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We develop an operator-based description of two types of multimode-entangled single-neutron quantum
optical devices: Wollaston prisms and radio-frequency spin flippers in inclined magnetic-field gradients. This
treatment is similar to the approach used in quantum optics, and is convenient for the analysis of quantum
contextuality measurements in certain types of neutron interferometers. We describe operationally the way
multimode-entangled single-neutron states evolve in these devices, and provide expressions for the associated
operators describing the dynamics, in the limit in which the neutron state space is approximated by a finite tensor
product of distinguishable subsystems. We design entangled-neutron interferometers to measure entanglement
witnesses for the Clauser, Horne, Shimony, and Holt and Mermin inequalities, and compare the theoretical
predictions with recent experimental results. We present the generalization of these expressions to n entangled
distinguishable subsystems, which could become relevant in the future if it becomes possible to add neutron
orbital angular momentum to the experimentally accessible list of entangled modes. We view this paper as a
necessary first step towards a theoretical description of entangled neutron scattering from strongly entangled
matter, and we explain why it should be possible to formulate a useful generalization of the usual Van Hove
linear-response theory for this case. We also briefly describe some other scientific extensions and applications
which can benefit from interferometric measurements using the types of single-neutron multimode entanglement
described by this analysis.
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I. INTRODUCTION

Conventional neutron interferometry, employing devices
constructed from large perfect single crystals of silicon, has
been used to explore various foundational aspects of quantum
mechanics [1,2]. Although neutron spin-echo devices are of-
ten viewed in terms of Larmor precession of the neutron spin,
under special physical conditions, the action of these devices
is more suitably interpreted in terms of neutron interferometry
and quantum entanglement [3]. In this paper we describe
entanglement properties and dynamics in single-neutron in-
terferometry as realized with instruments typically utilized
in spin-echo scattering angle measurement (SESAME) tech-
niques [4]. It is our belief that an entanglement-based formu-
lation for neutron spin-echo spectroscopic techniques such as
SESAME can enable the future development of a theory for
single-particle multimode-entangled neutron scattering from
condensed-matter systems that will shed light on exotic, non-
local correlations in materials.

A spin-echo neutron interferometer [5] employing either
magnetic Wollaston prisms (MWPs) [6] or radio-frequency
neutron spin flippers (RFNSFs) coupled with magnetic-field
boundaries inclined to the neutron momentum [7] can entan-
gle the spin, path (MWP), and energy states (RFNSF) of a

single neutron [3]. We present a single-neutron quantum op-
tics analysis to describe the results of recent entanglement wit-
ness [8] measurements realized in an experimentally flexible
neutron spin-echo setup [9]. Although similar entanglement
witness measurements were conducted in the past using per-
fect crystal neutron interferometry [10,11], there are two main
features of the experimental work conducted with our type
of interferometer which are transformative. We generated and
controlled single-particle entangled neutron states sensitive
to spin-dependent interactions, with an entanglement length
ξ (distance between neutron paths) that can be adjustable
from nanometers to micrometers, and an entanglement energy
separation flexible as well from peV to sub-neV with both two
and three entangled distinguishable subsystems. Unlike the
cm-scale entanglement lengths generated in the perfect crystal
neutron interferometers, these much smaller length scales
coincide with the typical range of length scales where one
expects interesting entangled excitations in condensed-matter
systems to exist. Furthermore, we demonstrated the capability
to continuously tune the number of entangled subsystems, or
modes, from 3 to 2 by adjusting the entanglement energy
separation, thereby “turning off” the energy entanglement,
which is one of the most relevant variables for coupling to
condensed-matter excitations.
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Naturally, the first step in a plan to develop entangled
neutron scattering is to prove that the neutron states realized
in the neutron spin-echo spectrometers of interest are in fact
entangled. Quantum entanglement, or nonseparability, is at
the core of the fundamental difference between classical and
quantum representations of reality [12]. To test for the pres-
ence of entanglement, we perform a contextuality test. The
Kochen-Specker theorem [13–15] articulated and addressed
the concept of quantum contextuality [16], which distills the
essence of Bohr’s complementarity concept by quantifying
how the measured value of one quantum observable in a
system depends on the results of other quantum observables
being measured along with it in the same system [17]. For
any set of quantum observables one can define contextuality
witnesses which are expectation values of correlated observ-
ables chosen to be sensitive to the degree of entanglement of
the state measured [8,18,19]. In a noncontextual theory, those
witnesses satisfy certain (classical) bounds. If a measurement
violates the relevant bounds it indicates the impossibility of
noncontextual hidden variables (NCHVs).

In our setup we are able to entangle the spin, path (position
or trajectory), and energy observables of a single neutron in
either spin and path or spin, path, and energy by using the
action of a trapezoidal RFNSF. The relevant bounds for these
two cases are set by the Clauser, Horne, Shimony, and Holt
(CHSH) inequality [18,19] for spin and path, and the Mermin
inequality [8] for spin, path, and energy subsystems. In the
limit in which one can treat the relevant degrees of freedom of
the neutron in terms of finite-dimensional subsystems, we the-
oretically demonstrate that as the separation h̄� of the energy
modes approaches zero the Mermin contextuality inequality
reduces to the CHSH one, as expected. Our experimental
results [9] are in good agreement with this expectation. We
therefore claim that we have experimentally demonstrated a
state-of-the-art quantum entangled single-neutron probe, and
a neutron interferometer of unprecedented flexibility, which
can be used to develop and explore new forms of entangled
scattering experiments.

The validity of the approximation of the neutron state space
in terms of distinguishable subsystems, which we employ in
this paper, deserves a brief explanation. The subsystem (mode
or qubit) treatment of the spin- 1

2 degree of freedom of the
neutron is complete as we can ignore the antineutron degrees
of freedom present in principle in the four-component neutron
Dirac spinor in the extreme nonrelativistic limit in which
we operate the experiment. The distinguishable subsystem
treatment of energy and path is an approximation, albeit
an excellent one. For the neutron path degree of freedom,
the validity of the distinguishable subsystem picture depends
on being, in principle, able to achieve negligible overlap
of the neutron coherence volumes associated with the two
possible paths through the interferometer. As the neutron
source itself possesses no coherence, the coherence volume
is developed dynamically [20] through the entanglement-free
neutron interactions upstream of the apparatus which localizes
the neutrons from the source well enough to form a beam with
a well-defined average momentum direction. In our case, the
longitudinal coherence length [21] is roughly 16 nm and the
transverse coherence length is about 100 nm at the sample,
compared to the spin-echo separation of 1.5 μm given 0.4-nm

wavelength neutrons. The transverse coherence length varies
in different measurement methods and depends on whether
it is a coherence volume defined by beam collimation or a
wave-front property [22]. For the neutron energy degree of
freedom the validity of the finite-subsystem approximation
depends on the sharpness of the radio-frequency (RF) field
energy h̄ω of the magnetic field which couples to the neutron
magnetic moment compared to the energy separation between
the two neutron energies in the static magnetic field inside the
device. It also depends on a weak enough coupling between
the neutron and the external RF magnetic fields, so that one
can treat the interaction in terms of the exchange of one
photon. All of the conditions stated above are very well
satisfied in the experiments we conducted and in general in the
instrumentation used in almost all similar neutron spin-echo
spectrometers.

The neutron interferometric setup we describe below [9] is
well suited for exploring spin dynamics in the most physically
interesting cases of highly entangled many-body systems,
for which there is a need to develop new techniques that
can unveil complex emergent behavior. For a quantitative
interpretation of entangled neutron scattering one must also
develop a scattering theory for entangled neutron beams on
entangled systems. The description of the coherent interac-
tions of the neutron with macroscopic media, which generate
the entanglement and enable the measurement of the relevant
entanglement witnesses, can be viewed as the zeroth-order
approximation to the theory of interest in the limit of elastic
interactions with no entanglement. Such an entangled neutron
beam can be thought of as a truly quantum probe of condensed
matter.

In addition to the three entangled neutron properties of
spin, path, and energy the various forms of entanglement
of which we describe below, one can also imagine that in
the future it may be possible to produce single-particle neu-
tron states with additional orbital angular momentum (OAM)
mode entanglement. If these efforts can be successful at the
neutron single-particle level, one can imagine the future pos-
sibility of generating single-particle entangled neutron states
in four different dynamical variables: spin, path, energy, and
OAM. We therefore present the generalization of our formal-
ism to cover some aspects of this general case as well. This
may lead to the development of new protocols for quantum
estimation and metrology of fundamental physical constants
[23,24].

