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We study theoretically the interaction between two photons in a nonlinear cavity. The photons are absorbed
into the cavity by an effective tuning of its input-output coupling via external control of a coupling to a second,
strongly output-coupled cavity mode. Such “dynamically coupled” cavities, which can be implemented using
bulk χ (2) and χ (3) nonlinearities, enable incoming photon wave packets to be absorbed into the cavity with high
fidelity when the duration of the control is similar to that of the wave packets. Further, this configuration can be
used to avoid limitations in the photon-photon interaction time set by the delay-bandwidth product of passive
cavities and enables the elimination of wave-packet distortions caused by dispersive cavity transmission and
reflection. We consider three kinds of nonlinearities, two arising from χ (2) and χ (3) materials and one due to
an interaction with a two-level emitter. To analyze the input and output of few-photon wave packets, we use
a Schrödinger-picture formalism in which traveling-wave fields are discretized into infinitesimal time bins. We
suggest that dynamically coupled cavities provide a very useful tool for improving the performance of quantum
devices relying on cavity-enhanced light-matter interactions such as single-photon sources and atomlike quantum
memories with photon interfaces. As an example, we present simulation results showing that high-fidelity two-
qubit entangling gates may be constructed using any of the considered nonlinear interactions.
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I. INTRODUCTION

Photons make excellent flying qubits due to the low deco-
herence and loss associated with their transport over standard
telecommunication fibers. It therefore seems unavoidable that
they will play a key role as carriers of quantum information
for secure communication networks and distributed quantum
computing [1]. The lack of direct interactions between pho-
tons makes it very challenging to perform universal quantum
information processing using photonic qubits. Indirect inter-
actions may be mediated by materials with optical nonlin-
earities but these are usually very weak at optical frequen-
cies. Nevertheless, progress in the design and fabrication of
nanocavities with very small mode volumes and very large
lifetimes [2–6] has reduced the optical energy required to
observe nonlinear interactions close to the single-photon level.
To fully exploit the enhanced light-matter interaction inside
the cavity, it is necessary for the entire energy of an incoming
wave packet to reside in the cavity throughout its lifetime.
However, delay-bandwidth trade-offs [7] put bounds on the
energy from an incoming wave packet that can reside inside a
passive cavity throughout its lifetime. For instance, a rising
exponential wave packet may be absorbed completely into
a cavity, but only for an infinitesimal time, such that the
average energy is smaller than the total incoming energy. The
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delay-bandwidth limit may be broken using active controls to
modify the cavity-waveguide coupling at a timescale smaller
than the wave-packet temporal width. Such dynamically cou-
pled cavities have been demonstrated in photonic crystals
[8] and ring resonators [9]. These demonstrations used short
optical pump pulses to generate electric charge carriers in
the semiconductor material forming the cavities. The free
carrier absorption loss associated with this method degrades
the intrinsic quality factor, QL, which motivates the search for
an alternative approach.

Here, we use a method to achieve dynamic coupling that
is based on the parametric nonlinearity of cavity materials
(χ (2) or χ (3)) and therefore avoids loss. Two strong optical
control fields may couple two cavity modes via so-called
Bragg-scattering four-wave mixing (FWM) in χ (3) materials
[10–12] and a single control field may do the same in a
χ (2) material [5,13], as illustrated with arrows in Fig. 1(b).
Matching the path-length imbalance of the Mach-Zehnder
interferometer coupling region [see Fig. 1(a)] to the round-
trip length of the ring causes destructive interference at ωb

(no coupling) and constructive interference at ωa (maximal
coupling); see Fig. 1(b). External control over the coupling
between modes a and b therefore introduces a time-dependent
effective coupling between mode b and the waveguide [12,14].
In other words, photons may be loaded in and out of mode b
via the strongly coupled mode, a, due to their time-dependent
mutual coupling. We note that this method has also been
proposed to implement so-called quantum pulse gates [15].
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FIG. 1. (a) Ring resonator with a Mach-Zehnder interferometer
coupling region for frequency-dependent cavity-waveguide coupling
rate. (b) Spectra of the incoming photon wave packet (top), cavity
modes a (oscillating at ωa) and b (oscillating at ωb) coupled via
external control fields (center), and cavity-waveguide coupling rate
(bottom).

We succinctly review a Schrödinger picture, discrete-time
formalism for treating input and output from optical cavi-
ties (equivalent to the well-known Heisenberg-picture input-
output formalism [16–18]), and show how it can be used to
treat the input-output of one- and two-photon wave packets
into and out of dynamically coupled nonlinear cavities. We
suggest that dynamically coupled cavities would be useful for
a range of quantum applications relying on cavity-enhanced
light-matter interaction, and specifically use the formalism
to calculate the fidelity of two-qubit gates for traveling-wave
photons.

The method we develop here for treating the effect of
localized systems on few-photon wave packets is not the first.
The basic formalism for this scattering problem for Marko-
vian systems is input-output theory [16,17]. While scattering
of one or two photons from sufficiently simple systems can
be solved analytically [19–29], previous numerical methods
can be divided into two types. The most direct is essentially
a brute-force approach in which the field is discretized and
the full state of the system and field is simulated [30–32].
The second method, derived from input-output theory for
general systems by Caneva et al. [33] and Trivadi et al.
[34], involves calculating the “scattering matrix” (or Green’s
function-impulse response) that maps δ-function input wave
packets to output wave packets. For an N-photon wave packet,
the scattering “matrix” is a function of 2N variables, and
for a given input the output is calculated by integrating it
over the input wave packet. This method is more numerically
efficient than the brute-force method because the scattering
matrix can be determined by solving the equations of motion
of the system alone [33,34]. The method we present here is
somewhat more efficient numerically than the above method.
We derive equations of motion that are driven by the input
wave packet(s), and the solutions of these for a set of shifted
times gives the output wave packet(s). This requires a similar
amount of numerical overhead as the calculation of the scat-
tering matrix, and thus avoids the final step of integrating the
scattering matrix over the input wave packet(s) to determine
the output. Our equations are derived from a Schrödinger-
picture version of input-output theory and correspond to a
diagram that describes the various “pathways” that photons
can take by being absorbed and emitted from the system. They
thus provide a more detailed understanding of the dynamics

of the scattering process than previous methods. The disad-
vantage of our method is that more work is required to derive
the equations of motion than for the scattering method. We
also note that if one wishes to calculate the output for a large
number of different inputs, there will be a point at which it will
be more efficient to calculate the scattering matrix. Finally, we
note that Baragiola et al. [35] have derived master equations
describing the evolution of Markovian systems driven by N-
photon wave packets, although they did not provide a method
to obtain the output wave packets.

This article is organized as follows: Section II describes
the discrete-time formalism and Sec. III elucidates the Hamil-
tonians that describe our nonlinear cavity modes. In Sec. IV,
we consider the linear regime and examine the dynamics of
the cavity modes under the controlled coupling. In Sec. V
we present analytic solutions for the control fields required
to absorb and emit wave packets with predefined shapes and
consider a specific example in which the wave packets are
Gaussian. Section VI contains a description of three types
of nonlinear interactions, χ (2), χ (3), and two-level emitters
(TLEs), and considers their application to controlled-phase
(C-phase) gates. Finally, we conclude with a discussion of the
limitations of our model and suggest other quantum applica-
tions that could benefit from dynamically coupled cavities.

II. DISCRETE-TIME FORMALISM

In our analysis of the dynamics of photons scattering off
a system driven by external control fields, we discretize the
traveling-wave field into time bins of duration �t as illustrated
in Fig. 2 [36–38]. The time axis may be thought of as a
conveyor belt and time evolution corresponds to dragging this
conveyor belt past the fixed system one bin at a time. The
discretization involves introducing new field operators

ŵ(tk ) = ŵ(k�t ) ≡ ŵk√
�t

with [ŵ j, ŵ
†
k ] = δ jk, (1)

where ŵ(tk ) is the continuous-time annihilation operator that
removes a photon from the waveguide at time tk =k�t . The
operator ŵk is the discrete-time counterpart of ŵ(tk ) that
removes a photon from the kth time bin. The factor of 1/

√
�t

FIG. 2. Illustration of the discrete time formalism. The time axis
for the traveling-wave field is divided into discrete bins and time
evolution is modeled by shifting the time axis from left to right.
The system interacts with one time bin at a time, modeling a point-
interaction with the field as is standard in the input-output formalism
for quantum systems.
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allows ŵ(tk ) to have the canonical commutation relation,
[ŵ(t j ), ŵ†(tk )]=δ(t j − tk ), as �t → 0.

For a single-photon input with a wave packet described by
ξin(t ), the continuous and discrete descriptions are

|ψin〉 =
∫ tN

t0

dtξin(t )ŵ†(t )|∅〉 ≈
N∑

k=1

√
�tξ in

k ŵ
†
k |∅〉, (2)

in which
∫ tN

t0
|ξin(t )|2 = 1 so the state is normalized, ξ in

k =
ξin(tk ), and |∅〉 denotes the vacuum state of the waveguide.
At any time step, n (see Fig. 2), a photon in bin k, is
referred to as an input photon if k > n and we write the
corresponding state of the field as ŵ

†
k |∅〉≡|1k〉. Similarly, if

k � n, the photon is referred to as an output photon and we
denote the corresponding state of the field by |1k〉. A system
consisting of M cavity modes is described by a state |ψsys〉=
ψnanb...nM (t )|na〉|nb〉 . . . |nM〉, where, e.g., na is the number of
photons in mode a (oscillating at ωa); see Fig. 1.

We use the Schrödinger picture to derive equations of
motion for the time-dependent state coefficients. The unitary
time evolution operator describing one time step from tn−1 to
tn in Fig. 2 is

Ûn = exp
(
− i

h̄
Ĥn�t

)
=

∞∑
m=0

1

m!

(
− i

h̄
Ĥn�t

)m
, (3)

such that the updated state is

|ψn〉 = Ûn|ψn−1〉, (4)

with Ĥn being the Hamiltonian describing the system and its
interaction with the waveguide at time step n. In the next
section, we explain the model used to describe the system
and its interaction with the waveguide and additional loss
channels.

III. MODEL

A model for the complete system consists of a specification
of the Hamiltonian in Eq. (3). It is assumed that the interaction
between the system and waveguide occurs at a singular spatial
point, which corresponds to interaction only with bin n at
time tn. It is therefore convenient to think of N different
Hamiltonians, Ĥn, each acting only during the nth time step.

In our analysis, the system in Fig. 2 contains up to three
cavity modes and one TLE. Only mode a is coupled to the
waveguide in order to load and unload photons into and out
of mode b (oscillating at ωb); see Fig. 1. Our choice of
cavity mode configurations is motivated by the type of photon-
photon interaction and application (C-phase gate) that we are
considering. For a χ (3) nonlinearity, we consider the photon-
number-dependent phase acquired by the field in mode b
through self-phase modulation. For a χ (2) nonlinearity, we
consider an additional mode, c (oscillating at ωc =2ωb), which
is coupled to mode b through second harmonic generation
(SHG). Two photons loaded into mode b acquire a π -phase
shift by undergoing one Rabi oscillation (turning into one
photon in mode c and back to two photons in mode b). A
single photon in mode b does not acquire any phase because
SHG requires at least two photons. For a TLE, we again
consider a third mode (oscillating at ωc with |ωc−ωb| 	=

|ωb−ωa|), which is coupled to the TLE. In this case, the
acquired phase of the field in mode c is photon number
dependent since the resonance experiences an energy-shift
proportional to

√
ng for n photons and a TLE-cavity coupling

rate, g.
The self-energy terms of the system Hamiltonian in a

rotating frame (also know as the interaction picture; see
Appendix A) are

Ĥ0 = h̄δaâ†â + h̄δbb̂†b̂ + h̄δcĉ†ĉ + h̄δeσ̂z, (5)

where â, b̂, and ĉ annihilate a photon from modes a, b, and
c. The operator σ̂z =|e〉〈e|, with |e〉 being the excited state
of a TLE coupled to mode c. The detunings, δn, are used to
account for discrepancies between energy levels of the system
and the incoming photons and control fields as described in
Appendix A.

Coupling between the waveguide and mode a is described
by the Hamiltonian [37]

Ĥ cav−wg
n = ih̄

√
γ

�t
(â†ŵn − âŵ†

n ), (6)

where γ is the coupling rate.
As mentioned above, a dynamic cavity-waveguide cou-

pling is established by coupling two cavity modes, one
strongly coupled and one decoupled from the waveguide, via
nonlinear interactions driven by external control fields. In
materials with a third-order nonlinearity, χ (3), the coupling
Hamiltonian is

Ĥ cav−cav
n = h̄χ3( p̂†1 p̂2â†b̂ + p̂†2 p̂1b̂†â), (7)

The operators p̂1 and p̂2 annihilate photons from two pump
modes far detuned from modes a, b, and c. The pump fields are
treated classically by taking expectation values and making
the substitution [39]

χ3〈p̂†2 p̂1〉 = χ3α
∗
2 (tn)α1(tn) ≡ �(tn), (8)

where αn is the eigenvalue of the annihilation operator p̂n and
�(tn) is the complex-valued control field. With the classical
control field, Eq. (7) reads

Ĥ cav−cav
n = h̄(�∗

nâ†b̂ + �nb̂†â), (9)

which now describes a linear coupling between modes a and b
driven by the time-dependent control field, �(t ). Note that in
the case of a TLE nonlinearity, we introduce a second control
field, (t ), that couples modes b and c using pump modes p1

and another mode p3; see Appendix A.
For χ (3) materials, we must also include the cross-phase

modulation caused by the pump fields on modes a, b, and c
described by the Hamiltonian

ĤXPM,p
n = h̄χ3

2∑
m=1

p̂†m p̂m(â†â + b̂†b̂ + ĉ†ĉ)

→ 2h̄|�n|(â†â + b̂†b̂ + ĉ†ĉ), (10)

where we have assumed χ3〈p̂†2 p̂2〉=χ3〈p̂†1 p̂1〉=|�n|, which
means that the optical energy in each pump mode is identical
at all times.

