τ (s)

c and ω
(s)
1
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(a) (b) (c)

FIG. 2. Filled contour plots of fidelity numerically calculated by solving Eq. (12) for the Hadamard gate. The initial density matrix has
been chosen to be the same as for the analytical case. In all three plots, the first-order contributions of the drive is retained. (a) Fidelity with

only the relaxation term in the second order [ ˆ̂L(2)
system-env of Eq. (11)]. The plot shows higher fidelity with a large drive amplitude (large ω

(s)
1 ). For

large ω
(s)
1 , the gate time is short and hence the relaxation acts for a shorter duration. As a result, the fidelity is higher for larger ω

(s)
1 . (b) Fidelity

with only the drive term in the second order [ ˆ̂L(2)
drive of Eq. (11)]. Here the larger ω

(s)
1 results in a strong DID effect and the fidelity decreases.

(c) Effects of both terms. The competition between the two effects results in a peaked behavior for ω
(s)
1 .

in Fig. 2. Equation (12) has been solved numerically with
ωSE = 2π × 102 krad/s and m = 0.1. To analyze the behavior
of the fidelity, we first plot the fidelity by considering only
the relaxation due to system-environment coupling, but no
drive-induced decoherence (as in a standard quantum master
equation). We observe that, in general, the fidelity increases
as we increase ω

(s)
1 , since for larger ω

(s)
1 the gate operation

time is shorter and as a result, the effect of the relaxation is
smaller. For the low-τ (s)

c regime the fidelity reaches the highest
value for smaller-ω(s)

1 values compared to that of the high-τ (s)
c

regime. Next we plot fidelity keeping only the DID, but no
relaxation terms, and find that the fidelity decreases when we
increase ω

(s)
1 . In this case, for the low-τ (s)

c regime the fidelity
remains nearly 1 for higher-ω(s)

1 values compared to that of
the high-τ (s)

c regime. Their combined effects are reflected in
Fig. 2(c) and optimality exists for a certain value of ω

(s)
1 =

1. This behavior corroborates the analytical expression of
fidelity as given in Eq. (14).

V. MEASURE OF NONUNITARITY

In the previous sections, for the calculation of fidelity,
we have used the form of the density matrix which con-
tains the equilibrium polarization m and has a trace equal
to 1. However, the effect of the equilibrium polarization in

the ˆ̂
 matrix in the Liouville space is minuscule under the
assumption of ω1 � 1/T1, 1/T2, which is an experimental
reality in optical or magnetic resonance excitation schemes.
As such, to rid ourselves of the necessity of using a suitable
density matrix for the calculation of the efficacy of gates under
DID and relaxation, we define a new quantity as a measure
of nonunitarity and call it efficiency, E = Tr(U U †)/(2n)2,

where U = e
ˆ̂
T is the propagator in Liouville space, with ˆ̂


given in Eq. (11) and T the duration of the operation, and n
is the number of qubits. The motivation behind introducing
such a new quantity is that it does not depend on the choice
of the initial state; it only produces the amount of nonuni-
tarity emerging from the presence of system-environment
coupling and drive during the implementation of the gate.
For the calculation of the efficiency for a multistep sequence,
the propagator has been constructed from the time-ordered

products of the propagator of individual operations. Using the
same protocol of calculating fidelity numerically, we generate
U and plot the efficiency for the Hadamard gate and other
multiqubit gates in logarithmic scale.

A. Single-qubit gate: Hadamard gate

We have made another attempt to study the nonunitary
behavior of a two-level system (TLS) under the operation of
the Hadamard gate by finding its efficiency. The plots are
shown in Fig. 3. In the first plot, i.e., including only the
relaxation terms and no DID, for a given efficiency E , τ (s)

c is
proportional to ω

(s)
1 with both of the axes being in logarithmic

scale, since E ∼ 1
4 + 3

4 e−3πτ (s)
c /ω

(s)
1 . Thus we expect a linear

contour with a positive slope as shown in Fig. 3(a). On the
other hand, when only the DID is considered but no relaxation
terms, then τ (s)

c is inversely proportional to ω
(s)
1 , since E ∼

1
4 (1 + e−πτ (s)

c ω
(s)
1 + e−2πτ (s)

c ω
(s)
1 + e−3πτ (s)

c ω
(s)
1 ). Hence, we expect

a linear contour with negative slope when both of the axes
are in logarithmic scale as shown in Fig. 3(b). When their
total effect is considered, the nature of the efficiency plot in
Fig. 3(c) shows triangular behavior; fixed efficiency contours
linearly increase with increasing ω

(s)
1 , reach a maximum at

ω
(s)
1 = 1, and then decrease linearly.