This paper is organized as follows. In Sec. II we briefly
review the concept of contextuality in measurements of phys-
ical properties, and the way it is quantified by means of entan-
glement witnesses. We next present a theoretical description
of the devices utilized in the design of multimode-entangled
single-neutron interferometers. In Sec. III we introduce two
types of neutron devices that act as “entanglers” of the dis-
tinguishable properties of the neutron. They are the MWP
and RFNSFs combined with field gradients inclined to the
neutron momentum. We discuss the experimental setup for
the entangled neutron interferometers in Sec. IV. The exact
relation between the measured spin polarization of the neu-
tron and the entanglement witnesses is explained in Sec. V.
In Sec. VI we present the generalization to multiple-mode
entanglement of n distinguishable subsystems. In Sec. VII

042318-2



OPERATOR ANALYSIS OF CONTEXTUALITY-WITNESS … PHYSICAL REVIEW A 101, 042318 (2020)

the recent experimental results are presented and analyzed in
light of the theory developed. Section VIII discusses ideas
for further development of a broadly applicable theory for
entangled neutron scattering from entangled systems in the
same linear-response limit where the usual Van Hove treat-
ment of unentangled neutron scattering holds. Furthermore,
we also provide an outlook for future extensions to add OAM
and perform quantum-enhanced metrology of fundamental
physical constants [23]. Finally, the Appendix applies the
operator formalism developed in this paper to the first triply
entangled neutron contextuality test conducted using a perfect
crystal neutron interferometer [11].

II. BACKGROUND

A. Testing quantum contextuality: CHSH inequality

A fundamental characteristic of a quantum description of
physical phenomena is its contextual nature. Measurement
outcomes of compatible sets of quantum observables, known
as contexts, cannot reveal preexistent values of the properties
measured. The measured values depend upon the context. The
Kochen-Specker theorem proves that NCHV theories can-
not reproduce the empirical predictions of quantum physics
[13–15]. It asserts that in a Hilbert space of dimension larger
than or equal to 3 it is impossible to associate determinate
probabilities, pi = 0 or 1, with every projection operator
Pi, in such a way that, if a set of commuting Pi satisfies∑

i Pi = 1, then
∑

i pi = 1. Bell nonlocality [25–27], on the
other hand, refers to the fact that the measurement outcomes
of spacelike separated observables are not independent and,
therefore, cannot be reproduced under the assumption of local
realism proposed by Einstein, Podolsky, and Rosen [28].
Unlike Bell nonlocality, quantum contextuality is independent
of the space-time structure of the measurements and, there-
fore, experiments to test it need not be performed involving
spacelike separated events.

Although quantum contextuality and Bell nonlocality rep-
resent independent concepts [17], one can associate [16] every
Bell inequality to a quantum contextuality inequality using
Neumark’s dilation argument [29], where the noncontextual
bound for the contextuality inequality equals the local bound
of the Bell inequality. Then, maximum violation of the contex-
tuality inequality will correspond to the maximum violation
of the Bell inequality predicted by quantum mechanics. In
this paper, we adapt a particular Bell inequality, namely, the
CHSH inequality [18], to test quantum contextuality of a
neutron state in a particular experimental setup. We use such a
contextuality test to prove that our neutron beam is entangled.

We treat spin (s) and path (p) degrees of freedom as two
distinguishable subsystems [3,30,31], and associate to our
system the tensor product Hilbert state space H = Hs ⊗ Hp.
Both Hs and Hp describe two-dimensional (qubit) subsys-
tems: Hs is the usual subspace of a nonrelativistic two-
component spin- 1

2 spinor and Hp is the subspace spanned by
two different path states describing the neutron’s trajectory,
which are far enough apart that one can neglect their spa-
tial overlap. We define two pairs of observables, σ s

u(αi ) and
σ

p
v(χ j )

, acting on the corresponding subsystems, with i, j ∈
{1, 2}, and u(α), v(χ ) labeling operators associated with

angles α and χ in the x-y plane of the corresponding Bloch
spheres:

σ s
u(α) = cos α σ s

x + sin α σ s
y , (1)

σ
p
v(χ ) = cos χ σ p

x + sin χ σ p
y . (2)

Having introduced the observables, we now define the CHSH
witness S:

S = E (α1, χ1) + E (α1, χ2) + E (α2, χ1) − E (α2, χ2), (3)

where E (α, χ ) represents the expectation value of σ s
u(α)σ

p
v(χ )

over a state |�〉 ∈ H, i.e., E (α, χ ) = E [σ s
u(α)σ

p
v(χ )] =

〈�|σ s
u(α)σ

p
v(χ )|�〉. No classical assignments of eigenvalues of

observables by a local hidden variable theory can violate the
CHSH inequality

|S| � 2, (4)

but quantum-mechanical expectations can. The maximum
value for S set by quantum mechanics is the Tsirelson bound
2
√

2 [27]:

−2 � S � 2 (classical statistics),

−2
√

2 � S � 2
√

2 (quantum statistics).

Any state violating the CHSH inequality (4) is necessarily an
entangled state in the spin and path degrees of freedom.

B. Mermin contextual inequality

In 1990, Mermin proposed a stronger version of the Bell in-
equality [8,32], now called the Mermin inequality in the quan-
tum information literature. He considered correlated measure-
ments on entangled quantum states with n � 3 subsystems,
and showed that the size of the violation of his proposed
inequality in quantum mechanics increases exponentially with
n. We apply Mermin’s inequality to test quantum contextual-
ity of the single-neutron measurements, which as mentioned
above does not require measurements to be spacelike sep-
arated. We consider the spin, path, and energy degrees of
freedom of the neutron as three distinguishable subsystems.
The Hilbert space describing such a system can be expressed
in terms of a tensor product H = Hs ⊗ Hp ⊗ He, where Hs,
Hp, and He are the spin, path, and energy subspaces. All three
subspaces are two dimensional: Hs is the usual subspace of a
nonrelativistic two-component spin- 1

2 spinor, while Hp (He)
is a subspace spanned by two different path states (energy
states) of the neutron’s trajectory (energy). For this system we
write the Mermin witness as

M =E
[
σ s

x σ
p

x σ e
x

] − E
[
σ s

x σ
p

y σ e
y

] − E
[
σ s

y σ
p

x σ e
y

] − E
[
σ s

y σ
p

y σ e
x

]
,

(5)
where E [σ s

x,yσ
p

x,yσ
e
x,y] is the expectation value of σ s

x,yσ
p

x,yσ
e
x,y

over a state |�〉 ∈ H. No classical assignments of eigenvalues
of these observables by a local hidden variable theory can
violate the Mermin inequality

|M| � 2, (6)

while quantum-mechanical expectations may. The maximum
value for M set by quantum mechanics is 4:

−2 � M � 2 (classical statistics),

−4 � M � 4 (quantum statistics).
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Any state violating the Mermin inequality (6) is necessarily an
entangled state in spin, path, and energy degrees of freedom.

III. NEUTRON ENTANGLER DEVICES

An essential part of any quantum interferometer is the
entangler which generates the desired entangled state starting
from an unentangled initial state. In this section we discuss the
construction and working principles of two specific entangler
devices for a single-neutron state: (i) a pair of MWPs and (ii) a
pair of RFNSFs, with magnetic-field boundaries inclined with
respect to the neutron momentum, used in the interferometer
discussed in Sec. IV. The first device entangles the incident
neutron in spin and path modes, while the second device can
entangle the neutron either into two modes of spin and path
or into three modes of spin, path, and energy. We follow the
general guiding principles for physical control of quantum
information processing devices as explained, for instance, in
Chap. 7 of Ref. [33].