In a χ (2) material, the cavity-cavity coupling arises from
the Hamiltonian

Ĥ cav−cav
n = h̄χ2( p̂†â†b̂ + p̂b̂†â). (11)
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Again, we describe it classically by

χ2〈p̂〉=χ2αp(tn) ≡ �n. (12)

The coupling Hamiltonian expressed in terms of the classical
control field is therefore given by Eq. (9) for both second-
and third-order nonlinear materials. There is no cross-phase
modulation term in the Hamiltonian for a χ (2) material (un-
less a DC electric field is applied), so the contribution from
Eq. (10) should be omitted in that case.

The Hamiltonian describing the three different types of
nonlinear materials are

ĤXPM+ĤSPM = h̄χ3[â†âb̂†b̂ + b̂†b̂ĉ†ĉ]

+ h̄χ3

4

∑
q̂

(q̂†q̂−1)q̂†q̂, (13a)

ĤSHG = h̄χ2(ĉb̂†b̂† + ĉ†b̂b̂), (13b)

ĤTLE = h̄(gĉ†σ̂− + g∗ĉσ̂+). (13c)

Equation (13a) describes cross- (XPM) and self-phase modu-
lation (SPM) in materials with a third-order nonlinearity (note
that q̂∈{â, b̂, ĉ}). Equation (13b) describes second harmonic
generation (SHG) in materials with second-order nonlineari-
ties. Equation (13c) describes the interaction between photons
in mode c and a two-level emitter, where g is the coupling rate,
σ̂− ≡|g〉〈e|, and σ̂+ ≡|e〉〈g|, where |g〉 and |e〉 are the ground
and excited states of the TLE. Note that not all possible
combinations of modes are considered in (13), but only those
included in the protocols for photon-photon interactions that
we consider here.

IV. LINEAR DYNAMICS

In this section, we derive equations of motion including
only the linear dynamics. We start with the simplest case of
one photon coupling to one cavity mode to build intuition
about the derivation procedure. Then, we consider one photon
coupling to a cavity with two modes, and finally two photons
coupling to a cavity with two modes. Having derived equa-
tions of motion when the Hamiltonian is linear, it is fairly
straightforward to add nonlinear interactions and make the
appropriate additions to the equations, which we do in Sec. VI.

A. One cavity mode and one photon

Let us begin by considering a single input photon coupling
to one cavity mode. The relevant terms of the Hamiltonian are

Ĥ (1)
n = h̄δaâ†â + ih̄

√
γ

�t
(â†ŵn − âŵ†

n ). (14)

Keeping only terms to first order in �t , the corresponding
time-evolution operator is

Û (1)
n ≈ Î +

√
γ�t (â†ŵn − âŵ†

n ) − γ

2
�t â†âŵnŵ

†
n

− iδa�t â†â. (15)

Note that we omitted the term γ /2�t ââ†ŵ†
nŵn because it

results in terms proportional to �t3/2 when acting on states

with the photon in the waveguide. The state at time step n is

|ψn〉 =
N∑

k=n+1

ξ in
k

√
�t |0〉|1k〉 +

n∑
k=1

ξ out
k

√
�t |0〉|1k〉

+ψ1(n)|1〉|∅〉. (16)

The states |0〉|1k〉 and |0〉|1k〉 correspond to an empty cavity
and a photon in bin k on the input (k > n) and output (k � n)
sides, respectively. The state corresponding to a photon in the
cavity has the coefficient ψ1(n). In Appendix B, we derive
the equation of motion for ψ1(t ) and the input-output relation
connecting ξout (t ) to ξin(t )

ψ̇1(t ) = −
(

iδa + γ

2

)
ψ1(t ) + √

γ ξin(t ), (17a)

ξout (t ) = ξin(t ) − √
γψ1(t ). (17b)

These equations have the same form as those derived clas-
sically using arguments of energy conservation and time-
reversal symmetry [40]. They also have the same form as
the Heisenberg equations of motion of the usual input-output
formalism [41].

B. Loss

At this stage we consider the effect of loss through cou-
pling of the system to a heat bath at zero temperature. It may
be conveniently modeled using an additional waveguide with
a vacuum input. If the annihilation operator that removes a
photon from the bath at time tn is l̂n, then the time-evolution
operator has the additional terms

Û loss
n =

∑
q̂

[
√

γL�t (q̂† l̂n − q̂l̂†n ) − γL

2
�t q̂†q̂l̂nl̂†n ], (18)

where q̂ represents all the cavity modes (we assume they
have identical loss rates, γL). If we ignore all states of the
loss channel except the vacuum, Eq. (18) shows that a term,
−nγL/2, is added to all decay terms (with n photons in the
cavity mode), such that the decay term in Eq. (17a) would
have the coefficient −(γ +γL )/2. We therefore define the total
coupling rate, �=γ +γL. If we kept track of the state of the
heat bath, B, the complete state after time evolution is

|�〉 = |θ0〉|0B〉 + |θ1〉|1B〉 + · · · + |θN 〉|NB〉, (19)

where |nB〉 is a Fock state of the bath with n photons and N
is the total number of incident photons. Our calculation only
considers the state without loss, |ψout〉 ≡ |θ0〉, which is not
normalized as seen from Eq. (19). The density operator is ρ̂ =
|�〉〈�| and the reduced density operator is found by tracing
out the bath

ρ̂s = Trbath[ρ̂] =
N∑

mB=0

〈mB|ρ̂|mB〉 =
N∑

n=0

|θn〉〈θn|. (20)

If |μ0〉 is the desired output state, the state fidelity is defined
as [42]

Fs ≡ 〈μ0|ρ̂s|μ0〉 = |〈μ0|ψout〉|2 +
N∑

n=1

|〈μ0|θn〉|2. (21)
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If we denote the unnormalized (no-loss) output state (the
output state that we calculate) when there are N input photons
by |ψ (N )

out 〉, and define the “N -photon state fidelity” by〈
μ0

∣∣ψ (N )
out

〉 = √
FN eiϑn , (22)

then FN is a lower bound on the fidelity, Fs, as seen from
Eq. (21).

The one- and two-photon output states are given by

∣∣ψ (1)
out

〉 =
∫ tN

t0

dtξout (t )ŵ†(t )|∅〉, (23a)

∣∣ψ (2)
out

〉 =
∫ tN

t0

∫ tN

t0

dtmdtnξout (tm, tn)ŵ†(tm)ŵ†(tn)|∅〉, (23b)

so that the overlaps in Eq. (22) are

〈
μ0

∣∣ψ (1)
out

〉=∫ tN

t0

ξout (t )ξμ(t )∗dt, (24)

〈
μ0

∣∣ψ (2)
out

〉=∫ tN

t0

∫ tN

t0

ξout(tm, tn)ξμ(tn)∗ξμ(tm)∗dtmdtn, (25)

where we have assumed that |μ0〉 for two-photon inputs is a
separable state with a wave packet, ξμ(t ).

If it is known that all input photons were present in the
output state (such knowledge could be obtained by detection),
it corresponds to projecting the state |�〉 onto the zero-loss
subspace

|�P〉 = (|0B〉〈0B|)|�〉√〈�|(|0B〉〈0B|)|�〉 = |ψout〉|0B〉√〈ψout|ψout〉
. (26)

The probability of losing at least one photon is PL =1−
〈ψout|ψout〉. If we define the projected state of the considered
system as the renormalized state, |ψP〉=|ψout〉/〈ψout|ψout〉,
it may be understood as the output state conditioned on the
knowledge that no photons were lost. We may then define the
conditional fidelity

FN ≡ ∣∣〈μ0

∣∣ψ (N )
P

〉∣∣2 = FN

1 − PL
, (27)

Eq. (27) may be interpreted using Baye’s rule, P(A|B)=
P(A, B)/P(B), where A means “ξμ and ξout have the same
shape” and B means “no photons were lost.” FN is useful
because it determines the visibility of quantum interference
between output photons and other photons that did not scatter
off a dynamically coupled cavity.

Since the calculation of |ψout〉 leads to a lower bound
on the fidelity of output states, we simply include the loss
term proportional to γL in all the equations of motion in the
following sections.

C. Two cavity modes and one photon

For two cavity modes and a χ (3) material, the Hamiltonian
describing the linear dynamics is

Ĥ (2)
n = h̄δaâ†â+ h̄δbb̂†b̂+ih̄

√
γ

�t
(â†ŵn − âŵ†

n )

+ h̄(�∗
nâ†b̂ + �nb̂†â) + 2h̄|�n|(â†â + b̂†b̂). (28)

The corresponding time-evolution operator is

Û (2)
n ≈ Î +

√
γ�t (â†ŵn − âŵ†

n ) − γ

2
�t â†âŵnŵ

†
n

− i�t (�∗
nâ†b̂ + �nb̂†â) − i�t (δa + 2|�n|)â†â

− i�t (δb + 2|�n|)b̂†b̂. (29)

Note that we have omitted the loss terms from Eq. (18), but
we will include them in the equations of motion below. The
state at time step n is

|ψn〉 =
N∑

k=n+1

ξ in
k

√
�t |00〉|1k〉 +

n∑
k=1

ξ out
k

√
�t |00〉|1k〉

+ψ10(n)|10〉|∅〉 + ψ01(n)|01〉|∅〉, (30)

where |01〉≡|0a〉|1b〉 is the state with one photon in mode
b. In Appendix C, we derive the equations of motion for
the coefficients ψ10(t ) and ψ01(t ) along with the input-output
relation

ψ̇10 = −
(

iδa + �

2
+ i2|�|

)
ψ10 − i�∗ψ01 + √

γ ξin, (31a)

ψ̇01 = −
(

iδb + γL

2
+ i2|�|

)
ψ01 − i�ψ10, (31b)

ξout = ξin − √
γψ10. (31c)

Note that we have not explicitly written the time dependence
of the functions in Eq. (31).

D. Two cavity modes and two identical photons

The analysis becomes significantly more complicated for
two input photons, so we find it beneficial to map out all
the different paths they may take from input to output and
the different types of states generated in the process; see
Fig. 3. Let us go through the layers of the map from left to
right and write down the dynamical equations governing the
Schrödinger coefficients of the states in each layer. The first
layer only contains the input state

|ψ0〉 =
√

2
N∑

j=1

N∑
k> j

ξ in
j ξ in

k �t |00〉|1 j1k〉. (32)

Note that the summation over k starts at j in Eq. (32) so that
the indistinguishable states |1 j1k〉 and |1k1 j〉 are only counted
once in the summations. In Appendix D, we prove that the
factor of

√
2 ensures that the state is normalized when the

integral of |ξin(t )|2 equals 1. We note that derivations of all
the equations of motion for coefficients of the Schrödinger
picture state in this section may be found in Appendix D.

One of the two photons in layer 1 may be absorbed giving
rise to states in layer 2 with one photon in mode a or b.
The dynamical equations for the coefficients corresponding
to these states are

ψ̇
(2)
10 = −

(
iδa+ �

2
+i2|�|

)
ψ

(2)
10 − i�∗ψ (2)

01 +
√

2
√

γ ξin, (33a)

ψ̇
(2)
01 = −

(
iδb+ γL

2
+i2|�|

)
ψ

(2)
01 −i�ψ

(2)
10 , (33b)

where we use the superscript (2) to signify that the driving
term in Eq. (33a) originates from two input photons, which
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FIG. 3. Map of states generated with two cavity modes and two
input photons and paths from input to output. Green arrows represent
absorption of a photon into mode a. Red arrows represent emission
into the waveguide in bin m. Blue arrows represent a photon passing
by the system without interacting in time bin m. Black arrows
indicate the interaction between modes a and b driven by the external
control fields. There are five vertical layers going from left to right.

is why it contains a factor of
√

2 relative to Eq. (31a). A
convenient feature of the map in Fig. 3 is that the couplings
represented by black arrows turn up in the equations of motion
as coupling terms proportional to the control field, �(t ), and
therefore serves to check whether all the dynamics is included.