B. Two-qubit gate: Controlled-NOT gate

As an example of a two-qubit gate, we investigate the
controlled-NOT (CNOT) gate, which can be realized by the
propagator [29]

UCNOT = e−iI (2)
y (π/2)e−i(I (1)

z +I (2)
z )(π/2)eiI (1)

z I (2)
z πeiI (2)

y (π/2), (16)

where the superscripts on the spin operators indicate the num-
ber of qubits on which the operators act. The qubit Larmor
frequencies are assumed to have a small dispersion which
does not have a noticeable impact on the relaxation terms. The
implementation of the second operation of the sequence (from
right to left) requires a scalar coupling between the qubits of
the form HJ = 2πJI (1)

z I (2)
z and which acts with a duration

1/2J . Figures 4(a) and 4(b) show the calculated efficiencies
for the above sequence for J = 10 and 100 kHz, respectively,
using only the relaxation terms in the second order. Since the
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(a) (b) (c)

FIG. 3. Filled contour plots of efficiency E numerically calculated by solving Eq. (12) for the Hadamard gate. The ˆ̂
k matrix for the kth

pulse has been calculated using the values mentioned in the text and the propagator Uk has been calculated using Uk = exp( ˆ̂
kτk ), where τk is
the duration of the kth pulse. The time-ordered product of Uks provides the total propagator U , which is used for the calculation of efficiency
as defined in the text. In all three plots, the first-order contributions of the drive is retained. (a) Efficiency with only the relaxation term in the

second order [ ˆ̂L(2)
system-env of Eq. (11)]. The plot shows higher efficiency with a large drive amplitude (large ω

(s)
1 ) as in Fig. 2(a). (b) Efficiency

with only the drive term in the second order [ ˆ̂L(2)
drive of Eq. (11)]. Here the larger ω

(s)
1 results in a strong DID effect and the efficiency decreases

linearly in logarithmic scale. (c) Effects of both terms. The competition between the two effects results in a triangular regime for the highest
efficiency.

duration 1/2J is longer in the first case, the relaxation acts for
a longer duration and hence the efficiency is lower for longer
τ (s)

c compared to that of the second case with J = 100 kHz.
Hence, the efficiency drastically falls above τ (s)

c = 10−2 for
J = 10 kHz, shown in Fig. 4(a), in which the decay due to
the relaxation is noticeably stronger. Figure 4(c) shows the
contours of the efficiency with only the DID terms and no
relaxation. The behavior is similar to the Hadamard case
since the drive-induced decoherence behaves in an identical
manner. Figures 4(d) and 4(e) show the filled contours of the

efficiencies including both the DID and the relaxation terms
for J = 10 and 100 kHz, respectively. The first case clearly
inherits the less efficient regime from the relaxation effects
during the longer gate operation time.

C. Three-qubit gate: Toffoli gate

We have done the same treatment for a three-qubit gate, the
Toffoli gate. The propagator required to implement the Toffoli

(a) (b) (c)

(d) (e)

FIG. 4. Filled contours for the efficiency of the CNOT gate as realized by the pulse sequence given by Eq. (16). In all plots the first-order

contribution of the drive is retained. The efficiency with only the relaxation term in the second order [ ˆ̂L(2)
system-env of Eq. (11)] is shown for

(a) ωJ = 10 kHz and (b) ωJ = 100 kHz. The plot shows higher efficiency with a large drive amplitude (large ω
(s)
1 ) as in Fig. 3(a). For a larger

value of ωJ [in (b)] the gate duration is shorter; this results in higher efficiency since the relaxation acts for less time. (c) Efficiency with only

the drive term in the second order [ ˆ̂L(2)
drive of Eq. (11)]. Here the larger ω

(s)
1 results in a strong DID effect and the efficiency decreases linearly in

logarithmic scale as in the case of the Hadamard gate [shown in Fig. 3(b)]. Effects of both terms for (d) ωJ = 10 kHz and (e) ωJ = 100 kHz.
The competition between the two effects results in a triangular regime for the highest efficiency.
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(a) (b) (c)

(d) (e)

FIG. 5. Filled contours for the efficiency of the Toffoli gate as given in Eq. (18). In all plots the first-order contribution of the drive is

retained. The efficiency with only the relaxation term in the second order [ ˆ̂L(2)
system-env of Eq. (11)] is shown for (a) ωJ = 10 kHz and (b) ωJ =