A. Magnetic Wollaston prism: Polarizing beam splitter

In this section we show how a pair of MWPs work together
to entangle a neutron beam in spin and path subsystems
or modes. Just like an optical Wollaston prism refracts the
two polarization components of incident light into different
directions [34], a MWP [6] coherently refracts the two spin
components of the incident neutron beam into two different
directions. The device is cubic in shape and divided into two
right-angled triangles as shown in Fig. 1. Each triangular
region has a pair of superconducting coils in both the upper
and lower faces. The large currents in the superconductors
create strong static antiparallel magnetic fields �B of equal
magnitude in both triangular regions which the neutrons pass
directly through with negligible decoherence. The triangular
magnetic-field geometry is sharply defined by the Meissner
effect from high-Tc films on all three sides. Neutrons which
pass quickly enough through the sharply defined magnetic-
field discontinuity at the interface between these two tri-
angular regions experience a nonadiabatic change in their
potential energy from the −�μ · �B interaction of the neu-
tron magnetic moment �μ with the field. The motion normal
to the magnetic-field boundary is well modeled as a one-
dimensional potential-energy step the sign of which is differ-
ent for the two neutron spin states, and the motion parallel
to the magnetic-field boundary sees no gradient. The neutron
therefore refracts from this step change in the potential with
an amplitude that can be calculated very simply using one-
dimensional quantum mechanics of a single particle. The final
energies and momenta of the two refracted components of the
initial neutron state are determined by applying energy and
momentum conservation at the boundary. One spin projection
along �B gains kinetic energy while the other loses kinetic
energy, and so these two neutron spin states exit the device in
different directions. By the linearity of quantum mechanics,
an incident neutron state which is a coherent superposition
of these two spin components becomes entangled in spin and
momentum by this first component of the MWP as the two
different momenta have the same magnitude but are traveling
in different directions. If the incoming neutron spin direction

Pole piece

HTS film

HTS tape

Mu metal

120 mm

x

y

z

⊗ �B

�B

x

y
z

FIG. 1. The top part shows a detailed view of a MWP. Each tri-
angular shaped region has a magnetic field �B antiparallel to the other
one. The geometry of this arrangement promotes efficient magnetic
flux return and helps to reduce unwanted neutron optical aberrations
in the final neutron spin state from stray magnetic fields. The gold
color highlights the high-Tc superconducting (S) tape which, in com-
bination with the high-Tc S film coated onto the sapphire substrates
that the neutron beam passes through, is important for the creation
of a spatially sharp magnetic-field boundary along the hypotenuse of
each triangle. The bottom part shows the idealization employed to
work out the dynamics of the entanglement generation in terms of
a refraction of the incident neutron state by the optical potential of
the magnetic field created by the MWP. As a static magnetic field is
a birefringent medium for a neutron, the two neutron spin states are
refracted into two different directions as shown (spin arrows point
along the z direction). However, as the potential energy from this
MWP is time independent there is no energy exchange between the
neutron and the device and so the final kinetic energy of the neutron
as it exits the device is unchanged.

is normal to the magnetic-field directions inside the MWP, the
two refracted amplitudes have the same magnitude. The field
inside the MWP is chosen to be much stronger than the guide
fields that are applied throughout the apparatus to minimize
possible decoherence in the rest of the interferometer during
the passage of the neutron between the optical elements. In
this paper we will ignore the very small perturbing effects of
the guide fields, but if needed they could be taken into ac-
count to help quantify possible dephasing effects in sensitive
contextuality measurements.

As shown in Fig. 2, two oppositely oriented but other-
wise identical MWPs acting in sequence entangle a polarized
incident unentangled neutron state (normal to the internal
magnetic-field direction) into spin and path modes. Since the
neutron is a spin- 1

2 particle with only two magnetic states,
the dimensionality of the path subspace is also 2. For our
analysis we consider the idealized limiting case of a neutron
beam incident perpendicular to the front and back faces of
the MWP and with the spin state in the x-y plane. The first
component of the MWP entangles the neutron beam into spin
and momentum as described above while the second MWP,
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FIG. 2. A pair of MWPs entangles the incident neutron state in
spin and path degrees of freedom. Each MWP consists of two regions
with antiparallel magnetic fields �B: the direction of the magnetic field
in the gray shaded regions is in the +z direction, while the direction
of the magnetic field in unshaded regions is in the −z direction. A
neutron beam incident in path a with z-spin component up refracts
to path c while its down-spin component refracts to path d . The
entanglement length, ξ , is defined as the separation between neutron
paths.

which has opposite magnetic-field orientations to that of the
first MWP, makes the two incident spin trajectories parallel so
that the magnitude and direction of the momenta are the same,
but the spatial wave functions do not overlap and are separated
by the entanglement length ξ , thus entangling the exiting
neutron state into spin and path modes as shown in Fig. 2.
We denote the incident path as a, and the two outgoing paths
as c (spin-up) and d (spin-down). The transition amplitudes
can be read directly from the map

|↑ a〉 	→ |↑ c〉, (7)

|↓ a〉 	→ |↓ d〉. (8)

Following steps similar to those taken to represent the
action of a polarizing beam splitter for photons [35], we
next derive the unitary operator corresponding to our MWP
entangler (MWPE). First we derive an operator UBS which
accounts for the beam-splitting operation of the MWPE. We
label the transition amplitudes from path a to path c as
(t↑,↓) and the transition amplitudes from path a to path d as
(r↑,↓). We label b as the incident path transmitted to d and
reflected to c as shown in Fig. 3. In our interferometer we
only used the |a〉 input state. We express UBS in the bases
{{|↑〉, |↓〉} ⊗ {|a〉, |b〉}} 	→ {{|↑〉, |↓〉} ⊗ {|c〉, |d〉}} as

UBS =
(

1 0
0 0

)
⊗

(
t↑ ir↑
ir↑ t↑

)
+

(
0 0
0 1

)
⊗

(
t↓ ir↓
ir↓ t↓

)

=

⎛
⎜⎝

t↑ ir↑ 0 0
ir↑ t↑ 0 0
0 0 t↓ ir↓
0 0 ir↓ t↓

⎞
⎟⎠, (9)

with t↑,↓, r↑,↓ ∈ R and |t↑,↓|2 + |r↑,↓|2 = 1. Note that the first
basis vector for each subsystem corresponds to the vector(1

0

)
, while the second one corresponds to

(0
1

)
. The transition

amplitudes are described in Eqs. (7) and (8) and we set
t↑ = 1 = r↓. Now we consider the Larmor precession [36]
that is produced from the static magnetic fields of the MWPs.
By construction all the magnetic fields in the entangler are
either parallel or antiparallel to the z axis, and the symmetric
construction minimizes the size of the magnetic-field com-
ponents experienced by the neutrons in the other directions.

FIG. 3. Unitary operator, Uent, associated to the MWP entangler
(MWPE) with all the incoming and outgoing spins or paths indicated.
Relevant transition amplitudes are marked in red.

Therefore, we can combine effects from all the magnetic fields
into a single unitary operator D(ẑ,−2ϕ) = exp[iϕσ s

z ]. Using
Uent = D(ẑ,−2ϕ)UBS one can derive

Uent =

⎛
⎜⎝

eiϕ 0 0 0
0 eiϕ 0 0
0 0 0 ie−iϕ

0 0 ie−iϕ 0

⎞
⎟⎠.

This matrix will introduce complex phases in the transition
amplitudes defined in Eqs. (7) and (8). If the incident state is
|↑〉+|↓〉√

2
⊗ |a〉, then this entangler creates a Bell state

Uent
|↑〉 + |↓〉√

2
⊗ |a〉 = eiϕ |↑ c〉 + |↓ d〉√

2
, (10)

where we have redefined the basis states |a〉 → |a〉, |c〉 → |c〉,
ie−i2ϕ |b〉 → |b〉, and ie−i2ϕ |d〉 → |d〉, to get rid of the relative
phase between |↑ c〉 and |↓ d〉. In this new basis

Uent =

⎛
⎜⎝

eiϕ 0 0 0
0 eiϕ 0 0
0 0 0 −e−i3ϕ

0 0 eiϕ 0

⎞
⎟⎠.

B. RF flipper: Energy entangler

In this section we show how a pair of RFNSFs com-
bined with static magnetic-field boundaries inclined relative
to the neutron momentum can work together to entangle an
incident neutron in its various distinguishable subsystems.
This RFNSF group (RFNSFG) entangler can operate in two
modes: it entangles neutrons either in the two degrees of
freedom of spin and path or in the three degrees of freedom
of spin, path, and energy. As shown below, the spin, path,
and energy entanglement can be continuously tuned into spin
and path entanglement by adjusting the RF magnetic-field
frequency.

We denote the neutron path state incident upon the en-
tangler with energy E0 as |0〉. The entangler consists of two
RFNSFs (RF 1 and RF 2) and a static magnetic field with
two parallel inclined magnetic-field boundaries as shown in
Fig. 4. The static field acts in both parallelogram regions. The
inclined boundaries of the static magnetic-fields generates a
large magnetic-field gradient with a component normal to the
neutron beam momentum that refracts the incoming neutron
beam as discussed above for the MWPs. The RFNSFs with
the field gradients act on the neutron spin and path degrees of
freedom in the same way as described above for the MWPs.

042318-5



SHUFAN LU et al. PHYSICAL REVIEW A 101, 042318 (2020)

FIG. 4. The top part shows a picture of a single RFNSF in the
ISIS experimental setup [9]. The middle panel displays a pair of
RFNSFs combined, i.e., a RFNSFG, that works as an entangler, with
static magnetic-field boundaries inclined relative to the y direction.
The first RFNSF (RF 1) combined with refraction at the inclined
field boundary entangles the neutron into spin (spin arrows point
along the z direction), path, and energy modes. The second RF 2 can
either change the entanglement of the spin, path, and energy modes
or output only spin and path entangled subsystems when � = 0. The
bottom part of the figure shows the kinetic energies E± = E0 ± h̄�

of the two spin components. For � = 0, both spin components have
the same energy E0 upon exiting the device.