The state |00〉|1k1m〉 in layer 2 originates from direct
passage of one of the input photons at time tm, while in layer
3 it originates from absorption and subsequent emission. If
the photon remaining on the input side is later absorbed, it
gives rise to states |10〉|1m〉 and |01〉|1m〉 in layer 3 or 4.
The dynamical equations for the coefficients corresponding
to these states are

ψ̇
(1)
10 (tm, t ) = −

[
iδa+ �

2
+i2|�(t )|

]
ψ

(1)
10 (tm, t )

− i�∗ψ (1)
01 (tm, t ) + √

γ ξin(t ) (34a)

ψ̇
(1)
01 (tm, t ) = −

[
iδb+ γL

2
+i2|�(t )|

]
ψ

(1)
01 (tm, t )

− i�ψ
(1)
10 (tm, t ), (34b)

where the superscript (1) signifies that Eq. (34a) is driven
by a single input photon. The coefficients ψ

(1)
10 and ψ

(1)
01 are

functions of two times, tm being the initial time at which
the state |00〉|1k1m〉 was created and t � tm describing the
subsequent evolution of the coefficients. The initial condition
of Eq. (34) is ψ

(1)
10 (tm, tm)=ψ

(1)
01 (tm, tm)=0 since the system

is in state |00〉 at time tm.
States in layer 3 with two photons in the system have

coefficients with the following equations of motion:

ψ̇20 = −(i2δa+� + i4|�|)ψ20 − i
√

2�∗ψ11 +
√

2γψ
(2)
10 ξin,

(35a)

ψ̇11 = −
[

i(δa+δb) + � + γL

2
+i4|�|

]
ψ11

− i
√

2(�ψ20+�∗ψ02)+√
γψ

(2)
01 ξin, (35b)

ψ̇02 = −(i2δb + γL +i4|�|)ψ02−i
√

2�ψ11. (35c)

The initial conditions are ψ20(0)=ψ11(0)=ψ02(0)=0.
There are other paths leading to the states |10〉|1m〉 and

|01〉|1m〉 than those described by the dynamics in Eq. (34). It
could either be from absorption of the first photon followed
by direct passage of the second photon or emission from
mode a while the state is |20〉|∅〉 or |11〉|∅〉. We use different
coefficients for the state originating from these paths because
their dynamical equations do not contain driving terms from
input photons

ψ̇
(0)
10 (tm, t ) = −

[
iδa+ �

2
+ i2|�(t )|

]
ψ

(0)
10 (tm, t )

− i�(t )∗ψ (0)
01 (tm, t ), (36a)

ψ̇
(0)
01 (tm, t ) = −

[
iδb+ γL

2
+ i2|�(t )|

]
ψ

(0)
01 (tm, t )

− i�(t )ψ (0)
10 (tm, t ). (36b)

There are two sets of initial conditions for Eq. (36) depend-
ing on whether the dynamics originated from the forma-
tion of state |10〉|1m〉 or |01〉|1m〉 at time tm. If the photon
started in mode a, the initial condition is ψ

(0)
10 (tm, tm)=1

and ψ
(0)
01 (tm, tm)=0, and we define A10 ≡ ψ

(0)
10 and A01 ≡

ψ
(0)
01 . If the photon started in mode b, the initial condition is

ψ
(0)
10 (tm, tm)=0 and ψ

(0)
01 (tm, tm)=1, and we define B10 ≡ ψ

(0)
10

and B01 ≡ ψ
(0)
01 .

Figure 3 reveals that there are eight distinct paths from in-
put to output so the coefficient of the output state, |00〉|1m1n〉,
should contain eight terms:

ξout (tm, t )

= 1√
2

[γψ11(tm)B10(tm, t ) +
√

2γψ20(tm)A10(tm, t )

−√
γψ

(2)
01 (tm)ξ (tm)B10(tm, t )

−√
γψ

(2)
10 (tm)ξ (tm)A10(tm, t ) − √

γψ
(2)
10 (tm)ξ (t )

+ γψ
(2)
10 (tm)ψ (1)

10 (tm, t )+
√

2ξ (tm)ξ (t)

−
√

2γ ξ (tm)ψ (1)
10 (tm, t )], (37)

where we omitted the subscript of ξin for brevity. The first
term in Eq. (37) corresponds to the upper path in Fig. 3, the
second term to the path immediately below, and so forth. Note
that tm � t in Eq. (37) and ξout (tm, t )=ξout (t, tm) follows from
the indistinguishability of the photons. To calculate the output
state in Eq. (37), we solve the above equations of motion for
N different initial conditions corresponding to all the time
bins in Fig. 2.

V. ABSORBING AND EMITTING WAVE PACKETS
VIA DYNAMIC COUPLING

In this section, we find analytic solutions for the control
fields that allow absorption and emission of wave packets
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with known shapes. We consider a specific example of
Gaussian wave packets and show by numerical integration
of Eq. (31) that the fidelity of the absorption and emission
process approaches unity very rapidly as the ratio between
the cavity-waveguide coupling, γ , and the wave packet
bandwidth, �G , increases.

A. Absorption

For the absorption process, the initial condition of Eq.
(31) is ψ10(t0)=ψ01(t0)=0. We use a subscript i (for in) on
the control function, �i(t ). The goal is to determine �i(t )
such that a single incoming photon with wave packet ξin(t )
is absorbed into cavity mode b. Since �i is complex valued,
we write it as �i(t ) ≡ |�i(t )| exp[iφi(t )]. In Appendix E, we
find the solution for a material with a third-order nonlinearity:

|�i(t )| = | fi(t )|e− γLt
2

|ξin(t )|
√

2
∫ t

t0
fi(s)ds − 4|ξin(t )|2eγLt

, (38a)

φi(t ) = −δbt − 2
∫ t

t0

|�i(s)|ds − arg(ξin )

+ tan−1

[
fi sin(θi) − gi cos(θi )

fi cos(θi ) + gi sin(θi )

]
, (38b)

where

fi(t ) =
[
γ − γL

2
ξin(t ) − ξ̇in(t )

]
ξin(t )∗eγLt , (39a)

gi(t ) = −2|�i(t )||ξin(t )|2eγLt , (39b)

θi(t ) = −1

2

∫ t

t0

gi(s)∫ s
t0

fi(z)dz
ds. (39c)

Note that we have assumed that ξin does not have a time-
dependent phase, such that fi and gi are real functions. It is
straightforward to generalize this to chirped pulses with time-
dependent phases by redefining fi and gi. We also assumed
δa =0 above.

In the case of a material with a second-order nonlinearity,
there is no cross-phase modulation from the control field, so
gi =0 and the solution reduces to

|�i(t )| = | fi(t )|e− γLt
2

|ξin(t )|
√

2
∫ t

t0
fi(s)ds

, (40a)

φi(t ) = −δbt − arg(ξin ), (40b)

with fi(t ) still given by Eq. (39a).

B. Emission

Without any driving field, the equations of motion are
found by setting ξin =0 in Eq. (31)

ψ̇10 =
(

−�

2
− i2|�o|

)
ψ10 − i|�o|e−iφoψ01, (41a)

ψ̇01 =
(
−γL

2
− i2|�o|

)
ψ01 − i|�o|eiφoψ10, (41b)

ξout = −√
γψ10. (41c)

Note that we use the subscript o (for out) on the control
function in Eq. (41). The initial condition is ψ10(t0)=0 and
state |01〉|∅〉 has the complex amplitude ψ01(t0). The goal is to
determine |�o(t )| and φo(t ) such that ξout (t ) equals some de-
sired wave packet, ξ (t ). The solution is found in Appendix F:

|�o(t )| = | fo|e− γLt
2

|ξ |
√

γ |ψ01(t0)|2−2
∫ t

t0
fo(s)ds−4|ξ |2eγLt

, (42a)

φo(t ) = −δbt − 2
∫ t

t0

|�o(s)|ds − arg(ξ )

+ tan−1

[
fo cos(θo) − go sin(θo)

− fo sin(θo) − go cos(θo)

]
, (42b)

where

fo(t ) =
[
�

2
ξ (t ) + ξ̇ (t )

]
ξ (t )∗eγLt , (43a)

go(t ) = −2|�o(t )||ξ (t )|2eγLt , (43b)

θo(t ) = −
∫ t

t0

go(s)

γ |ψ01(0)|2 − 2
∫ s

t0
fo(z)dz

ds. (43c)

Again, we assumed δa =0.
The solution simplifies in the case of a material with a

second-order nonlinearity,

|�o(t )| = | fo|e− γLt
2

|ξ |
√

γ |ψ01(t0)|2 − 2
∫ t

t0
fo(s)ds

, (44a)

φo(t ) = −δbt − arg(ξ ) − π

2
, (44b)

with fo(t ) still given by Eq. (43a).
We note that the solutions found in this section correspond

to the amplitude and phase of control fields inside the cavity.
In Appendix G, we derive expressions for the control fields in
the waveguide giving rise to these desired cavity fields.

C. Gaussian wave packet

We consider an example of a Gaussian wave packet to
investigate how well our absorption and emission technique
works. The Gaussian wave packet of the input field is
defined as

G(t ) =
√

2

τG

[
ln(2)

π

] 1
4

exp

[
−2ln(2)

t2

τ 2
G

]
, (45)

where |G(t )|2 has a full temporal width at half maximum
(FWHM) of τG , spectral width of �G =4ln(2)/τG , and
integrates to 1 (over the infinite interval from −∞ to ∞).
The input states are characterized by the wave packet
ξin(t )=G(t − Ti ) and the ideal output state is characterized
by a simple time translation

|Gout〉 =
∫ tN

t0

dt G(t − To)ŵ†(t )|∅〉, (46)

where To=Ti+T and T is the storage time. The duration
of the entire interaction process, tN =To+τo, is divided into
three time intervals denoted absorption, t ∈ [0, 2Ti], storage,
t ∈ [2Ti, To−τo], and emission, t ∈ [To−τo, tN ]. Practically,
wave packets must have a finite duration and our choice of
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[units of    ]

FIG. 4. Plots of the solution to Eq. (31) along with the input-
output Gaussians and the control field found in Eqs. (38a) and
(42a). Parameters: γ /�G =30, γL/�G =5×10−3, τe =τG , τo/τG =
4.08, T/τG =9.

absorption interval causes a discontinuous jump in ξin from
ξin(0−)=0 to ξin(0+)=G(−Ti ). The field in cavity mode a
takes a finite time to build up sufficiently to cause complete
destructive interference with the part of the incoming wave
packet that did not interact with the cavity. It is therefore
impossible to perfectly absorb a wave packet of finite length,
but the probability that the photon passes by the cavity
without interacting, Ppass, becomes negligible for relatively
small values of the ratio γ /�G as seen below. The problem
of absorbing a wave packet of finite length is reflected in the
solutions for the control fields in Eqs. (38a) and (42a), which
become imaginary when the terms under the square root in
the denominators are negative. As explained in Appendix F 1,
we use smoothing functions to avoid divergences and ensure
the control functions are zero outside the absorption and
emission intervals. The smoothing functions in Eq. (F24) are
parametrized by the on-off duration, τe.

Figure 4 shows an example of the absorption, storage,
and emission of a single photon in a Gaussian wave packet.
The control field is given by �=�i+�o since the storage
time, T , is chosen large enough to avoid overlap between
the absorption and emission intervals, T >Ti+τo. Note that
the control field responsible for emission is different from
a simple time inversion of the control field responsible for
absorption. This is because the presence of loss breaks the
time-reversal symmetry of the equations of motion in Eq. (31).

In the presence of loss, it is possible to emit a wave
packet with the desired shape but reduced amplitude, ξout (t )≈√

ηG(t − To), where η is a real number smaller than 1. Note,
however, that this is only true in the emission interval, t ∈
[To−τo, tN ], since ξout (t ) generally has some small contribution
from the absorption interval due to imperfect absorption. The
probability that the photon passes by the cavity without being
absorbed is

Ppass ≡
∫ 2Ti

t0

|ξout (t )|2dt . (47)

The probability of a successful storage process is equal to η in
the limit Ppass → 0. The maximum possible value of η can be
found by inserting ξ =√

ηG into the denominator of Eq. (42a)
and ensuring that the terms under the square root are positive
for all t . For the Gaussian in Eq. (45), we have

Fo ≡ 2
∫ ∞

−∞
fo(t )dt = γ exp

{
γL

[
To+

γLτ 2
G

16 ln(2)

]}
, (48)

FIG. 5. Degradation of conditional fidelity in the limit of large
loss. Parameters: γ /�G =30, τe =τG .

and we therefore choose η as

η = γ |ψ01(t0)|2
Fo

(1 − εη ). (49)

The value of the small parameter, εη, is optimized by min-
imizing |ψ01(tN )|2, which is the probability that an absorbed
photon remains in mode b after the emission interval. Finite
values of Ppass limits the achievable overlap of the output wave
packet with a desired shape, which is seen by calculating the
conditional fidelity in Eq. (27) using ξout =√

ηG(t −To) in the
emission interval

F1 =
∣∣ ∫ tN

t0
ξout (t )G(t −To)∗dt

∣∣2∫ tN
t0

|ξout (t )|2dt
≈ η

Ppass+η
, (50)

where we changed the lower integration limit from t0 to
To−τo in the numerator since G(t −To)≈0 outside the emis-
sion interval. We also divided the integration of |ξout|2 into in-
tervals [0, 2Ti] and [To−τo, tN ] since |ξout (t )|2 ≈0 in the storage
interval. Figure 5 shows a plot of the conditional fidelity using
ξout calculated from Eq. (31) along with the approximation in
Eq. (50). It also shows that F1 →1−Ppass in the limit where
Ppass η and η≈1, which is seen from a Taylor expansion of
Eq. (50), F1 ≈1/(1+Ppass/η)≈1−Ppass/η. It is important to
note that Fig. 5 clearly illustrates that very small error in the
conditional fidelity is possible even in the case of an efficiency
well below unity.

The value of Ppass only depends on the ratio γ /�G and
Fig. 6 plots the dependence for both second- and third-order
nonlinear materials. It is seen that Ppass falls off more quickly
for χ (2) materials due to the absence of cross-phase modula-

FIG. 6. Ppass as a function of γ /�G for χ (2) and χ (3) materials.
Parameters: γL =0, τe =τG .
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tion. In Appendix E 1, we derive expressions suggesting that a
five times larger coupling rate, γ , is needed for a χ (3) material,
which agrees well with the result in Fig. 6. Importantly, Fig. 6
shows that Ppass approaches zero extremely fast as the ratio
γ /�G increases.