100 kHz. The plot shows higher efficiency with a large drive amplitude (large ω
(s)
1 ) as in Fig. 3(a). For a larger value of ωJ [in (b)] the gate

duration is shorter; this results in higher efficiency since the relaxation acts for less time. (c) Efficiency with only the drive term in the second

order [ ˆ̂L(2)
drive of Eq. (11)]. Here the larger ω

(s)
1 results in a strong DID effect and the efficiency decreases linearly in logarithmic scale as in the

case of the Hadamard gate [shown in Fig. 3(b)]. Effects of both terms for (d) ωJ = 10 kHz and (e) ωJ = 100 kHz. The competition between
the two effects results in a triangular regime for the highest efficiency.

gate is [30]

UToffoli = eiI (3)
x (π/2)e−i(I (1)

z I (2)
z +I (2)

z I (3)
z +I (3)

z I (1)
z )(π/2)

× eiI (3)
x (π/2)e−i(I (1)

z I (2)
z +I (2)

z I (3)
z +I (3)

z I (1)
z )(π/2)

× e−iI (3)
y (π/2)e−i(I (1)

z I (2)
z +I (2)

z I (3)
z +I (3)

z I (1)
z )(π/2)e−iI (3)

y (π/2).

(17)

The second, fourth, and sixth operations are the evolutions
under scalar coupling Hamiltonians given by

H (12)
J + H (23)

J + H (13)
J

= 2π
(
J12I (1)

z I (2)
z + J23I (2)

z I (3)
z + J13I (1)

z I (3)
z

)
. (18)

The duration of the operations under these couplings is ef-
fectively 1/4J , where J is the smallest of the three coupling
constants. Figures 5(a) and 5(b) show the contours of the
efficiency when only the relaxation terms are taken into
account, for J = 10 and 100 kHz, respectively. For smaller
J , the duration of the gate is longer and hence the effect of the
relaxation is stronger, resulting in reduced efficiency of the
gate. The reduced efficiency is indicated by the smaller region
of E ∼ 1 in Fig. 5(a) compared to that in Fig. 5(b). When only
the DID terms are taken into account, but not the relaxation,
the resulting behavior [as shown in Fig. 5(c)] is similar
to the case of a single pulse. The total effects of the DID and
the relaxation terms for J = 10 and 100 kHz are shown in
Figs. 5(d) and 5(e), respectively, which are similar to the final
figures of the CNOT gate [Figs. 4(d) and 4(e)].

VI. DISCUSSION

The speed of a classical computer is specified in terms of
its clock speed. Similarly, for a quantum computer, the period
of Rabi oscillation or nutation defines the time required for a
quantum gate operation. As such, the frequency of Rabi oscil-
lation (ω1 in our work) is effectively the clock speed. Thus our
result indicates that maximum fidelity can be achieved only
for a specific clock speed, which is referred to as the optimal
clock speed of the quantum gates. The optimum value of the
drive amplitude has been shown to be identical for single-
and multiple-qubit gates. The precise form of the optimum
drive amplitude would also depend on the drive-independent
operations used in the gate operation. For example, in the case
of CNOT and Toffoli gates, the relaxation during the evolution
under the qubit-qubit couplings results in a flatter optimality
condition in particular with a weaker-coupling value (smaller
value of J). In such cases, we find (numerically) a flatter
optimality condition for the drive.

While this work specifically uses the FRQME, other
known forms of drive-dependent decay terms, such as the
fourth-order photon-phonon dissipative terms (second order
in the drive and second order in qubit-environment coupling)
as given by Müller and Stace using the Keldysh formalism,
can also be incorporated in this analysis [31,32]. This fourth-
order drive-coupling cross term has the form ω2

1T̃ , where T̃
is a function of the qubit-environment coupling and other
relevant frequencies. We note that the origin and the nature of
DID are different from the aforementioned fourth-order term
since DID does not explicitly contain the system-environment
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coupling. As such, all conclusions drawn above remain
valid, although the form of the optimum value of ω1 would
change.