An external RF field of both frequency ω and amplitude
chosen so that on average only one RF photon is exchanged
between the neutron and the field flips the spin of the neutron
[37]. The spin-up component loses energy and the spin-down
component gains energy under this photon exchange. The
second RFNSF operates at a different frequency ω − �. The
neutron spin flips again by exchanging a photon of energy
h̄(ω − �) so that the spin-up component has kinetic energy
E− = E0 − h̄� and the spin-down component has kinetic
energy E+ = E0 + h̄�. The final state of the neutron is there-
fore entangled in spin, path, and energy degrees of freedom.
Denoting the two outgoing paths as 1 (spin-up) and 2 (spin-

FIG. 5. The entangler constructed from the RFNSFG set to
generate three-mode entanglement can be expressed as a unitary
operator (Uent). The transition amplitudes marked in red correspond
to |↑ 0 E0〉 	→ |↑ 1 E−〉 and |↓ 0 E0〉 	→ |↓ 2 E+〉.

down) with entanglement length ξ , the transition amplitudes
become (see Fig. 5)

|↑ 0 E0〉 	→ |↑ 1 E−〉, (11)

|↓ 0 E0〉 	→ |↓ 2 E+〉. (12)

As for the MWPs, a small static magnetic field �B0 is
applied over the whole interferometer to minimize the genera-
tion of decoherence of the neutron spin from the environment.
We neglect the effect of this small field in the entangler.

To derive the unitary operator for this entangler, we write
down the Hamiltonian H which implements the transition
amplitudes in Eqs. (11) and (12) as

H = (|↑ 1〉〈↑ 0| + |↓ 0〉〈↓ 2|) ⊗ T + H.c.,

where T = |E0〉〈E+| + |E−〉〈E0|, and H.c. stands for the Her-
mitian conjugate. The corresponding propagator is exp[−iHt

h̄ ].
By expanding the exponential one can show

exp

[−iHt

h̄

]
= 1 − i sin

t

h̄
H −

(
1 − cos

t

h̄

)
H2,

where we used H3 = H . For t = π h̄
2 ,

exp

[−iπH

2

]
= 1 − i(V↑ + V↓),

with († denotes the Hermitian conjugate)

V↑ = P↑ ⊗ (|1〉〈0| ⊗ T + |0〉〈1| ⊗ T † − iP↑
pe),

V↓ = P↓ ⊗ (|0〉〈2| ⊗ T + |2〉〈0| ⊗ T † − iP↓
pe).

Here, Pψ = |ψ〉〈ψ | represents the projector onto the state |ψ〉,
P↑

pe = P0E0 + P0E+ + P1E− + P1E0 , and P↓
pe = P0E− + P0E0 +

P2E0 + P2E+ . This propagator includes the transitions dis-
cussed in Eqs. (11) and (12). The time t is determined by the
incident neutron speed through the device as both h̄� � E0

and h̄ω � E0. We also need to include the Larmor precession
phases. Let the effects from all the magnetic fields be com-
bined into a single unitary matrix D(ẑ,−2ϕ) = exp[iϕσ s

z ] as
for the MWPs. Using Uent = D(ẑ,−2ϕ) exp[−iπH

2 ], one can
show that

Uent = eiϕ (P↑ − iV↑) + e−iϕ (P↓ − iV↓).
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FIG. 6. Entangler (Uent) constructed from the RFNSFG set to
generate two-mode entanglement. Transition amplitudes marked in
red correspond to |↑ 0〉 	→ |↑ 1〉 and |↓ 0〉 	→ |↓ 2〉.

This matrix possesses complex phases in the transition ampli-
tudes as discussed in Eqs. (11) and (12). As before we redefine
the basis −ieiϕ|1〉 → |1〉 and −ie−iϕ |2〉 → |2〉 to get

Uent = eiϕP↑ + P↑ ⊗ (|1〉〈0| ⊗ T − ei2ϕ |0〉〈1|
⊗T † − eiϕP↑

pe) + e−iϕP↓ + P↓ ⊗ (|2〉〈0| ⊗ T †

−e−i2ϕ |0〉〈2| ⊗ T − e−iϕP↓
pe).

If the incident beam is |↑〉+|↓〉√
2

⊗ |0 E0〉 then this entangler
creates the Greenberger-Horne-Zeilinger (GHZ) state

Uent
|↑〉 + |↓〉√

2
⊗ |0 E0〉 = |↑ 1 E−〉 + |↓ 2 E+〉√

2
. (13)

Next we describe the mode of operation of this entangler
when only the spin and path subspaces become entangled.
When � = 0, E− = E0 = E+, and we can disregard the en-
ergy subsystem altogether. The transition amplitudes

|↑ 0〉 	→ |↑ 1〉, (14)

|↓ 0〉 	→ |↓ 2〉 (15)

are depicted in Fig. 6, for which we propose a Hamiltonian

H = |↑ 1〉〈↑ 0| + |↓ 2〉〈↓ 0| + H.c.,

which implies H2 = 1 − P↑2 − P↓1. We follow the same pro-
cedure as in the three subsystem case. Expanding the expo-
nential exp[−iHt

h̄ ] and setting t = π h̄
2 one can show that

exp

[−iπH

2

]
= P↑2 + P↓1 − i(|↑ 1〉〈↑ 0| + |↓ 2〉〈↓ 0| + H.c.).

Including Larmor precession one can finally derive the desired
unitary operator:

Uent = eiϕ (P↑2 − i|↑ 1〉〈↑ 0| − i|↑ 0〉〈↑ 1|)
+ e−iϕ (P↓1 − i|↓ 2〉〈↓ 0| − i|↓ 0〉〈↓ 2|).

To avoid the complex phases in the transition amplitudes
discussed in Eqs. (14) and (15), one can again redefine the
base states as −ieiϕ|1〉 → |1〉 and −ie−iϕ |2〉 → |2〉:

Uent = |↑ 1〉〈↑ 0| + eiϕP↑2 − ei2ϕ |↑ 0〉〈↑ 1|
+ |↓ 2〉〈↓ 0| + e−iϕP↓1 − e−i2ϕ |↓ 0〉〈↓ 2|.

For an incident neutron in the state |↑〉+|↓〉√
2

⊗ |0〉 with
energy E0 this entangler creates a Bell state which in that
basis is

Uent
|↑〉 + |↓〉√

2
⊗ |0〉 = |↑ 1〉 + |↓ 2〉√

2
. (16)

IV. NEUTRON INTERFEROMETERS

In this section we construct the mathematical representa-
tion of the unitary operations realized by the neutron interfer-
ometer used in our measurements by applying sequences of
the two entangler operators constructed in Sec. III. In combi-
nation with coherent neutron optical elements introduced into
the interferometer which introduce adjustable phase shifts be-
tween the components of the different subsystems, one can re-
alize measurements of the entanglement witnesses described
below solely through count rates measured in a neutron detec-
tor after a correctly chosen final-state spin projection.

A. Neutron interferometer with magnetic Wollaston prisms

In this apparatus, entanglement is created using the entan-
gler constructed by a pair of MWPs discussed in Sec. III A.
This apparatus entangles the neutron spin and path subspaces.
The interferometer possesses three stages (see Fig. 7). First
a Bell state is created from an incident unentangled state
|ψi〉 = |↑〉+|↓〉√

2
⊗ |a〉 by the entangler discussed in Eq. (10):

|ψBell〉 = Uent|ψi〉 = eiϕ |↑ c〉 + |↓ d〉√
2

.

To implement the entanglement witness measurements we
use a spin phase coil Us(α), to introduce a relative phase shift
between the two spin states, and transmission through the
quartz crystal Up(χ ), to introduce a relative phase between
the two path states:

Us(α) = |↑〉〈↑| + eiα|↓〉〈↓|,
Up(χ ) = |c〉〈c| + eiχ |d〉〈d|.

The combined effect of these two commuting phase shifters
leads to

|ψp〉 = Up Us|ψBell〉 = eiϕ |↑c〉 + ei(α+χ )|↓d〉√
2

.

The recombination of the path amplitudes of the entangled
neutron state is done by an inverse MWP (dis)entangler U −1

ent :

|ψ f 〉 = U −1
ent |ψp〉 = |↑〉 + ei(α+χ )|↓〉√

2
⊗ |a〉.