VI. NONLINEAR DYNAMICS

In this section, we consider three types of nonlinearities
that mediate photon-photon interactions and describe the
necessary extensions to the equations of motion in Sec. IV
to account for them. Since we have a particular interest in
two-qubit logic gates for quantum information processing, we
consider cavity configurations enabling a C-phase gate. Note
that we envision a configuration where two identical cavities
are placed in between two 50:50 beam splitters that convert
the two-qubit state |11〉 into 1/

√
2(|02〉 + |20〉) [43,44]. In

this case, the phase ϑn in Eq. (22) is important in that
ϑ2−2ϑ1 =π is required for the gate transformation |00〉 →
|00〉, |10〉 → |10〉, |01〉 → |01〉, |11〉 → −|11〉. For a more
complete analysis of gate performance, we refer to Ref. [45].

We start by considering a material with a third-order non-
linearity, then we describe second-order nonlinearities, and
finally interactions with a two-level emitter. In all numerical
examples we use the Gaussian input wave packet in Eq. (45).

A. Material with a third-order nonlinearity

Only modes a and b are needed in the case of a χ (3)

material. The Hamiltonian corresponding to photon-photon
interactions is

Ĥχ (3) = h̄χ3

[
â†âb̂†b̂ + (â†â−1)â†â + (b̂†b̂−1)b̂†b̂

4

]
. (51)

The corresponding unitary time-evolution operator is

Ûχ (3) = −i�tχ3b̂†b̂â†â

− i 1
4�tχ3[(b̂†b̂ − 1)b̂†b̂ + (â†â − 1)â†â]. (52)

Only states with two photons in the system are affected, so
that

Ûχ (3) |20〉 = −iχ3�t
1

4
(2 − 1)2|20〉 = −i

χ3

2
�t |20〉, (53a)

Ûχ (3) |11〉 = −iχ3�t |11〉, (53b)

Ûχ (3) |02〉 = −iχ3�t
1

4
(2 − 1)2|02〉 = −i

χ3

2
�t |02〉. (53c)

The equations of motion for the corresponding coefficients in
Eq. (35) are therefore modified as

ψ̇20 = −
(

i2δa + �+i
χ3

2
+i4|�|

)
ψ20−i

√
2�∗ψ11

+
√

2γψ
(2)
10 ξin, (54a)

ψ̇11 = −
(

i(δa + δb) + � + γL

2
+ iχ3 + i4|�|

)
ψ11

− i
√

2[�ψ20+�∗ψ02] + √
γψ

(2)
01 ξin, (54b)

ψ̇02 = −
(

i2δb+γL +i
χ3

2
+i4|�|

)
ψ02 − i

√
2�ψ11. (54c)
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FIG. 7. Nonlinear phase difference, �ϑ , and fidelity, F2, as a
function of storage time for different values of the nonlinear coupling
rate, χ3, ranging from 0.01�G (blue) to 0.5�G (red). The black line
shows the fidelity corresponding to �ϑ =π . Parameters: γ /�G =30,
γL/�G =10−5, τe =τG .

It is seen from Eq. (54c) that the amplitude of the state |02〉
acquires a phase proportional to χ3/2, which the amplitude
of the state |01〉 in Eq. (31b) does not. By a careful choice
of storage time, T , one may achieve the condition �ϑ =
ϑ2 − 2ϑ1 =π , where ϑn is the phase in Eq. (22). Figure 7 plots
the phase difference as a function of storage time for a range
of different nonlinear coupling coefficients, χ3. It shows how
the phase condition, �ϑ =π , may be met using a smaller
nonlinearity and larger storage time (blue curve) or a larger
nonlinearity and smaller storage time (red curve). Figure 7
also plots the corresponding fidelity, F2, which appears to
reach an optimum for T/τG ≈ 100. The fidelity degrades when
increasing χ3 because the solutions for the control fields were
found assuming a single-photon input and photon-photon in-
teractions during the absorption and emission process renders
the control fields suboptimal. The fidelity also degrades if χ3

is decreased too much because losses increase with increased
storage time.

B. Material with a second-order nonlinearity

For materials exhibiting a χ (2) nonlinearity, we explore
the process of second harmonic generation where ωc =2ωb.
With the introduction of mode c, the system states are writ-
ten as |nanbnc〉 with na, nb, and nc representing the number
of photons in each mode. The Hamiltonian describing the
interaction is given in Eq. (13b). The corresponding unitary
time-evolution operator is

ÛSHG = −iχ2�t (ĉb̂†b̂† + ĉ†b̂b̂). (55)

From Eq. (55), we see that it only causes a coupling between
states |020〉 and |001〉

ÛSHG|020〉 = −iχ2�t
√

2|001〉, (56a)

ÛSHG|001〉 = −iχ2�t
√

2|020〉. (56b)
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FIG. 8. (a) Occupation probabilities of system states as a func-
tion of time. (b) Phase of the coefficient corresponding to state |01〉
(blue) and |020〉 (red). (c) Error measured as the absolute distance
from a Gaussian, |ξout (t )−√

ηG(t −To)| (blue) and |ξout (tm, To)+
ηG(tm−To)G(0)| (red). Parameters: γ /�G =6�G , γL/�G =1.5×
10−4, τe =τG , η=0.9963.

The equations of motion for coefficients corresponding to two
photons in the system are then

ψ̇200 = −(i2δa+�)ψ200−i
√

2�∗ψ110+
√

2γψ
(2)
100ξin, (57a)

ψ̇110 = −
(

i(δa+δb)+ � + γL

2

)
ψ110 − i

√
2�ψ200

− i
√

2�∗ψ020 + √
γψ

(2)
010ξin, (57b)

ψ̇020 = −(i2δb+γL )ψ020−i
√

2�ψ110−i
√

2χ2ψ001, (57c)

ψ̇001 = −
(

iδc + γL

2

)
ψ001 − i

√
2χ2ψ020. (57d)

It is the fact that SHG requires two input photons that enables
the phase condition �ϑ =π to be fulfilled. To understand
why, consider the case in which the storage time is adjusted
such that a single Rabi oscillation between states |020〉 and
|001〉 occur. An example is shown in Fig. 8. Occupation
probabilities of the system states are found in Appendix D
and plotted as a function of time in Fig. 8(a). It shows
how the photons are transferred from state |020〉 to |001〉
and back via SHG. The phase of ψ020(t ) jumps by π as its
amplitude becomes zero in the middle of the storage interval
[red curve in Fig. 8(b)]. The phase of ψ01(t ) [blue curve
in Fig. 8(b)] remains constant since a single photon cannot
undergo SHG. The relevant phase difference, �ϑ , is therefore
seen to be exactly π . Figure 8(c) shows the error in the
output wave packet for both single- and two-photon inputs.
Only a negligible error is observed for the single-photon input

whereas the two-photon error is more pronounced, leading
to a fidelity of F2 =99.1% for this example. Similar to the
case of a χ (3) material, the fidelity of two-photon outputs are
degraded by the photon-photon interaction occurring during
the absorption and emission process, which is not accounted
for in the solution of the control fields.

C. Interaction with a two-level emitter

We investigate the use of atomlike two-level emitters be-
cause their nonlinearity is much stronger than the nonresonant
nonlinearities considered above. To ensure complete absorp-
tion of incoming photons, the TLE should not be coupled
to mode b since we expect the nonlinear interaction during
absorption and emission to be prohibitively strong. Instead,
we use a tertiary mode, c, with ωc−ωb 	= ωb−ωa, which
ensures that modes b and c are not coupled via the control
field �(t ). We envision a control scheme where a first control
pulse, �i(t ), is used to absorb incoming photons into mode b.
Subsequently, a second control pulse, (t ), couples modes b
and c. Finally, a third control pulse, �o(t ), couples the photons
back into the waveguide through mode a. The first and last
stages of this control protocol are therefore still described by
the equations of motion in Sec. IV D. With the introduction
of cavity mode c and the TLE, states with two photons in
the system are |100〉|e〉, |010〉|e〉, |001〉|e〉, |200〉|g〉, |020〉|g〉,
|002〉|g〉, |110〉|g〉, |101〉|g〉, and |011〉|g〉.

During the second stage of the protocol, mode a is empty
so we introduce new coefficients, φnbncg(t ) and φnbnce(t ), cor-
responding to states |0nbnc〉|g〉 and |0nbnc〉|e〉. The dynamics
is governed by the following equations of motion:

φ̇20g = −(i2δb+γL +iχ3+i4||)φ20g−i
√

2∗φ11g, (58a)

φ̇11g = −[i(δb + δc) + γL + iχ3 + i4||]φ11g

− i
√

2φ20g − i
√

2∗φ02g − igφ10e, (58b)

φ̇02g = −(i2δc + γL + iχ3 + i4||)φ02g

− i
√

2φ11g − i
√

2gφ01e, (58c)

φ̇10e = −
[
i(δb+δe) + γe + γL

2
+ i2||

]
φ10e

−i∗φ01e − ig∗φ11g, (58d)

φ̇01e = −
[
i(δc+δe) + γe + γL

2
+ i2||

]
φ01e

− iφ10e − i
√

2g∗φ02g. (58e)

Note that the dynamics is also changed for single-photon
inputs, which have the following equations of motion:

φ̇10g = −
(

iδb + γL

2
+ i2||

)
φ10g − i∗φ01g, (59a)

φ̇01g = −
(

iδc+ γL

2
+i2||

)
φ01g−iφ10g−igφ00e, (59b)

φ̇00e = −
(

iδe + γe

2

)
φ00e − ig∗φ01g. (59c)

Many interesting properties of the nonlinear interaction may
be investigated using Eqs. (58) and (59), but here we again
consider the implementation of a C-phase gate. With the
protocol described above, the conditions for a successful gate
operation are the following: (1) The occupation probability of
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FIG. 9. Time evolution of the second stage of the control pro-
tocol. (a) Probability that all incoming photons occupy mode b for
one- (blue) and two-photon (red) inputs. The control function is also
plotted (scaled to a maximum of 1). (b) Phase difference arg[φ20g(t −
2Ti )]−2 arg[φ10g(t −2Ti )] as a function of time. Parameters: γL =0.

mode b must equal one for both single- and two-photon inputs
after the application of (t ). (2) The phase difference must be
arg[φ20g(T)] − 2 arg[φ10g(T)]=π , where (t ) is nonzero
only in the interval t ∈ [2Ti, T]. We numerically optimize the
control function (t ) to fulfill these conditions. An example
of the resulting dynamics is shown in Fig. 9. It shows how the
conditions above may be met using a control function plotted
in Fig. 9(a).

Here, we considered the host crystal containing the TLE to
be a third-order nonlinear material. The optical control fields
would not interact with the TLE as they would be very far off-
resonant. However, it would be interesting to consider the TLE
coupled to mode b and letting (t ) be a strong electrical field
that causes a detuning between the TLE and mode b during
absorption and emission via an AC Stark shift of the TLE
transition energy. This would reduce the effective nonlinear
coupling between the photons during absorption and emission
and could potentially eliminate the need for mode c.

Note that the three-stage control protocol avoids any error
due to nonlinear interactions between the photons during
absorption and emission. The fidelity of a C-phase gate with
a TLE nonlinearity is therefore only limited by loss when no
decoherence mechanisms are included in the model. A similar
extension of the control protocol could be applied to the case
of second-order nonlinearities by introducing a fourth mode,
b′, coupled to mode c via SHG. The second control field,
(t ), coupling modes b and b′ would then effectively turn on
the nonlinearity after the photons were coupled into mode b.
Alternatively, letting (t ) be an electric field that induces a
χ (2) coefficient in a material with a third-order nonlinearity
[46] would constitute an equivalent method to the AC stark
shift of a TLE.

VII. DISCUSSION

Our simulation results illustrate that, within the limitations
of our model, it is possible to absorb and emit photons with

Gaussian wave packets into and out of a dynamically coupled
cavity. We also show that high-fidelity C-phase gates may be
implemented using such structures with three different types
of nonlinearity. These fidelities were obtained while excluding
certain sources of error from our analysis including noise
photons being injected from the loss channel, decoherence of
the TLE, and higher order nonlinear effects.

We analyzed the interaction with two-level emitters in the
context of two-qubit gates, but we expect dynamically coupled
cavities to provide performance improvements in other appli-
cations as well. For instance, perfect state transfer between
photonic qubits and solid-state matter qubits has been pro-
posed using classical control fields coupling the energy levels
of the matter qubit [47]. There is a strong analogy between
that method and dynamically coupled cavities; however, we
expect it to be easier to engineer the photonic rather than the
atomic degrees of freedom in practical implementations.
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APPENDIX A: ROTATING FRAME

The Hamiltonian of the three cavity modes, four pump
fields, and the TLE is Ĥ , where

Ĥ

h̄
= ωaâ†â + ωbb̂†b̂ + ωcĉ†ĉ + ωp p̂† p̂ + ω1 p̂†1 p̂1 + ω2 p̂†2 p̂2

+ω3 p̂†3 p̂3 + ωeσ̂z + i

√
γ

�t
(â†ŵn − âŵ†

n )

+ωw

N∑
k=1

ŵ
†
k ŵk + χ2( p̂†â†b̂ + p̂b̂†â) + χ3( p̂†1 p̂2â†b̂

+ p̂†2 p̂1b̂†â) + χ3( p̂†1 p̂3b̂†ĉ + p̂†3 p̂1ĉ†b̂). (A1)

(Since we wish merely to provide an example, we have left
out the cross-phase modulation, self-phase modulation, and
second-order harmonic generation from the Hamiltonian.) We
wish to move into the interaction picture, placing the evolution
generated by the Hamiltonian Ĥ0 into the operators, where

Ĥ0

h̄
= ωwâ†â + (ωb−δb)b̂†b̂ + (ωc−δc)ĉ†ĉ + ωcσ̂z

+ωp p̂† p̂ + ω1 p̂†1 p̂1 + ω2 p̂†2 p̂2 + ω3 p̂†3 p̂3

+ωw

N∑
k=1

ŵ
†
k ŵk. (A2)

Under this Hamiltonian, the evolution of the operators is
obtained merely by multiplying them by time-dependent
exponentials. Denoting the interaction-picture operators by
upper-case letters, we have Â = âe−iωwt , B̂ = b̂e−i(ωb−δb)t , Ĉ =
ĉe−i(ωc−δc )t , �̂z = σ̂ze−iωet , P̂ = p̂e−iωpt , P̂j = p̂ je−iω j t ( j =
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1, 2, 3), Ŵk = ŵke−iωwtk . Since we have removed this “rotat-
ing” evolution from the state of the system, we refer to the
interaction picture as being in a “rotating frame.”