An external drive on a TLS gives rise to Rabi oscillation in
the first order. In the second order, two instances of the drive
act, at times t1 and t2 (with t1 > t2), with the instances being
a secular pair. For example, suppose that I+ (=Ix + iIy) acts
at time t1 with phase exp(i�ωt1), where �ω = ω − ω◦ (=0 if
the drive is resonant), and its secular pair I− (=Ix − iIy) acts
at time t2 with phase exp(−i�ωt2). This mimics a flip-flop
transition for the system. Between t1 and t2, the environment
evolves under fluctuation and dephases. Ensemble averaging
on the dephasing provides a decay. The mechanism is not
similar to previously known forms of drive-induced dissipa-
tion. Our original work on the fluctuation-regulated quantum
master equation discussed this issue extensively [16]. Our
formalism predicts that the overall contribution should be in
the form of a complex susceptibility, where the real absorptive
part provides a decay and the imaginary dispersive part pro-
vides the shift [16]. The light shift or the Bloch-Siegert shifts
(which are a Kramers-Kronig pair of the DID) are physically
explained as an effective field which adds to the Zeeman
direction to cause a shift in the resonance frequency. On the
other hand, DID is an additional contribution to the lifetime
of the levels of the TLS under consideration.

Earlier, Plenio and Knight obtained an optimal range of
the drive power of laser-driven trapped-ion systems using the
following arguments [33]. On such systems, a lower drive
power results in a longer computation time during which the
system may undergo a spontaneous emission. On the other
hand, a too high laser power leads to ionization. As such, one
obtains a small window of laser power for practical operating
considerations of quantum information processing on such
systems. Later they showed that even for a laser power which
was not strong enough to cause ionization, there might be
leakages to other atomic levels because of the laser field (off-
resonance) acting between the original and the leak level [34].
They found that such leakages did not have any dependence
on the laser power. We note that their analysis is confined to
multilevel trapped-ion systems and any mechanism similar to
DID is not taken into account. On the contrary, we consider
two-level systems without any leakage (no additional levels)
and show that DID and qubit-environment coupling can lead
to an optimality condition.

To implement the gate operation, one may also use a
shaped pulse for which the amplitude, frequency, and phase
may be a function of time. Usually these variations are much
slower compared to the timescale of the fluctuations. We out-
line here two approaches to deal with the shaped pulses. In the
first approach, a shaped pulse can be constructed as a sequence
of narrow square pulses of fixed parameters. For each of these

pulses, one can construct a suitable superoperator ˆ̂
. Sequen-

tial application of respective ˆ̂
’s will lead to the final density
matrix. This approach is particularly suitable for numerical
evaluation of the propagator. In the second approach, which
is more suitable for analytical evaluation of the propagator,

ˆ̂
 in Eq. (11) can simply be expressed as a function of time
since HS has time-dependent parameters. In such cases, the

finite-time propagator is given by T exp[
∫ tf

ti
dt ′ ˆ̂
(t ′)], where

ti and tf indicate the time instances of the beginning and the
end of the shaped pulse, respectively, and T is the Dyson
time-ordering operator.

It is evident that the clock speed of the highest-fidelity
single-qubit and multiqubit operations has an optimum value.
For multiqubit systems, one encounters one more complexity,
which we discuss here. It is known that the time required for
an arbitrary transitional-selective pulse, and hence the overall
operation time of a specific task in quantum computation
on a multiqubit network, is limited by the strength of the
qubit-qubit coupling (J) [35]. To be adequately selective,
a square pulse must have a duration τp which is inversely
proportional to J , i.e., τp � 1

J . This in turn indicates that
the drive amplitude ω1 must be less than or of the order
of J (keeping the flip angle constant). Therefore, to achieve
maximum fidelity on such a multiqubit system, one must
satisfy the condition ω

opt
1 ∼ ωSE � J . Such a restriction may

not be achievable for an architecture based on nuclear spins,
but may be engineered in quantum dots or superconducting
flux qubits.

VII. CONCLUSION

We have shown that the speeding up of gate operations on
single or multiple qubits by increasing the drive amplitude
may have detrimental effects on the fidelity or the efficiency
of the desired operation. There are two competing processes
which affect the fidelity, viz., relaxation from the qubit-
environment coupling and the DID. For a drive amplitude
much lower than the optimum value, the relaxation terms
dominate and the increase in the amplitude of the drive (ω1)
results in faster gate operation with higher fidelity. In contrast,
for a drive amplitude greater than the optimum value, the
DID processes dominate and reduce the fidelity. Therefore,
an optimum value for ω1 exists for which the fidelity of
a quantum operation reaches its maximum. The optimum
value of the drive amplitude is proportional to the strength
of the qubit-environment coupling. Consequently, faster gate
operations with maximum fidelity would be aided by better
isolation of the qubit network from the environmental influ-
ences, as one expects intuitively. Finally, we conclude that
the competition between the speed of a quantum gate and its
fidelity is an intrinsic feature for open quantum systems. We
envisage that the notion of drive-induced decoherence would
play an important role in realistic implementation of fast and
high-fidelity quantum gates.
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