Finally, |ψ f 〉 passes through a π
2 spin turner (flipper) and

then enters the polarization analyzer and the detector. Each
Pauli matrix defined in Eqs. (1) and (2) can be decomposed in
terms of projectors

σ s
u(α) = Ps(α) − Ps(α + π ), (17)

σ
p
v(χ ) = Pp(χ ) − Pp(χ + π ), (18)

defined as

Ps(α) = |+, α〉〈+, α| with |+, α〉 = |↑〉 + eiα|↓〉√
2

,
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π/2

(α) (χ) π/2

ξ

|↑〉

|↓〉

|c〉

|d〉

α
P s(α)

χ

P p(χ)

x

y
z π

⊗

⊗

⊗

⊗

Uent

MWPE MWPE

|ψi〉 |ψBell〉 |ψp〉 |ψf 〉

U−1
entUs Up

Quartz
Crystal Detector

Spin
Phase

P s
x

FIG. 7. The interferometer consists of two MWPEs, two coherent neutron optical phase generators, and a spin projection measurement.
Uent entangles the incident neutron state into spin and path subsystem modes, while U −1

ent recombines and disentangles the neutron state. Two
phase shifters Us(α) and Up(χ ) acting on spin and path subspaces are applied between the entanglers to generate the phase shifts required for
the entanglement witness measurements. A spin analyzer set to pass incident neutrons polarized in the +x direction is followed by a neutron
detector to complete the interferometric measurement.

Pp(χ ) = |+, χ〉〈+, χ | with |+, χ〉 = |c〉 + eiχ |d〉√
2

,

for which σ s
u(α)|+, α〉 = (+1)|+, α〉 and σ

p
v(χ )|+, χ〉 =

(+1)|+, χ〉. The combined effect of the instruments involved
in this last stage realizes a projective measurement Ps(0)
on the spin subsystem, which counts neutrons in the state
|+, 0〉 = |+〉 = |↑〉+|↓〉√

2
.

Let N (α, χ ) be the number of neutrons detected for phase
shifts α and χ , then one can show that

N (α, χ )

N (α, χ )max
= |〈ψ f |+〉|2

|〈+|+〉|2 = 1

2
[1 + cos (α + χ )].

Therefore,

N (α, χ ) ∝ 1 + cos(α + χ ).

The disentangler U −1
ent together with the path phase shift Up act

like a projective measurement Pp(χ ) on the path subsystem,
and the projective measurement Ps(0) together with the spin
phase shift U s(α) act on the spin like the projective measure-

ment Ps(α). Therefore,

N (α, χ ) ∝ E [Ps(α)Pp(χ )], (19)

where

E [Ps(α)Pp(χ )] = 〈ψBell|Ps(α)Pp(χ )|ψBell〉
= 1

4 [1 + cos (α + χ )].

B. Neutron interferometer with RF flippers

In this interferometer entanglement is generated using the
RFNSFG discussed in Sec. III B. This apparatus is very sim-
ilar to the MWP-based interferometer but it is more flexible
as it can entangle either two or three degrees of freedom
depending on the mode of operation chosen through the
selection of the RF frequencies. We first discuss the three-
mode interferometer setup (see Fig. 8). In the first stage
a GHZ state is created from an incident unentangled state

042318-8



OPERATOR ANALYSIS OF CONTEXTUALITY-WITNESS … PHYSICAL REVIEW A 101, 042318 (2020)

E0 − �ω

E0 + �ω

E0

ω − Δω

E− = E0 − �Δ

E+ = E0 + �Δ
γ = γ1 + γ2 + γ3

ω + Δ

ξ

π/2

ω

E0 + �ω

E0 − �ω

ξ

π/2

(γ1) (γ2) (γ3)

π

φ φ

E

(α) (χ)

|1〉

|2〉

|↓〉

|E−〉

|E+〉

|↑〉

α

χ

γ

P s(α)

P p(χ)

P e(γ)

x

y
z

Uent

|ψi〉

|ψBell〉
Us

Quartz
Crystal

Spin
Phase

|ψp〉 |ψf 〉

U−1
ent

Detector

P s
x

RFNSFGRFNSFG
Energy
Phase

UeUpor

|ψGHZ〉

FIG. 8. This interferometer consists of two RFNSFG entanglers, three commuting neutron optical phase shifters in the three different
distinguished subspaces, and a polarization analyzer and neutron detector. The first RFNSFG, Uent, entangles the neutron into spin, path, and
energy modes (or, only spin and path modes when � = 0), while the second RFNSFG, U −1

ent , recombines and disentangles the neutron state.
Three commuting phase shifters Us(α), Up(χ ), and Ue(γ ) (or, two phase shifters Us(α) and Up(χ ) for the two subsystem case) are inserted
between the flippers to apply phase shifts in the different subsystems. Finally the neutron state is analyzed by the polarization analyzer and
counted in the detector. The inset for the path phase crystal shows how this phase can be realized and adjusted using a pair of quartz blocks
with an adjustable angle φ.
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|ψi〉 = |↑〉+|↓〉√
2

⊗ |0 E0〉 by the entangler shown in Eq. (13):

|ψGHZ〉 = Uent |ψi〉 = |↑ 1 E−〉 + |↓ 2 E+〉√
2

.

As for the MWP case we introduce relative phase shifts
to perform projective measurements in some desired regions
of the subsystems’ Bloch spheres. Three different commuting
phase shifters act on the spin, path, and energy modes. Spin
and path phase shifts are generated as above by the spin phase
coil and the quartz crystal, respectively. The energy phase
shift is created by a so-called zero-field precession [38,39] by
changing the frequency of the two RFNSFs in one pair by ±�

between the entanglers. We denote these three phase shifts as
Us(α), Up(χ ), and Ue(γ ), respectively:

Us(α) = |↑〉〈↑| + eiα|↓〉〈↓|,
Up(χ ) = |1〉〈1| + eiχ |2〉〈2|,
Ue(γ ) = |E−〉〈E−| + eiγ |E+〉〈E+|,

where we disregard the energy state |E0〉 and path state |0〉 as
the neutron does not exist in those states in between the first
and last RFNSFs in this apparatus configuration. The neutron
state after the phase shifters becomes

|ψp〉 = Ue Up Us|ψGHZ〉

= |↑1 E−〉 + ei(α+χ+γ )|↓2 E+〉√
2

.

These phase shifts are followed by a recombination of
path and energy subspaces of the entangled beam to create
an unentangled product state using an inverse RFNSFG:

|ψ f 〉 = U −1
ent |ψp〉 = |↑〉 + ei(α+χ+γ )|↓〉√

2
⊗ |0 E0〉.

As in the case of the MWP interferometer |ψ f 〉 passes
through the π

2 spin turner, polarization analyzer, and detector.
Similar to the previous section, we write the Pauli matrices in
terms of projectors

Ps(α) = |+, α〉〈+, α| with |+, α〉 = |↑〉 + eiα|↓〉√
2

,

Pp(χ ) = |+, χ〉〈+, χ | with |+, χ〉 = |1〉 + eiχ |2〉√
2

,

Pe(γ ) = |+, γ 〉〈+, γ | with |+, γ 〉 = |E−〉 + eiγ |E+〉√
2

,

with the addition, to Eqs. (17) and (18), of σ e
w(γ ) = Pe(γ ) −

Pe(γ + π ). Those instruments realize the projective measure-
ment Ps(0) on the spin subsystem, which counts neutrons in
the state |+〉 = |↑〉+|↓〉√

2
incident on the spin turner.

Let N (α, χ, γ ) be the number of neutrons counted with
spin, path, and energy phase shifts set to α, χ , and γ , then one
can show that

N (α, χ, γ )

N (α, χ, γ )max
= |〈ψ f |+〉|2

|〈+|+〉|2 = 1

2
[1 + cos (α + χ + γ )].

Therefore,

N (α, χ, γ ) ∝ 1 + cos(α + χ + γ ).

The disentangler U −1
ent together with the path phase shift Up(χ )

and energy phase shift Ue(γ ) act like a combination of two
compatible projective measurements Pp(χ ) and Pe(γ ) on the
path and energy mode, respectively, and the projective mea-
surement Ps(0) together with the spin phase shift Us(α) act on
the spin like the projective measurement Ps(α). Therefore,

N (α, χ, γ ) ∝ E [Ps(α)Pp(χ )Pe(γ )], (20)

where

E [Ps(α)Pp(χ )Pe(γ )] = 〈ψGHZ|Ps(α)Pp(χ )Pe(γ )|ψGHZ〉
= 1

8 [1 + cos (α + χ + γ )].