The evolution of the state of the system is now given by
an effective interaction Hamiltonian, usually referred to as the
“interaction Hamiltonian in the interaction picture,” which is
given by

ĤI(t ) = Û (Ĥ − Ĥ0)Û † (A3)

in which Û = e−iĤ0t/h̄. Since the right-hand side of the above
equation is merely the Hamiltonian Ĥ − Ĥ0 evolved in the
interaction picture, we obtain ĤI(t ) merely by replacing the
Schrödinger picture operators in Ĥ − Ĥ0 with their interaction
picture counterparts given above. While in general ĤI(t ) will
be time dependent, if we choose the detuning parameters, δa

through δe, to account for the detunings between the various
modes and the TLE, we obtain a time-independent interaction
picture Hamiltonian, namely

Ĥrot = h̄δaâ†â + h̄δbb̂†b̂ + h̄δcĉ†ĉ + h̄δeσ̂z

+ ih̄

√
γ

�t
(â†ŵn − âŵ†

n ) + h̄χ2( p̂†â†b̂ + p̂b̂†â)

+ h̄χ3( p̂†1 p̂2â†b̂ + p̂†2 p̂1b̂†â) + h̄χ3( p̂†1 p̂3b̂†ĉ

+ p̂†3 p̂1ĉ†b̂). (A4)

For the scenario in which the nonlinearity is provided by the
TLE, the various detunings are chosen to satisfy

δa ≡ ωa − ωw

δb ≡ δ� + δa

δc ≡ δ + δb

δe ≡ ωe − ωc

δ� ≡ (ω2 − ω1) − (ωa − ωb)
δ ≡ (ω3 − ω1) − (ωb − ωc)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

TLE nonlinearity. (A5)

Here we have chosen δb to remove the oscillating exponential
factor in the FWM term corresponding to the control field
�(t ):

P̂†
2 P̂1B̂†Â = p̂†2 p̂1b̂†â exp[(ω2 − ω1) + ωb

− δb − (ωa − δa)]

⇒ δb = (ω2 − ω1) − (ωa − ωb) + δa

≡ δ� + δa, (A6)

where we have defined δ�, which describes energy mismatch
in the FWM process that couples modes a and b. Similarly,
we choose δc to remove any exponential factor on the FWM
term corresponding to the control field (t )

P̂†
3 P̂1Ĉ

†B̂ = p̂†3 p̂1ĉ†b̂ exp[(ω3 − ω1) − (ωb − δb)

+ (ωc − δc)]

⇒ δc = (ω3 − ω1) − (ωb − ωc) + δb

≡ δ + δb, (A7)

where we defined δ, which describes energy mismatch in the
FWM process that couples modes b and c.

In a χ (2) material, where there is no control field (t ), we
instead define the detunings as

δa ≡ ωa − ωw

δb ≡ δ� + δa

δc ≡ ωc − 2ωb

δ� ≡ ωp − (ωb − ωa)

⎫⎪⎬
⎪⎭ χ (2) material, (A8)

where δc now describes energy mismatch in the second-order
harmonic generation process.

APPENDIX B: DYNAMICS WITH ONE CAVITY MODE
AND ONE INPUT PHOTON

Before the dynamics begins, the state is

|ψ0〉 =
N∑

k=1

ξ in
k

√
�t |0〉|1k〉, (B1)

where |0〉|1k〉 is the state with one photon in bin k and no
photons in the system. The state after each time step is found
using the time evolution operator

|ψn+1〉 = Ûn+1|ψn〉. (B2)

After the first time step, the state is therefore

|ψ1〉 =
N∑

k=2

ξ in
k

√
�t |0〉|1k〉 + ξ in

1

√
�t |0〉|11〉

+ √
γ ξ in

1 �t |1〉|∅〉. (B3)

We define the Schrödinger coefficient corresponding to the
photon being in the cavity mode as ψ1(1)=√

γ ξ in
1 �t . Note

that we split the summation over k into input states, n > k,
and output states, k � n, for which we use boldface notation.
After the second step, the state is

|ψ2〉 =
N∑

k=3

ξ in
k

√
�t |0〉|1k〉 +

2∑
k=1

ξ in
k

√
�t |0〉|1k〉

−√
γψ1(1)

√
�t |0〉|12〉

+
[(

1 − iδa�t − �

2
�t

)
ψ1(1) + √

γ ξ in
2 �t

]
|1〉|∅〉,

(B4)

where the third term corresponds to a photon being emitted
by the cavity into bin 2 on the output side. The fourth term
contains a contribution from the identity operator, a detuning
term, a decay term, as well as a feeding term corresponding to
absorption of a photon from the waveguide in bin 2. Rewriting
Eq. (B4) as

|ψ2〉 =
N∑

k=3

ξ in
k

√
�t |0〉|1k〉 + ξ out

1

√
�t |0〉|11〉

+ [
ξ in

2 − √
γψ1(1)

]√
�t |0〉|12〉 + ψ1(2)|1〉|∅〉

(B5)
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lets us identify the update rules

ψ1(n + 1) = ψ1(n) +
[(

− iδa − �

2

)
ψ1(n) + √

γ ξ in
n+1

]
�t

(B6)

⇒ ψ1(n + 1) − ψ1(n)

�t
= −

(
iδa + �

2

)
ψ1(n) + √

γ ξ in
n+1,

(B7)

ξ out
n = ξ in

n − √
γψ1(n − 1). (B8)

We may now take the continuum limit, �t → 0, to obtain the
equation of motion and input-output relation

ψ̇1(t ) =
(

−iδa − �

2

)
ψ1(t ) + √

γ ξin(t ), (B9a)

ξout (t ) = ξin(t ) − √
γψ1(t ). (B9b)

Note that we used ψ1(n−1) → ψ1(n) and ξ in
n+1 → ξ in

n in the
continuum limit, so all functions are evaluated at the same
time in Eq. (B9).

APPENDIX C: DYNAMICS WITH TWO CAVITY MODES AND ONE INPUT PHOTON

Before the dynamics begins, the state is

|ψ0〉 =
N∑

k=1

ξ in
k

√
�t |00〉|1k〉, (C1)

where |00〉 is the state with no photons in either mode a or b. After step 1, the state is

|ψ1〉 = |ψ0〉 + √
γ ξ in

1 �t |10〉|∅〉 ≡ |ψ0〉 + ψ10(1)|10〉|∅〉,
(C2)

where we defined the amplitude for the state with one photon in mode a and no photons in mode b, ψ10. After step 2, the state is

|ψ2〉 =
N∑

k=3

ξ in
k

√
�t |00〉|1k〉 − √

γψ10(1)
√

�t |00〉|11〉 + [
ξ in

2 − √
γψ10(1)

]√
�t |00〉|12〉

+
[(

1 − iδa�t − �

2
�t − i2|�2|�t

)
ψ10(1) + √

γ ξ in
2 �t

]
|10〉|∅〉 − i�2ψ10(1)�t |01〉|∅〉

≡
N∑

k=3

ξ in
k

√
�t |00〉|1k〉 +

2∑
k=1

ξ out
k

√
�t |00〉|1k〉 + ψ10|10〉|∅〉 + ψ01|01〉|∅〉. (C3)

After step 3, the state is

|ψ3〉 =
N∑

k=4

ξ in
k

√
�t |00〉|1k〉+

3∑
k=1

ξ out
k

√
�t |00〉|1k〉 +

[(
1−iδb�t − γL

2
�t −i2|�3|�t

)
ψ01(2)

− i�3ψ10(2)�t
]
|01〉|∅〉 +

[(
1 − iδa�t − �

2
�t − i2|�3|�t

)
ψ10(2) − i�∗

3ψ01(2)�t + √
γ ξ in

3 �t
]
|10〉|∅〉. (C4)

Equation (C4) contains all the possible dynamics and we can use it to read off the update rules:

ψ10(n + 1) − ψ10(n)

�t
=

(
− iδa − �

2
− i2|�n+1|

)
ψ10(n) − i�∗

n+1ψ01(n) + √
γ ξ in

n+1, (C5)

ψ01(n + 1) − ψ01(n)

�t
=

(
− iδb − γL

2
− i2|�n+1|

)
ψ01(n) − i�n+1ψ10(n), (C6)

ξ out
n = ξ in

n − √
γψ10(n − 1). (C7)

In the continuum limit, we have the ODEs and input-output relation

ψ̇10(t ) = −
(

iδa + �

2
+ i2|�(t )|

)
ψ10(n) − i�(t )∗ψ01(t ) + √

γ ξin(t ), (C8a)

ψ̇01(t ) = −
(

iδb + γL

2
+ i2|�(t )|

)
ψ01(t ) − i�(t )ψ10(t ), (C8b)

ξout (t ) = ξin(t ) − √
γψ10(t ). (C8c)
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APPENDIX D: DYNAMICS WITH TWO CAVITY MODES AND TWO INPUT PHOTONS

For identical input photons, the input state is

|ψ0〉 =
√

2
N∑

j=1

N∑
k> j

ξ in
j ξ in

k �t |00〉|1 j1k〉. (D1)

Let us show that the state in Eq. (D1) is normalized. In the continuum limit, it corresponds to

|ψ〉 =
√

2
∫ tN

t0

dt j

∫ tN

t j

dtkξ (t j )ξ (tk )|00〉|1 j1k〉, (D2)

where we omitted the in superscripts. Let us calculate its norm

〈ψ |ψ〉 = 2
∫ tN

t0

dt ′
j

∫ T

t ′
j

dt ′
k

∫ tN

t0

dt j

∫ tN

t j

dtkξ
∗(t j′ )ξ (t j )ξ

∗(tk′ )ξ (tk )〈1′
j |1 j〉〈1′

k|1k〉 (D3a)

⇒ 〈ψ |ψ〉 = 2
∫ tN

t0

dt j |ξ (t j )|2
∫ tN

t j

dtk|ξ (t j )|2 = 2
∫ tN

t0

dt j |ξ (t j )|2
[ ∫ tN

t0

dtk|ξ (tk )|2 −
∫ t j

t0

dtk|ξ (tk )|2
]

(D3b)

⇒ 〈ψ |ψ〉 = 2
∫ tN

t0

dt j |ξ (tk )|2
[

1 −
∫ t j

t0

dtk|ξ (tk )|2
]

= 2 − 2
∫ tN

t0

dt j |ξ (t j )|2
∫ t j

t0

dtk|ξ (tk )|2 (D3c)

⇒ 〈ψ |ψ〉 = 2 − 2
∫ tN

t0

dt j�̇(t j )�(t j ) = 2 − 2
∫ tN

t0

dt j
d

dt j

(
1

2
�2(t j )

)
= 2 − [�(T ) − �(0)] = 2 − (1 − 0) = 1, (D3d)

where �̇(t j )=|ξ (t j )|2.
To begin with, we follow the dynamics of states with one photon in the system and one photon on the input side,

|ψn〉 = ψ
(2)
10 (n)

N∑
k>n

ξ in
k

√
�t |10〉|1k〉 + ψ

(2)
01 (n)

N∑
k>n

ξ in
k

√
�t |01〉|1k〉 + · · · (D4)

The superscript “(2)” signifies that the equation of motion for ψ
(2)
10 (t ) is driven by two photons on the input side. As in Appendixes

B and C, we follow the evolution of these states through the first time steps in order to identify the update rules. After the first
step, we have

|ψ1〉 =
√

2ξ in
1

√
γ�t

N∑
k>1

ξ in
k

√
�t |10〉|1k〉 + · · · = ψ

(2)
10 (1)

N∑
k>1

ξ in
k

√
�t |10〉|1k〉 + · · · , (D5)

After step 2, we have

|ψ2〉 =
[(

1 − iδa�t − �

2
�t − i2|�2|�t

)
ψ

(2)
10 (1) +

√
2ξ in

2
√

γ�t
] N∑

k>2

ξ in
k

√
�t |10〉|1k〉 − i�2ψ

(2)
10 (1)

N∑
k>2

ξ in
k

√
�t |01〉|1k〉 + · · ·

= ψ
(2)
10 (2)

N∑
k>2

ξ in
k

√
�t |10〉|1k〉 + ψ

(2)
01 (2)

N∑
k>2

ξ in
k

√
�t |01〉|1k〉 + · · · . (D6)

After step 3, all the possible interactions linking ψ
(2)
10 and ψ

(2)
01 are included:

|ψ3〉 =
[(

1 − iδa�t − �

2
�t − i2|�3|�t

)
ψ

(2)
10 (2) +

√
2ξ in

3
√

γ�t − i�∗
3ψ

(2)
01 (2)�t

] N∑
k>3

ξ in
k

√
�t |10〉|1k〉

+
[(

1 − iδb�t − γL

2
�t − i2|�3|�t

)
ψ

(2)
01 (2) − i�3ψ

(2)
10 (2)�t

] N∑
k>3

ξ in
k

√
�t |01〉|1k〉 + · · · . (D7)

From Eq. (D7), we identify the equations of motion in the continuum limit

ψ̇
(2)
10 (t ) = −

(
iδa − �

2
+ i2|�(t )|

)
ψ

(2)
10 (t ) − i�(t )∗ψ (2)

01 (t ) +
√

2γ ξin(t ), (D8a)

ψ̇
(2)
01 (t ) = −

(
iδb − γL

2
+ i2|�(t )|

)
ψ

(2)
01 (t ) − i�(t )ψ (2)

10 (t ). (D8b)
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Next, we consider states with two photons in the system

|ψn〉 = ψ20(n)|20〉|∅〉 + ψ11(n)|11〉|∅〉 + ψ02(n)|02〉|∅〉 + · · · . (D9)

These states first appear after step 2:

|ψ2〉 =
√

2γψ
(2)
10 (1)ξ in

2 �t |20〉|∅〉 + √
γψ

(2)
01 (1)ξ in

2 �t |11〉|∅〉 + · · · = ψ20(2)|20〉|∅〉 + ψ11(2)|11〉|∅〉 + · · · , (D10)

where the factor of
√

2 in the first term comes from â† acting on |10〉. After step 3, we have

|ψ3〉 = [(
1 − i2δa�t − ��t − i4|�3|�t

)
ψ20(2) − i

√
2�∗

3ψ11(2)�t + ψ
(2)
10 (2)ξ in

3

√
2γ�t

]|20〉|∅〉

+
[(

1−i(δa+δb)�t − �+γL

2
�t −i4|�3|�t

)
ψ11(2)−i

√
2�t�3ψ20(2) + √

γψ
(2)
01 (2)ξ in

3 �t

]
|11〉|∅〉

− i
√

2�3ψ11(2)�t |02〉|∅〉 + · · · . (D11)

After step 4, all the dynamics describing the states with two photons in the system is present

|ψ4〉 = [
(1 − i2δa�t − ��t − i4|�4|�t )ψ20(3) − i

√
2�∗

4ψ11(3)�t + ψ
(2)
10 (3)ξ in

4

√
2γ�t

]|20〉|∅〉

+
[(

1−i(δa+δb)�t + �+γL

2
�t −i4|�4|�t

)
ψ11(3)−i

√
2�t (�4ψ20(3)+�∗

4ψ02(3))+ψ
(2)
01 (3)ξ in

4
√

γ�t
]
|11〉|∅〉

+ [(1 − i2δb − γL�t − i4|�4|�t )ψ02(3) − i
√

2�4ψ11(3)]|02〉|∅〉 + · · · . (D12)

We identify the equations of motion in the continuum limit

ψ̇20(t ) = −(i2δa + � + i4|�(t )|)ψ20(t ) − i
√

2�(t )∗ψ11(t ) +
√

2γψ
(2)
10 (t )ξin(t ), (D13a)

ψ̇11(t ) = −
(

i(δa + δb) + � + γL

2
+ i4|�(t )|

)
ψ11(t ) − i

√
2�(t )ψ20(t ) − i

√
2�(t )∗ψ02(t ) + √

γψ
(2)
01 (t )ξin(t ), (D13b)

ψ̇02(t ) = −(i2δb + γL + i4|�(t )|)ψ02(t ) − i
√

2�(t )ψ11(t ). (D13c)

Next, we consider states with one photon on the input side and one on the output side. There are two paths resulting in this
state (see Fig. 3). (1) A photon is emitted into the waveguide from the system while the other photon remains on the input side.
(2) One of the two input photons passes by the system without interacting. If this occurs in bin m, the contribution to the state is

|ψm〉 = [−√
γψ

(2)
10 (m) +

√
2ξ in

m

] N∑
k>m

ξ in
k �t |00〉|1k1m〉 + · · · = ψ00(m)

N∑
k>m

ξ in
k �t |00〉|1k1m〉 + · · · . (D14)

If the photon remaining on the input side is absorbed, it gives rise to states with one photon in the system and one on the output
side

|ψn〉 = ψ00(m)
[
ψ

(1)
10 (m, n)

√
�t |10〉|1m〉 + ψ

(1)
01 (m, n)

√
�t |01〉|1m〉] + · · · , (D15)

where we factored out ψ00(m) to obtain equations of motion for ψ
(1)
10 (tm, t ) and ψ

(1)
01 (tm, t ) that are similar to Eq. (D8). These

amplitudes are functions of two times, where tm describes the time the dynamics was initialized by the formation of the state
|1k1m〉. The superscript “(1)” signifies that the equations of motion for ψ

(1)
10 (tm, t ) and ψ

(1)
01 (tm, t ) are driven by one photon on the

input side. Let us again follow the evolution of Eq. (D15) for a few time steps to determine the equations of motion for ψ
(1)
10 (tm, t )

and ψ
(1)
01 (tm, t ). At step n + 1, we have

|ψn+1〉
ψ00(m)

=
[(

1 − iδa�t − �

2
�t − i2|�n+1|�t

)
ψ

(1)
10 (m, n) − i�∗

n+1ψ01(m, n)�t + √
γ ξ in

n+1�t
]√

�t |10〉|1m〉

+
[(

1 − iδb�t − γL

2
�t − i2|�n+1|�t

)
ψ

(1)
01 (m, n) − i�n+1ψ10(m, n)�t

]√
�t |01〉|1m〉 + · · ·

= ψ
(1)
10 (m, n + 1)

√
�t |10〉|1m〉 + ψ

(1)
01 (m, n + 1)

√
�t |01〉|1m〉 + · · · . (D16)

From Eq. (D16), we obtain the equations of motion

ψ̇
(1)
10 (tm, t ) = −

(
iδa + �

2
+ i2|�(t )|

)
ψ

(1)
10 (tm, t ) − i�(t )∗ψ (1)

01 (tm, t ) + √
γ ξin(t ), (D17a)

ψ̇
(1)
01 (tm, t ) = −

(
iδb + γL

2
+ i2|�(t )|

)
ψ01(tm, t ) − i�(t )ψ (1)

10 (tm, t ). (D17b)
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Comparing Eqs. (D8) and (D17), we see that there is an additional factor of
√

2 on the driving term
√

γ ξin(t ) in Eq. (D8)
because it is driven by two photons as opposed to one in Eq. (D17). The initial condition for Eq. (D17) is ψ

(1)
10 (tm, tm)=0 and

ψ
(1)
01 (tm, tm)=0 because the system started out in the state |00〉 in Eq. (D14).
Finally, we need to consider states with one photon in the system and one photon on the output side

|ψn〉 = ψ
(0)
10 (m, n)

√
�t |10〉|1m〉 + ψ

(0)
01 (m, n)

√
�t |01〉|1m〉 + · · · , (D18)

There are four different paths leading to this state. One (two), a photon is emitted into the waveguide while the state of the system
is |20〉 (|11〉). Three (four), the photon on the input side passes by the system without interacting while the system is in the state
|10〉 (|01〉). If this occurs in bin m, the contribution to the state is

|ψm〉 = [−√
2γψ20(m) + ψ

(2)
10 (m)ξ in

m

]√
�t |10〉|1m〉 + [−√

γψ11(m) + ψ
(2)
01 (m)ξ in

m

]√
�t |01〉|1m〉 + · · ·

= ψ
(0)
10 (m, m)

√
�t |10〉|1m〉 + ψ

(0)
01 (m, m)

√
�t |01〉|1m〉 + · · · . (D19)

At time tm+1, the state is

|ψm+1〉 =
[(

1 − iδa�t − �

2
�t − i2|�m+1|�t

)
ψ

(0)
10 (m, m) − i�∗

m+1ψ
(0)
01 (m, m)�t

]√
γ�t |10〉|1m〉

+
[(

1 − iδb�t − γL

2
�t − i2|�m+1|�t

)
ψ

(0)
01 (m, m) − i�m+1ψ

(0)
10 (m, m)�t

]√
γ�t |01〉|1m〉 + · · ·

= ψ
(0)
10 (m, m+1)

√
�t |10〉|1m〉 + ψ

(0)
01 (m, m+1)

√
�t |01〉|1m〉 + · · · . (D20)

From Eq. (D20), we identify the equations of motion

ψ̇
(0)
10 (tm, t ) = −

(
iδa + �

2
+ i2|�(t )|

)
ψ

(0)
10 (tm, t ) − i�(t )∗ψ (0)

01 (tm, t ), (D21a)

ψ̇
(0)
01 (tm, t ) = −

(
iδb + γL

2
+ i2|�(t )|

)
ψ

(0)
01 (tm, t ) − i�(t )ψ (0)

10 (tm, t ). (D21b)

Equation (D21) must be solved for two sets of initial conditions corresponding to the first [ψ (0)
10 (tm, tm)=1 and ψ

(0)
01 (tm, tm)=0]

and second [ψ (0)
10 (tm, tm)=0 and ψ

(0)
01 (tm, tm)=1] term in Eq. (D18), respectively. We introduce functions A10(tm, t ), A01(tm, t ),

B10(tm, t ), and B01(tm, t ), where A correspond to ψ (0) with the first initial condition and B correspond to ψ (0) with the second
initial condition.

The final step is to identify all terms of the output state using Fig. 3 and the derivations above. From Eq. (D14), we have the
contributions

ξout (tm, t ) = −√
γψ

(1)
10 (tm, t )

[−√
γψ

(2)
10 (tm) +

√
2ξin(tm)

] + · · · , (D22)

where the first factor is the probability amplitude for decay from state |10〉 into the waveguide at time t , and the terms in brackets
are the two contributions to the probability amplitude of a photon entering the waveguide at time tm. From Eq. (D19), we have
the contributions

ξout (tm, t ) = −√
γ A10(tm, t )

[−√
2γψ20(tm) + ψ

(2)
10 (tm)ξin(tm)

] − √
γ B10(tm, t )

[−√
γψ11(tm) + ψ

(2)
01 (tm)ξin(tm)

] + · · · .

(D23)

The remaining contributions to the output state come from both photons passing by the system without interacting and decay
from system state |10〉 followed by the second input photon passing by the system

ξout (tm, t ) = [√
2ξin(tm) − √

γψ
(2)
10 (tm)

]
ξin(t ) + · · · . (D24)

If we define the output state as

|ψout〉 ≡
∫ tN

t0

dtm

∫ tN

t0

dtξout (tm, t )ŵ†(tm)ŵ†(t )|∅〉, (D25)

then the output wave packet is

ξout (tm, t ) ≡ ξin(tm)ξin(t ) + 1√
2

[√
2γψ20(tm)A10(tm, t ) + γψ11(tm)B10(tm, t ) − √

γψ
(2)
10 (tm)ξin(tm)A10(tm, t )

−√
γψ

(2)
01 (tm)ξin(tm)B10(tm, t ) + γψ

(2)
10 (tm)ψ (1)

10 (tm, t ) − √
γψ

(2)
10 (tm)ξin(t ) −

√
2γ ξin(tm)ψ (1)

10 (tm, t )
]
, tm � t,

(D26)

and ξout (tm, t ) = ξout (t, tm). The factor of 1/
√

2 comes from the fact that the integrals in Eq. (D25) span the entire time interval,
whereas the terms in Eqs. (D22)–(D24) were derived using the definition in Eq. (D1), where each two-photon field state appears
only once in the summations.
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The probability of finding the system in a state with na photons in mode a and nb photons in mode b at time tn is found from
the expectation value

Pnanb (tn) = 〈ψn|(|nanb〉〈nanb| ⊗ Îfield )|ψn〉 =
N∑

j,k=1

|〈1 j1k|〈nanb|ψn〉|2, with Îfield =
N∑

j,k=1

|1 j1k〉〈1 j1k|. (D27)

It is instructive to use Fig. 3 to keep track of all paths when evaluating the overlap 〈1 j1k|〈nanb|ψn〉. For na =nb =0, we see that
there are contributions from the two paths leading to states with one photon on the input side and one on the output side as well
as contributions from both photons being on the input or output side. The first contribution may be identified from Eq. (D14)

|〈00|00〉|2
N∑

j′,k′=1

∣∣∣∣
n∑

m=1

([−√
γψ

(2)
10 (m) +

√
2ξ in

m

]∑
k>m

ξ in
k �t

〈
1 j′1k′

∣∣1k1m
〉)∣∣∣∣

2

=
n∑

k′=1

N∑
j′=1

∣∣∣∣[−√
γψ

(2)
10 (k′) +

√
2ξ in

k′
] ∑

k>k′
ξ in

k �t
〈
1 j′

∣∣1k
〉∣∣∣∣

2

=
n∑

k′=1

�t
∣∣∣−√

γψ
(2)
10 (k′) +

√
2ξ in

k′

∣∣∣2 N∑
j′=k′

�t
∣∣ξ in

j′
∣∣2

, (D28)

where the summation over m from 1 to n was included because the photon on the output side could be in any bin between 1 and
n. The contribution from both photons being on the input side is

|〈00|00〉|2
N∑

j′,k′=1

∑
m′>n

�t
∣∣ξ in

m′
∣∣2 ∑

m>n

�t
∣∣ξ in

m

∣∣2∣∣〈1 j′1k′
∣∣1m′1m

〉∣∣2 =
∑
j′>n

�t
∣∣ξ in

j′
∣∣2 ∑

k′>n

�t
∣∣ξ in

k′
∣∣2

. (D29)