The two subsystem mode is a limiting case of the three
subsystem configuration as discussed in Sec. III B when � =
0. In the first stage a Bell state is created from the unentangled
incident state |ψi〉 = |↑〉+|↓〉√

2
⊗ |a〉 by the entangler shown in

Eq. (16):

|ψBell〉 = Uent |ψi〉 = |↑ 1〉 + |↓ 2〉√
2

.

In this case zero-field precession is absent and the energy
phase shifter is the identity Ue = 1. Combining the effects
from the spin and path phase shifts one can show that

|ψp〉 = Up Us|ψBell〉 = |↑ 1〉 + ei(α+χ )|↓ 2〉√
2

.

In the final stage, the second RFNSF disentangles the state

|ψ f 〉 = U −1
ent |ψp〉 = |↑〉 + ei(α+χ )|↓〉√

2
⊗ |0〉,

and |ψ f 〉 passes through the spin turner, polarization analyzer,
and detector. The analysis of the neutron count rate N (α, χ )
is identical to the one done in Sec. IV A.

V. STATISTICAL ANALYSIS FOR TWO- AND
THREE-MODE ENTANGLEMENT

In this section we express the CHSH and Mermin entangle-
ment witnesses defined in Sec. II in terms of the interferometer
count rates defined in Sec. IV for special choices of the
phase shifts. These interferometers cannot directly measure
the observables in Eqs. (3) and (5) as the only available data
come from the polarization analysis in the spin subsystem.
However, one can construct the entanglement witnesses of
interest by conducting measurements with different settings
of the phase shifters.

Consider a particular context {σ s
u(α), σ

p
v(χ )} in a CHSH

witness S from the arrangements described in Secs. IV A
and IV B. By decomposing each Pauli matrix into two pro-
jectors as in Eqs. (17) and (18), one can derive the expectation
value of the context E (α, χ ) = 〈ψBell|σ s

u(α)σ
p
v(χ )|ψBell〉 as

E (α, χ ) =
∑

μs,μp
(−1)μs+μpE [Ps(α + μsπ )Pp(χ + μpπ )]∑
μs,μp

E [Ps(α + μsπ )Pp(χ + μpπ )]

=
∑

μs,μp
(−1)μs+μpN (α + μsπ, χ + μpπ )∑
μs,μp

N (α + μsπ, χ + μpπ )
,
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where we use Eq. (19). To determine the expectation value
E (α, χ ) one needs measurements with four different phase
shift settings {N (α + μsπ, χ + μpπ )} with μs, μp = 0, 1.
We expect the maximum violation of the CHSH inequality
in Eq. (3) when α1 + χ1 = −π

4 and α2 − α1 = χ2 − χ1 = π
2 .

We can also determine the expectation values of the rel-
evant contexts involved in the Mermin witness M defined
in Eq. (5), {σ s

u(α), σ
p
v(χ ), σ

e
w(γ )} with α, χ, γ = 0, π

2 . We dis-
cussed the three subsystems case in Sec. IV A. By decom-
posing the Pauli matrices into projectors like in the two
subsystems case we get

E (α, χ, γ ) =
∑

μs,μp,μe
(−1)μs+μp+μe Eμsμpμe∑
μs,μp,μe

Eμsμpμe

=
∑

μs,μp,μe
(−1)μs+μp+μe Nμsμpμe∑
μs,μp,μe

Nμsμpμe

,

where Eμsμpμe = E [Ps(α + μsπ )Pp(χ + μpπ )Pe(γ + μeπ )]
and Nμsμpμe = N (α + μsπ, χ + μpπ, γ + μeπ ) after using
Eq. (20). To determine the expectation value of that con-
text one needs eight measurements with different phase
shift settings {N (α + μsπ, χ + μpπ, γ + μeπ )} with μs, μp,

μe = 0, 1.

VI. GENERALIZATION TO MULTIPLE-MODE
ENTANGLEMENT

Here we generalize the results derived above for a neutron
interferometer which possesses n entangled distinguishable
subsystems and show how one can determine the expecta-
tion value of a context using counting statistics from the
detectors of that interferometer assuming that the final stage
of the interferometer consists of the same spin projection
and neutron detection combination as described above. This
calculation might be useful for future entangled neutron state
measurements if one can generate single-particle neutron
states with OAM the amplitudes of which can be treated to
a good approximation as finite-dimensional subsystems. In
this case it might be possible to form single-particle entangled
neutron states in four distinct properties: spin, path, energy,
and OAM.

We express the full Hilbert space in terms of the tensor
product decomposition

H =
n−1⊗
l=0

Hl ,

where Hl is the two-dimensional space for the lth subsys-
tem and l = 0 labels the spin subsystem. Choose a basis
{|⇑〉, |⇓〉} for Hl . Define the context to be measured as
{σ 0

u(φ0 ), . . . , σ
n−1
u(φn−1 )}, where

σ l
u(φl ) = cos φl σ l

x+ sin φl σ l
y , l = 0, 1, . . . , n − 1

acts on the lth subsystem. Now, one can decompose σ l
u(φl ) into

projectors as σ l
u(φl ) = Pl (φl ) − Pl (φl + π ), where

Pl (φl ) = |+, φl〉〈+, φl | with |+, φl〉 = |⇑〉 + eiφl |⇓〉√
2

.

Let the entangler of the interferometer prepare a maximally
entangled state |ψE〉 = |⇑⇑...⇑〉+|⇓⇓...⇓〉√

2
. Let the lth phase

shifter Ul (φl ) introduce a relative phase eiφl between |⇑〉 and
|⇓〉:

Ul = |⇑〉〈⇑| + eiφl |⇓〉〈⇓|.
Combining the effects of all the phase shifters one can show
that

|ψp〉 =
∏

l

Ul |ψE〉 = |⇑⇑ . . . ⇑〉 + ei
∑

l φl |⇓⇓ . . . ⇓〉√
2

.

In the next stage the state is disentangled by Udet. Although
the full mathematical description of this disentangler depends
on apparatus details, the relevant action on the state is

Udet |⇑⇑ . . . ⇑〉 = |⇑〉 ⊗ |unknown〉,
Udet |⇓⇓ . . . ⇓〉 = |⇓〉 ⊗ |unknown〉,

where |unknown〉 is some unknown state. We get the final
state

|ψ f 〉 = Udet|ψp〉 = |⇑〉 + ei
∑

l φl |⇓〉√
2

⊗ |unknown〉,

which passes through the spin turner and polarization ana-
lyzer. Together they realize the projective measurement P0(0)
which detects and counts neutrons in the spin state |+〉 =
|⇑〉+|⇓〉√

2
. Let N ({φl}) be the number of neutrons detected in the

detector with phase shifts set to the angles {φl}. Then

N ({φl})

N ({φl})max
= |〈ψ f |+〉|2

|〈+|+〉|2 = 1

2

[
1 + cos

(∑
l

φl

)]
.

Therefore,

N ({φl}) ∝ 1 + cos

(∑
l

φl

)
.

Note that N ({φl}) is proportional to

E

[∏
l

Pl (φl )

]
= 〈ψE|

∏
l

Pl (φl )|ψE〉

= 1

2n

[
1 + cos

(∑
l

φl

)]
,

The reason is that the disentangler Udet together with the
phase shift

∏
l Ul acts like a combination of n − 1 compatible

projective measurements {Pl (φl )}, and the projective mea-
surement P0(0) together with the spin phase shift U 0(φ0) act
on the spin like the projective measurement P0(φ0).

Using the above result one can derive the expectation value
of the context as

E

[∏
l

σ l
u(φl )

]
=

∑
{μl }(−1)

∑
l μl E{μl }∑

{μl } E{μl }

=
∑

{μl }(−1)
∑

l μl N{μl }∑
{μl } N{μl }

,

042318-11



SHUFAN LU et al. PHYSICAL REVIEW A 101, 042318 (2020)

TABLE I. Experimental results for the two- and three-mode
entangled single-neutron interferometer [9]. The classical bound (see
text) is obtained from 2 × 0.78 = 1.56, while the quantum bounds
are 2

√
2 × 0.78 = 2.21 and 4 × 0.78 = 3.12.

Contextual
witness Measured value

Classical
bound

Quantum
bound

S 2.16 ± 0.01(stat) ± 0.02(sys) 1.56 2.21
M 3.052 ± 0.007(stat) ± 0.017(sys) 1.56 3.12

where E{μl } = E [
∏

l Pl ({φl + μlπ})] and N{μl } =
N ({φl + μlπ}). To determine the expectation value of
the context one needs 2n measurements with different phase
shifter settings {N ({φl + μlπ})} with μl = 0, 1.