Similarly, the contribution from the output state is

|〈00|00〉|2
N∑

j′,k′=1

n∑
m′=1

n∑
m=1

�t�t
∣∣ξ out

m′m

∣∣2∣∣〈1 j′1k′
∣∣1m′1m

〉∣∣2 =
n∑

m′=1

n∑
m=1

�t�t
∣∣ξ out

m′m

∣∣2
. (D30)

Adding the contributions from Eqs. (D28)–(D30) and taking the continuum limit, we get

P00(tn) =
∫ tn

t0

(∣∣√2ξin(tm) − γψ
(2)
10 (tm)

∣∣2
∫ tN

tm

|ξ in(s)|2ds
)

dtm +
(∫ tN

tn

|ξin(t )|2dt

)2

+
∫ tn

t0

∫ tn

t0

|ξout (tm, s)|2dsdtm. (D31)

There are seven different paths leading to the system state |10〉 and the probability is

P10(tn) = |ψ (2)
10 (tn)|2

∫ tN

tn

|ξ in(s)|2ds +
∫ tn

t0

∣∣ψ (2)
10 (tm)ξin(tm)A10(tm, tn) + ψ

(2)
01 (tm)ξin(tm)B10(tm, tn) −

√
2γψ20(tm)A10(tm, tn)

−√
γψ11(tm)B10(tm, tn) − √

γψ
(2)
10 (tm)ψ (1)

10 (tm, tn) +
√

2ξin(tm)ψ (1)
10 (tm, tn)

∣∣2
dtm. (D32)

Similarly, the probability of the system state |01〉 is

P01(tn) = ∣∣ψ (2)
01 (tn)

∣∣2
∫ tN

tn

|ξ in(s)|2ds +
∫ tn

t0

∣∣ψ (2)
10 (tm)ξin(tm)A01(tm, tn) + ψ

(2)
01 (tm)ξin(tm)B01(tm, tn)

−
√

2γψ20(tm)A01(tm, tn) − √
γψ11(tm)B01(tm, tn) − √

γψ
(2)
10 (tm)ψ (1)

01 (tm, tn) +
√

2ξin(tm)ψ (1)
01 (tm, tn)

∣∣2
dtm. (D33)

The probability distributions for states with two photons in the system are simply

P20(tn) = |ψ20(tn)|2, P11(tn) = |ψ11(tn)|2, P02(tn) = |ψ02(t )|2. (D34)

APPENDIX E: ABSORPTION OF PHOTON WAVEPACKET

We write the control function as �(t ) ≡ |�(t )| exp[iφ(t )] and our goal is to determine the amplitude, |�(t )|, and phase, φ(t ),
such that an incoming photon in the wave packet ξin(t ) is fully absorbed into mode b. The equations of motion are written in
Eq. (C8), but we repeat them here for easy reference:

ψ̇10(t ) = −
[
iδa + �

2
+ i2|�(t )|

]
ψ10(t ) − i|�(t )|e−iφ(t )ψ01(t ) + √

γ ξ (t ), (E1a)

ψ̇01(t ) = −
[
iδb + γL

2
+ i2|�(t )|

]
ψ01(t ) − i|�(t )|eiφ(t )ψ10(t ), (E1b)

ξout (t ) = ξ (t ) − √
γψ10(t ). (E1c)
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Note that we have omitted the subscript of ξin(t ) in Eq. (E1) for notational convenience. Absorbing the incoming pulse implies
ξout =0 and therefore ψ10 =ξin/

√
γ . Substituting this into Eq. (E1b) and rearranging terms yields

d

dt
(ψ01(t )e−Q(t ) )eQ(t ) = −i√

γ
|�(t )|eiφ(t )ξ (t ) ⇒ ψ01(t ) = −i√

γ
eQ(t )

∫ t

t0

e−Q(s)|�(s)|eiφ(s)ξ (s)ds, (E2)

where we defined the functions

Q(t ) = −iP(t ) −
(

iδb + γL

2

)
t, P(t ) = 2

∫ t

t0

|�(s)|ds. (E3)

Substituting ψ10 =ξ/
√

γ into Eq. (E1a) yields

(γ − γL )

2
ξ (t ) − ξ̇ (t ) − i[δa + 2|�(t )|]ξ (t ) = i|�(t )|e−iφ(t )√γψ01(t ). (E4)

Multiplying Eq. (E4) by ξ (t )∗exp(γLt ) and defining real functions fi and gi, we find

fi(t ) + igi(t ) = |�(t )|e−iφ(t )ξ (t )∗e(−iδb+ γL
2 )t e−iP(t )

∫ t

t0

e(iδb+ γL
2 )seiP(s)|�(s)|eiφ(s)ξ (s)ds, (E5)

with

fi(t ) =
(

γ − γL

2
ξ (t ) − ξ̇ (t )

)
ξ (t )∗eγLt , (E6a)

gi(t ) = −(δa + 2|�(t )|)|ξ (t )|2eγLt . (E6b)

Note that Eq. (E6a) assumes an input wave packet without chirp, d
dt [arg ξ (t )]=0. The right-hand side (RHS) of Eq. (E5) can be

written as

[x(t ) − iy(t )]
∫ t

t0

[x(s) + iy(s)]ds = x(t )
∫ t

t0

x(s)ds + y(t )
∫ t

t0

y(s)ds + i

(
x(t )

∫ t

t0

y(s)ds − y(t )
∫ t

t0

x(s)ds

)
, (E7)

where

x(t ) = |�(t )||ξ (t )| exp(γLt/2) cos[φ(t ) + δbt + P(t ) + arg(ξ )], (E8a)

y(t ) = |�(t )||ξ (t )| exp(γLt/2) sin[φ(t ) + δbt + P(t ) + arg(ξ )]. (E8b)

By defining the functions

X (t ) =
∫ t

t0

x(s)ds = R(t ) cos[θ (t )], Y (t ) =
∫ t

t0

y(s)ds = R(t ) sin[θ (t )], (E9)

Eq. (E5) can be split into real and imaginary parts

fi = Ẋ X + ẎY, gi = ẊY − Ẏ X. (E10)

Using the definition in Eq. (E9), we have

fi = ẊX + ẎY = [Ṙ cos(θ ) − R sin(θ )θ̇]R cos(θ ) + [Ṙ sin(θ ) + R cos(θ )θ̇]R sin(θ ) = ṘR = 1

2

d

dt
(R2), (E11)

which has the solution

R(t ) =
√

2
∫ t

t0

fi(s)ds. (E12)

Similarly,

gi = ẊY − Ẏ X = [Ṙ cos(θ ) − R sin(θ )θ̇]R sin(θ ) − [Ṙ sin(θ ) + R cos(θ )θ̇]R cos(θ ) = −R2θ̇ . (E13)

Using the result in Eq. (E12), the solution for θ is

θ (t ) = −1

2

∫ t

t0

gi(s)∫ s
t0

fi(z)dz
ds. (E14)

To find the solution for |�(t )|, we evaluate x2 + y2 =|�|2|ξ |2 exp(γLt ) using the results above

|�|2|ξ |2eγLt = Ẋ 2 + Ẏ 2 = [Ṙ cos(θ ) − R sin(θ )θ̇]2 + [Ṙ sin(θ ) + R cos(θ )θ̇]2 = Ṙ2 + R2θ̇2 = 1

2
∫

fi
(g2

i + f 2
i ). (E15)

042322-18



PHOTON-PHOTON INTERACTIONS IN DYNAMICALLY … PHYSICAL REVIEW A 101, 042322 (2020)

Inserting the definition of gi from Eq. (E6b) yields

|�|2|ξ 2| exp(γLt ) = 1

2Fi

[
(δa + 2|�|)2 exp(2γLt )|ξ |4 + f 2

i

]

⇒ |�(t )| =
2δa|ξ |4eγLt ± √

2e− γL
2 t |ξ |

√
f 2
i (Fi − 2|ξ |2eγLt ) + δ2

a |ξ |4Fie2γLt

2|ξ |2[Fi − 2|ξ |2eγLt ]
, (E16)

where Fi(t ) is the antiderivative of fi(t ). If δa =0, the solution is

|�(t )| = | fi(t )|e−γLt/2

√
2|ξ (t )|

1√
Fi − 2|ξ (t )|2eγLt

. (E17)

Knowing |�(t )| means gi is a known function and x and y may be evaluated using θ from Eq. (E14). Then, the phase φ is

φ(t ) = −δbt − 2
∫ t

t0

|�(s)|ds − arg(ξ ) + tan−1

[
y(t )

x(t )

]
. (E18)

To obtain x and y, note that

x = Ẋ = Ṙ cos(θ ) − R sin(θ )θ̇ = fi cos(θ ) + gi sin(θ )√
2

∫
fi

, (E19)

y = Ẏ = Ṙ sin(θ ) + R cos(θ )θ̇ = fi sin(θ ) − gi cos(θ )√
2

∫
fi

. (E20)

1. When does a solution exist?

From Eqs. (E6a) and (E16) it is seen that |�(t )| is only a real finite function if (assuming ξ is real and there is no loss, γL =0)∫ t

t0

[γ

2
ξ 2(s)ds −ξ (s)ξ̇ (s)

]
ds − 2ξ 2(t ) > 0

⇒ γ

2

∫ t

t0

ξ 2(s)ds −
∫ t

t0

1

2

d

ds
[ξ 2(s)]ds − 2ξ 2(t ) > 0 ⇒ ξ 2(t ) <

γ

5

∫ t

t0

ξ 2(s)ds. (E21)

A general identity holds for inequalities of the type in Eq. (E21) [48]

u̇(t ) � β(t )u(t ) ⇒ u(t ) � u(a) exp

(∫ t

a
β(s)ds

)
. (E22)

Comparing Eq. (E22) to Eq. (E21) shows that

u(t ) � u(0) exp
(γ

5
t
)
, u(t ) ≡

∫ t

t0

ξ 2(s)ds. (E23)

Since u(0) should equal zero, we see that this cannot be fulfilled. If t =0 is excluded from the interval over which the solution
must be valid, then u(0+) can be made arbitrarily small and Eq. (E23) provides a bound on what the rising edge of the wave
packet can look like. However, since u(T )=1 in order for the input quantum state to be normalized, we see that the wave-packet
length increases as u(0+) decreases. In physical terms, a finite-length wave packet cannot be fully absorbed into a resonator
without letting the coupling rate, γ , tend to infinity, if only for an infinitely short time. This is because the exponential decay out
of the resonator only asymptotically approaches a state where the entire cavity population has coupled into the waveguide.

We note that if there is no cross-phase modulation from the control fields, the decay rate γ /5 in Eq. (E23) would instead be
γ , suggesting that the same absorption efficiency could be achieved with a cavity mode having a linewidth five times smaller.

APPENDIX F: EMISSION OF PHOTON WAVE PACKET

The goal of this section is to derive a control field, �, such that the output wave packet, ξout, is given by some desired
function, ξ . In this case, the driving term, ξin =0, and the initial condition is that ψ10(0)=0 while the Schrödinger coefficient
corresponding to state |01〉 has some finite value, ψ01(0). The equations of motion are

ψ̇10(t ) = −
[
iδa + �

2
+ i2|�(t )|

]
ψ10(t ) − i|�(t )|e−iφ(t )ψ01(t ), (F1a)

ψ̇01(t ) = −
[
iδb + γL

2
+ i2|�(t )|

]
ψ01(t ) − i|�(t )|eiφ(t )ψ10(t ), (F1b)

ξ (t ) = −√
γψ10(t ). (F1c)
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Substituting ψ10 =−ξ/
√

γ into Eq. (F1), we have

ξ̇ = −
(

�

2
+ i(δa + 2|�|)

)
ξ + i|�|e−iφ√

γψ01, (F2)

ψ̇01(t ) = −
(

iδb + γL

2
+ i2|�|

)
ψ01 + i

|�|eiφ

√
γ

ξ. (F3)

Using the same functions P(t ) and Q(t ) as in Appendix E, Eq. (F3) can be solved:

d

dt
(ψ01(t )e−Q(t ) )eQ(t ) = i

|�(t )|eiφ(t )

√
γ

ξ (t ) ⇒ ψ01(t )e−Q(t ) − ψ01(0) = i√
γ

∫ t

t0

|�(s)|eiφ(s)ξ (s)e−Q(s)ds

⇒ ψ01(t ) = eQ(t )

[
ψ01(0) + i√

γ

∫ t

t0

|�(s)|eiφ(s)ξ (s)e−Q(s)ds

]
. (F4)

Comparing Eqs. (F4) and (F2), we see that

ξ̇ (t ) + �

2
ξ (t ) + i(δa + 2|�(t )|)ξ (t ) = i|�(t )|e−iφ(t )√γ eQ(t )

[
ψ01(0) + i√

γ

∫ t

t0

|�(s)|eiφ(s)ξ (s)e−Q(s)ds

]
. (F5)

Multiplying both sides by −ξ ∗ exp[γLt] yields

−
(
ξ̇ (t ) + �

2
ξ (t )

)
ξ (t )∗eγLt − i(δa + 2|�(t )|)|ξ (t )|2eγLt

= −i|�(t )|e−iφ(t )ξ (t )∗e(−iδb+ γL
2 )t e−iP(t )

[
ψ01(0)

√
γ +

∫ t

t0

i|�(s)|eiφ(s)ξ (s)e(iδb+ γL
2 )seiP(s)ds

]
. (F6)

Let us assume that ψ01(0) is complex valued with a phase θ0. Then, Eq. (F6) can be rewritten as (where LHS denotes left-hand
side)

LHS = −i|�(t )|e−iφ(t )ξ (t )∗e(−iδb+ γL
2 )t e−iP(t )

[
|ψ01(0)|eiθ0

√
γ +

∫ t

t0

i|�(s)|eiφ(s)ξ (s)e(iδb+ γL
2 )seiP(s)ds

]
,

LHS×e−iθ0 = −i|�(t )|e−iφ(t )ξ (t )∗e(−iδb+ γL
2 )t e−iP(t )

[
|ψ01(0)|√γ +

∫ t

t0

i|�(s)|eiφ(s)(ξ (s)e−iθ0
)
e(iδb+ γL

2 )seiP(s)ds

]
,

LHS = −i|�(t )|e−iφ(t )
(
ξ (t )∗eiθ0

)
e(−iδb+ γL

2 )t e−iP

[
|ψ01(0)|√γ +

∫ t

t0

i|�(s)|eiφ(s)
(
ξ (s)e−iθ0

)
e(iδb+ γL

2 )seiP(s)ds

]
. (F7)

Equation (F7) may be written as

− fo + igo = (x − iy)

(
C +

∫ t

t0

[x(s) + iy(s)]ds

)
= x

[
C +

∫ t

t0

x(s)ds

]
+ y

∫ t

t0

y(s)ds + i

(
x
∫ t

t0

y(s)ds − y

[
C +

∫ t

t0

x(s)ds

])
,

(F8)

where

C = |ψ01(0)|√γ , (F9a)

x = −|�(t )||ξ (t )| exp(γLt/2) sin[φ(t ) + δbt + P(t ) + arg(ξ ) − θ0], (F9b)

y = |�(t )||ξ (t )| exp(γLt/2) cos[φ(t ) + δbt + P(t ) + arg(ξ ) − θ0], (F9c)

fo =
(
ξ̇ (t ) + �

2
ξ (t )

)
ξ (t )∗eγLt , (F9d)

go = −(δa + 2|�(t )|)|ξ (t )|2eγLt . (F9e)

Let us define the functions

X (t ) = C +
∫ t

t0

x(s)ds = R(t ) cos[θ (t )], Y (t ) =
∫ t

t0

y(s)ds = R(t ) sin[θ (t )]. (F10)

Equating real and imaginary parts of Eq. (F8) yields

− fo(t ) = Ẋ (t )X (t ) + Ẏ (t )Y (t ), go(t ) = Ẋ (t )Y (t ) − Ẏ (t )X (t ), (F11)
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where x(t )= Ẋ (t ) and y(t )=Ẏ (t ). Using the definition in Eq. (F10), we have

− fo = ẊX + ẎY = [Ṙ cos(θ ) − R sin(θ )θ̇]R cos(θ ) + [Ṙ sin(θ ) + R cos(θ )θ̇]R sin(θ ) = ṘR = 1

2

d

dt
(R2)

⇒ R(t )2 − R(0)2 = −
∫ t

t0

2 fo(s)ds. (F12)

Since R2 =X 2 + Y 2, we have R(0)2 =C2 and therefore

R(t ) =
√

C2 − 2
∫ t

t0

fo(s)ds. (F13)

Similarly,

go = ẊY − Ẏ X = [Ṙ cos(θ ) − R sin(θ )θ̇]R sin(θ ) − [Ṙ sin(θ ) + R cos(θ )θ̇]R cos(θ ) = −R2θ̇ . (F14)

Using the result in Eq. (F13) and the initial condition θ (0)=0, the solution for θ is

θ (t ) = −
∫ t

t0

go(s)

C2 − 2
∫ s

t0
fo(z)dz

ds. (F15)

To find the solution for |�(t )|, we evaluate x2 + y2 =|�|2|ξ |2 exp(γLt ) using the results above

|�|2|ξ |2eγLt = Ẋ 2+Ẏ 2 = [Ṙ cos(θ )−R sin(θ )θ̇]2+[Ṙ sin(θ )+R cos(θ )θ̇]2 = Ṙ2+R2θ̇2 = g2
o + f 2

o

C2 − 2
∫

fo
. (F16)

Inserting the definition of go from Eq. (F9e) yields

|�|2|ξ |2 exp(γLt ) = 1

C2 − 2Fo

[
(δa + 2|�|)2 exp(2γLt )|ξ |4 + f 2

o

]

⇒ |�(t )| = e−γLt 2δa|ξ |3e2γLt ± √
eγLt f 2

o (C2 − 2Fo − 4e2γLtξ 2) + δ2
aξ

4(C2 − 2Fo)e3γLt

|ξ |[C2 − 2Fo − 4ξ 2eγLt ]
, (F17)

where Fo(t ) is the antiderivative of fo(t ). If δa =0, the solution is

|�(t )| = | fo| exp(−γLt/2)

|ξ |
1√

C2 − 2Fo − 4|ξ |2eγLt
. (F18)

Knowing |�(t )| means go is a known function and x and y may be evaluated using θ from Eq. (F15). Then, the phase φ is

φ(t ) = −δbt − 2
∫ t

t0

|�(s)|ds − arg(ξ ) + θ0 + tan−1

[−x(t )

y(t )

]
. (F19)

To obtain x and y, note that

x = Ẋ = Ṙ cos(θ ) − R sin(θ )θ̇ = − fo cos(θ ) + go sin(θ )√
C2 − 2

∫
fo

, (F20)

y = Ẏ = Ṙ sin(θ ) + R cos(θ )θ̇ = − fo sin(θ ) − go cos(θ )√
C2 − 2

∫
fo

. (F21)

1. Gaussian Wave Packet

The Gaussian wave packet is

ξin(t ) = G(t − Ti ) =
√

2

τG

(
ln(2)

π

)1
4

exp

[
−2ln(2)

(t − Ti )2

τ 2
G

]
, (F22)

where |G(t )|2 has a full width at half maximum (FWHM) temporal width τG and spectral width �G =4ln(2)/τG , and integrates
to 1 (over the infinite interval from −∞ to ∞). As discussed in Appendix E 1, it is not possible to fully absorb this wave packet
and this issue manifests in the denominator of Eq. (E16) being imaginary during the rising edge of the Gaussian where

2
∫ t

t0

fi(s)ds − 4|ξin(t )|2eγLt � 0. (F23)
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[units of     ] [units of     ]

FIG. 10. Illustration of the solutions for |�i/o| along with the smoothing functions in Eq. (F24) that ensures well-behaved control fields.
Parameters: (a) γ =30�G , γL =0, τe =τG . (b) γL =10−5�G .

|�| diverges at the cross point determined by an equality in Eq. (F23). This is illustrated in Fig. 10 (blue curve). To avoid
divergences and keep |�| real, we multiply the solution in Eq. (E16) by smoothing functions

f↑(t ) = 1+sin
(

πt
τe

)
2

�
(

t + τe

2

)
�

(τe

2
−t

)
+ �

(
t − τe

2

)
, (F24)

f↓(t ) = 1−sin
(

πt
τe

)
2

�
(

t + τe

2

)
�

(τe

2
−t

)
+ �

(
− τe

2
−t

)
, (F25)

where � is a step function that equals 1 for positive arguments and 0 for negative arguments. The smoothing functions rise from
0 to 1 ( f↑) or fall from 1 to 0 ( f↓) in the interval t ∈ [−τe/2, τe/2] as half a period of the sine function.

APPENDIX G: INPUT PUMP FIELDS FOR ABSORPTION AND EMISSION

The resonator modes that couple to the pump fields are identical and the Hamiltonian associated with those modes is

Ĥpump
n = ih̄

√
γp

�t

2∑
m=1

( p̂†mŴn − p̂mŴ †
n ) + h̄χ3 p̂†1 p̂1 p̂†2 p̂2 + 1

4
h̄χ3

2∑
m=1

( p̂†m p̂m − 1) p̂†m p̂m. (G1)

The temporal shape of the input pump functions can be found by considering their equations of motion

α̇1 =
(
−�p

2
− iχ3

[ |α1|2
2

+ |α2|2
])

α1 + √
γpξ1, (G2a)

α̇2 =
(
−�p

2
− iχ3

[
|α1|2 + |α2|2

2

])
α2 + √

γpξ2. (G2b)

In Sec. III, we assumed that |α1|=|α2|, so we can write � = χ3α
∗
2α1 = |�| exp(iφ)=χ3r2

α exp[i(φ1 − φ2)], where α1 =
rα exp(iφ1) and α2 =rα exp(iφ2) with φ=φ1 − φ2. The goal is to determine the complex-valued input fields, ξ1 and ξ2, such
that Eq. (G2) yields the correct intracavity control fields α1 and α2. Let us write the pump fields in polar form: ξn =qn exp(iψn)
and substitute into Eq. (G2)

α̇n = (
ṙα + iφ̇nrα

)
eiφn =

(
−�p

2
− i

3

2
χ3r2

α

)
rαeiφn + √

γpqneiψn . (G3)

Separating equations for the real and imaginary parts yields

ṙα = −�p

2
rα + √

γpqn cos(ψn − φn), (G4a)

φ̇n = −3

2
χ3r2

α + √
γp

qn

rα
sin(ψn − φn). (G4b)

Let us guess that q1 =q2 =q and ψ1 − φ1 =−(ψ2 − φ2). Since φ=φ1 − φ2, we have

φ̇ = φ̇1 − φ̇2 = √
γp

q

rα
[sin(ψ1 − φ1) − sin(ψ2 − φ2)] = 2

√
γp

q

rα
sin(ψ1 − φ1). (G5)

Rearranging Eqs. (G4a) and (G5), we have

1

2

rαφ̇(
ṙα + �p

2 rα
) = tan(ψ1 − φ1), ⇒ ψ1 − φ1 = arctan

[
1

2

rαφ̇(
ṙα + �p

2 rα
)]

. (G6)
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Using the identity cos[arctan(x)]=1/
√

1 + x2, we find q from Eq. (G4a)

ṙα + �p

2
rα = √

γpq
1√

1 + 1
4

(
rαφ̇

ṙα+ �p
2 rα

)2
, ⇒ q = 1√

γp

√(
ṙα + �p

2
r
)2

+ φ̇2r2
α

4
. (G7)

Using the identity sin[arctan(x)]=x/
√

1 + x2, we may insert Eq. (G6) into Eq. (G4b) to obtain

φ̇1 = −3

2
χ3r2

α + √
γp

q

rα

[1

2

rαφ̇(
ṙα + �p

2 rα
)] 1√

1 + 1
4

(
rαφ̇

ṙα+ �p
2 rα

)2
= −3

2
χ3r2

α + φ̇

2
, (G8a)

φ̇2 = −3

2
χ3r2

α − φ̇

2
. (G8b)

Integrating Eq. (G8), and inserting into Eq. (G6), we find

ψ1(t ) = −3

2

∫ t

0
|�(s)|ds + φ(t )

2
+ arctan

[
1

2

rαφ̇(
ṙα + �p

2 rα
)]

, (G9a)

ψ2(t ) = −3

2

∫ t

0
|�(s)|ds − φ(t )

2
− arctan

[
1

2

rαφ̇(
ṙα + �p

2 rα
)]

. (G9b)
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[23] S. Fan, S. E. Kocabaş, and J.-T. Shen, Input-output formal-
ism for few-photon transport in one-dimensional nanophotonic
waveguides coupled to a qubit, Phys. Rev. A 82, 063821 (2010).

[24] T. Shi, S. Fan, and C. P. Sun, Two-photon transport in a
waveguide coupled to a cavity in a two-level system, Phys. Rev.
A 84, 063803 (2011).

[25] D. Valente, Y. Li, J. P. Poizat, J. M. Gérard, L. C. Kwek,
M. F. Santos, and A. Auffèves, Optimal irreversible stimulated
emission, New J. Phys. 14, 083029 (2012).

[26] S. Xu and S. Fan, Input-output formalism for few-photon trans-
port: A systematic treatment beyond two photons, Phys. Rev. A
91, 043845 (2015).

[27] Y. Pan, D. Dong, and G. Zhang, Exact analysis of the response
of quantum systems to two-photons using a QSDE approach,
New J. Phys. 18, 033004 (2016).

[28] M. P. Schneider, T. Sproll, C. Stawiarski, P. Schmitteckert,
and K. Busch, Green’s-function formalism for waveguide QED
applications, Phys. Rev. A 93, 013828 (2016).

[29] S. Xu and S. Fan, Generalized cluster decomposition principle
illustrated in waveguide quantum electrodynamics, Phys. Rev.
A 95, 063809 (2017).

[30] P. Longo, P. Schmitteckert, and K. Busch, Dynamics of photon
transport through quantum impurities in dispersion-engineered
one-dimensional systems, J. Opt. A: Pure Appl. Opt. 11, 114009
(2009).

[31] P. Longo, P. Schmitteckert, and K. Busch, Few-Photon Trans-
port in Low-Dimensional Systems: Interaction-Induced Radia-
tion Trapping, Phys. Rev. Lett. 104, 023602 (2010).

[32] A. Nysteen, P. T. Kristensen, D. P. S. McCutcheon, P. Kaer,
and J. Mørk, Scattering of two photons on a quantum emitter
in a one-dimensional waveguide: Exact dynamics and induced
correlations, New J. Phys. 17, 023030 (2015).

[33] T. Caneva, M. T. Manzoni, T. Shi, J. S. Douglas, J. I. Cirac, and
D. E. Chang, Quantum dynamics of propagating photons with
strong interactions: A generalized input–output formalism, New
J. Phys. 17, 113001 (2015).

[34] R. Trivedi, K. Fischer, S. Xu, S. Fan, and J. Vuckovic, Few-
photon scattering and emission from low-dimensional quantum
systems, Phys. Rev. B 98, 144112 (2018).

[35] B. Q. Baragiola, R. L. Cook, A. M. Brańczyk, and J. Combes,
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