VII. EXPERIMENTAL RESULTS FOR TWO AND THREE
ENTANGLED SUBSYSTEMS

The construction presented in the previous sections forms
the theoretical underpinnings for a quantitative analysis of
the recent entanglement witness measurements performed on
the Larmor neutron spin-echo instrument at the ISIS Neutron
and Muon Source Center in the United Kingdom [9]. We
refer the reader to that paper for details on the apparatus
and measurement procedure. The measured values of the
CHSH, S, and Mermin, M, contextual witnesses are listed in
Table I.

The values presented above for the measured entanglement
witnesses use for their normalization the measured product,
Pol × A = 0.78, of the incident neutron beam polarization
Pol of the polarizer, and the analyzing power A of the po-
larization analyzer. There are several subtle aspects of the
neutron beam instrumentation which are subsumed into this
product. Since individual neutrons come from a distribution of
momenta and trajectories, each experiences a slightly different
Hamiltonian evolution as it moves through the instrument and
individual neutrons therefore experience different final phase
differences between their up and down states. To manipulate
the neutron spin during the experiment we have to engineer
magnetic fields with a particular geometry to change the
neutron state (or not) and these do not work with perfect
efficiency. The overall result of these instrumental effects is
that we lose contrast in our interferograms. We express this
loss of contrast by a single number, the polarization product
Pol × A, which multiplies the result that we would get if the
apparatus were ideal to give our actual result.

We do not have enough information on all of the imper-
fections of our apparatus to be able to isolate and quantify
the relative contributions to the observed entanglement wit-
nesses from decoherence, dephasing, and statistical averaging
effects. Such a more detailed analysis and investigation would
be required to quantify with higher precision the degree of
deviation of our measured entanglement witnesses from the
classical and quantum bounds. Given the relative simplicity of
the neutron interactions with the matter and external fields of
the apparatus, however, nothing would preclude in principle
such a more detailed (and complex) characterization. Inter-
actions of neutrons are typically weak enough that one can

apply either perturbative or coherent optical analyses to the
neutron-matter interactions with the apparatus components
based on the well-measured neutron scattering amplitudes
from atoms in materials.

Even without such a more detailed analysis, it is clear that
our measurement strongly violates the classical bound and
is quite close to the expected quantum bound. We conclude
that our experiment verifies quantum contextuality in both the
double and triple entangled cases and that the single-neutron
states are entangled.

VIII. DISCUSSION AND OUTLOOK

The main intellectual motivation for our work is to develop
a qualitatively new type of neutron scattering modality which
can identify entangled degrees of freedom in matter, without
prior knowledge of the responsible many-body interactions
that in practice are usually unknown. Although various au-
thors [40–44] recognize the need for the development of a
theory for entangled-particle scattering from entangled matter,
to our knowledge only partial steps along various lines have
been taken so far [45]. It should be obvious that such a theory
must exist and cannot be in danger of violating any of the
fundamental assumptions of quantum mechanics. Particles in
many-body systems generally become entangled upon scat-
tering, and the system which has undergone many internal
scattering events among its constituent parts is represented
by an entangled state. A process in which one entangled
particle comes into and goes out of such a system, which
we refer to as a “scattering” experiment, is clearly just a
special case of this same type of physical process. One of
the ways in which the textbook scattering theory formalism
breaks down in the case of entangled particle scattering is the
so-called cluster decomposition assumption, which states that
the results of macroscopically separable experiments produce
uncorrelated results [46]. This condition is obviously violated
by entanglement-sensitive witnesses such as those involved
in CHSH-, GHZ- [47], and Mermin-type inequalities. From a
scattering theory perspective, one can view the existing mea-
surements of those inequalities using neutron interferometry
as entangled neutron “scattering” from an unentangled system
in the forward scattering limit in which the internal state of the
matter and external fields, used to manipulate the subsystems,
is unchanged.

The information encoded in the entanglement of the state
of the system is generally not directly accessible to the
type of probes developed in the 20th century. These probes
were conceived to investigate the properties of quasiparticles
of energy h̄ω and momentum �q, according to the Landau
paradigm of elementary excitations, without additional the-
oretical knowledge of the excitations and interactions in the
system. The quantitative interpretation of scattering probes
of condensed-matter systems using the linear-response-based
van Hove theory [48] factorizes the double differential scat-
tering cross section d2σ

d�dE of the process into a product of the
scattering amplitudes from individual objects in the system,
and the static S(�q) or dynamic S(�q, ω) structure factors. In
turn S(�q) and S(�q, ω) can be expressed in terms of expectation
values of various types of space and time correlation functions
of those system properties which couple linearly to the probe.
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This treatment assumes that the probe possesses no entan-
glement and that one defines the initial and final scattering
states of the probe in terms of the same types of unentangled
single-particle wave packets assumed in traditional nonrela-
tivistic scattering theory [49,50]. The correlations revealed in
this type of scattering measurement include both “classical”
many-body correlations as well as correlations which could
be due to quantum entanglement in the interacting system, but
there is no way using the traditional single-particle scattering
measurements of S(�q) and S(�q, ω) to uniquely identify the
component from the observed correlations which quantum
entanglement might be responsible for.

The question is whether or not one can formulate a theory
in a sufficiently general way, to deliver physically interesting
information about a system the specific Hamiltonian of which
is not known in advance, so that entangled particle scattering
can be used as a multipurpose scientific tool. We are presently
engaged in this theoretical construction for the case of neutron
scattering. This is no accident. Neutrons are an excellent
choice for such a theoretical and experimental development.
The zero electric charge, small magnetic moment, and very
small electric polarizability of the neutron make it highly
insensitive to many sources of environmental decoherence
which can threaten to ruin interferometric measurements.
The entangled states of neutrons which we have created and
characterized in this paper are highly robust as shown by the
near saturation of the entanglement witness quantum bounds,
despite the transmission of the neutrons through macroscopic
amounts of matter in the apparatus. The range of energies
and momenta used in neutron scattering measurements for
condensed-matter and materials research lies well below the
thresholds for the ionization of matter, thereby allowing
coherent interactions of the neutron with matter to play a
dominant role.

From this perspective, one can view the formalism devel-
oped in this paper as a zeroth-order version of this eventual
entangled scattering theory for forward elastic interactions
with unentangled systems. Indeed the procedures by which
the various phase shifts of the different entangled modes are
implemented all involve interactions either with macroscopic
classical fields in coherent states of the electromagnetic field
or with the macroscopic neutron optical potential of matter. In
both of these cases any entanglement which might be gener-
ated in the interaction of the neutrons with these media is cou-
pled to macroscopic collective coordinates of the apparatus.
These collective coordinates suffer such rapid decoherence
from interactions with the environment that for all practical
purposes they can be treated as semiclassical external fields
acting on the neutron’s quantum degrees of freedom. As a
result there is no need to treat explicitly their internal degrees
of freedom and we can model them simply as “entanglers” of
the neutron degrees of freedom. Furthermore there is no in-
trinsic preexisting entanglement present in these media which
couples to the neutron. Coherent states of the electromagnetic
field are semiclassical, and the averaging procedure used in
the multiple scattering theory which forms the foundation of
the concept of the neutron optical potential [51] implicitly
erases the effects of any unknown entanglement dynamics
which might be present in the medium. Therefore, in the
limit in which the neutron interactions with the entanglement-

generating devices are coherent there is in principle no danger
that the entanglers themselves will pollute the interpretation
of a future entangled neutron scattering theory from entangled
systems.

The interferometric measurements with entangled neutrons
generated by the entanglers described and modeled in this
paper enable one to probe condensed-matter phenomena on
small spatial scales. In this paper, we described single-particle
multimode-entanglement dynamics using two entanglement-
generating neutron devices: the MWP and the RFNSF. Using
a single-neutron–quantum-optics analysis, we derived the the-
oretical expressions needed to quantify contextuality to deal
with entangled neutron beams generated by these devices. We
constructed the CHSH witness for the doubly entangled states
in spin and position and the Mermin witness for the triply
entangled states in spin, position, and energy. We also showed
how the Mermin witness reduces to the CHSH witness when
the energy shift h̄� vanishes. We controlled the entangle-
ment length ξ at the micrometer scale with a resolution
that depends on the neutron bandwidth used. Our ability to
select the neutron wavelength and its bandwidth allows us to
achieve entanglement lengths, 30 nm < ξ < 25 microns, that
correspond to scales associated with many different types of
dynamical phenomena in condensed matter, can provide us
with a qualitatively new probe of correlated materials such as
unconventional superconductors, frustrated magnets hosting
quantum spin liquid phases, and exotic chiral orders. We can
certainly explore the fundamental properties of the quantum
world in new regimes.

At the experimental level, the immediate continuation of
our program to develop entangled neutron probes requires
a more detailed understanding of what happens to the
interference contrast as one “turns off” the entanglement
in the energy or path subsystems. The detailed behavior of
the interference contrast in this regime cannot be modeled
within the discrete approximation used in this paper. As the
modes’ variables overlap the dynamics becomes sensitive
to the form of the quantum amplitudes, which are really
continuous functions of the dynamical variables and depend
on the longitudinal and transverse coherence functions of
the neutrons in the beam. Experiments are needed to map
out the dynamical range over which the finite discrete
mode approximations to the dynamics that we have used
for the models presented in this paper are valid. An even
more stringent test is the implementation of a quantum
self-testing protocol to determine a lower bound in the fidelity
of the supposedly multimode-entangled state one wants to
generate. Although self-testing protocols using CHSH- and
Mermin-type inequalities for spacelike separated entangled
particles are known [27], that is not the case for the timelike
entangled single-particle states of interest in our paper.

We would like next to indicate other possible scientific
applications of our entangled neutron states. OAM beams,
which possess a nonzero OAM about the beam axis and are
therefore not the traditional plane-wave states described in
the scattering theory textbooks, have now been created for
photons, electrons, and neutrons [52,53]. We envision that in
the future it may be possible to create single-particle entangled
neutron states in four different quantum-mechanical variables:
spin, spatial position, energy, and OAM. Such a multiply
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entangled state of a single neutron has to our knowledge never
been created or investigated experimentally. A recent calcula-
tion shows that one could produce a single-particle neutron
state entangled in spin and OAM using the electromagnetic
spin-orbit scattering of neutrons from atoms [54].

We also note that entangled neutron interferometry of
the type described in this paper can be used to pose and
answer new questions regarding the influence of inertial and
gravitational effects on entangled particles. One example is
the famous Sagnac effect, which consists of an extra phase
shift upon recombination of the two paths taken by a particle
traversing an interferometer coming from a rotation of the
interferometer apparatus. The Sagnac phase shift has been
measured using photons [55,56], neutrons [57,58], atoms [59],
and other particles and excitations. The usual derivation of
the Sagnac effect assumes that the particle spin defines the
inertial reference frame, leading to the so-called Fermi-Walker
transport of spin, which assumes that the spin of the particle
acts effectively like a gyroscope. This definition suffices in
the semiclassical limit in which one can integrate the phase
shifts over a well-defined loop in space in an unentangled
spin state for which one can define the gyroscope direction
at any point on the particle trajectory from the location of
the spin state on the Bloch sphere. In the case of the spin
and position entangled neutron beam in the interferometers
discussed in this paper, however, the initial and final vertically
polarized neutron spin states are spatially separated into an
entangled state of positive and negative helicity neutron spin
states the spin projection of which along the loop in space
around the interferometer trajectory is longitudinal. In this
case it is unclear what spin direction should define the frame
from which one constructs the Fermi-Walker transport used
in the Sagnac effect derivation. We have been unable to
find any measurement of the Sagnac phase shift performed
using spin-entangled beams using any type of matter-wave
interferometer. Entangled neutron interferometers of the type
described in this paper could be employed to search for the
Sagnac effect using a spin-entangled beam of massive parti-
cles. Such work would complement similar investigations in
progress involving entangled photons on entanglement effects
in noninertial frames [60–63].
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APPENDIX: TRIPLE NEUTRON ENTANGLEMENT
WITH A SINGLE RF FLIPPER

Here we apply the formalism developed in this paper to an
earlier neutron entanglement experiment performed using a
perfect crystal neutron interferometer by Hasegawa et al. (see
Fig. 9), in which a triply-entangled neutron state was prepared
and analyzed using this device in 2010 [11]. We discuss the
construction and working principle of this perfect crystal in-
terferometer and describe how to calculate the contexts for the
Mermin witness within the formalism developed in the main
text. A very similar analysis could also be applied to several
other perfect crystal neutron interferometry experiments.

A neutron with spin up and with energy E0 is created
from an initially unpolarized monochromatic neutron beam
by a polarizer, and is incident upon a 50:50 perfect crystal
beamsplitter. Define the incident path as II and the reflected
path as I, then

UBS = |I〉〈I| + |I〉〈II| + |II〉〈I| − |II〉〈II|√
2

(A1)

creates the state for subsequent entanglement operations:

|ψ1〉 = UBS |ψi〉 = |↑〉 ⊗ |I〉 − |II〉√
2

⊗ |E0〉.

As shown in Fig. 10, the entangled state is generated by
a RFNSF operating on path II with the frequency ω. As
discussed in Sec. III B, a RFNSF flips the spin of an incoming
neutron by exchanging a photon of the operating frequency of
the RF field. This process is described by the Hamiltonian

HI = |↓II E2〉〈↑ II E0| + H.c.,

where E2 = E0 − h̄ω. By expanding the propagator Uent =
exp[−iHIt

h̄ ] into series and setting t = π h̄
2 one can show that

Uent = 1 − iHI − H2
I ,

where we used H3
I = HI. This propagator performs the tran-

sition |↑II E0〉 	→ |↓II E2〉. Thus the entangler generates an
entangled GHZ state:

|ψGHZ〉 = Uent|ψ1〉 = |↑IE0〉 + i|↓ II E2〉√
2

.

Next a slab of matter imposes a neutron optical potential
represented by the operator

Up(χ ) = |I〉〈I| + eiχ |II〉〈II|,
which generates the state

|ψ2〉 = Up(χ ) = |↑ I E0〉 + ei(χ+ π
2 )|↓ II E2〉√

2
.

Neutron amplitudes in paths I and II diffract from the second
blade of the interferometer and then impact on the third blade
of the interferometer. The third blade of the interferometer
recombines the beam. On the path I component of the final
state one has an entangled state in spin and energy. This
projection operation can be defined as

Pp
BR = N |I〉〈I|U †

BS,
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FIG. 9. Top image: The experimental apparatus used in Ref. [11]. Bottom image: Flow chart for the three-subsystem entangled states
created and measured in this experiment using the notation of this paper.

where N is a normalization constant. This projection opera-
tion leads to the state

|ψ3〉 = Pp
BR|ψ2〉 = |↑IE0〉 + ei(χ+ π

2 )|↓IE2〉√
2

.

In the next stage we perform a projective measurement on
the energy mode. As shown in Fig. 11, with a RFNSF on path
I energy states are recombined into a new energy E1 = E0 −
h̄ω
2 by the transitions |↑IE0〉 → |↓IE1〉 and |↓IE2〉 → |↑IE1〉

using a RFNSF operating with frequency ω
2 . The relevant

Hamiltonian is

HII = |↓〉〈↑ | ⊗ |I〉〈I| ⊗ T + H.c.

where T = |E1〉〈E0| + |E2〉〈E1|. Expand Udet = exp[−iHIIt
h̄ ]

and set t = π h̄
2 to obtain

Udet = 1 − iHII − H2
II ,

where we used H3
II = HII. This energy recombination is ac-

companied by a controllable phase shift in the energy subsys-
tem from zero-field precession:

Ue(χ ) = |E0〉〈E0| + eiγ |E2〉〈E2|.

FIG. 10. Formation of the entangler.

Combining these two operations we get

|ψ4〉 = UdetUe|ψ3〉 = −i
ei(χ+γ+ π

2 )|↑〉 + |↓〉√
2

⊗ |IE1〉.

A direct current (dc) spin flipper represented by the operator

UDC = |↓〉〈↑| + |↑〉〈↓|
flips the spin

|ψ5〉 = UDC|ψ4〉 = −i
|↑〉 + ei(χ+γ+ π

2 )|↓〉√
2

⊗ |IE1〉.

The spin phase shift Us(α) operator

Us = |↑〉〈↑| + eiα|↓〉〈↓|
generates the final state

|ψ f 〉 = −i
|↑〉 + ei(α+χ+γ+ π

2 )|↓〉√
2

⊗ |IE1〉.

This |ψ f 〉 passes through a π
2 spin turner and then enters

the polarization analyzer and the detector. This combination
realizes a projective measurement Ps(0) on the spin state
which counts neutrons in the state |↑〉+|↓〉√

2
. Let N (α, χ, γ ) be

FIG. 11. Formation of the disentangler.
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the neutron count rate with spin, path, and energy phase shifts
set to α, χ , and γ . One can show that

N (α, χ, γ ) ∝ 1 + cos

(
α + χ + γ + π

2

)
.

Note that N (α, χ, γ ) is proportional to
‖Ps(α)Pp(χ )Pe(γ )|ψGHZ〉‖2. The reason is that the path
phase shifter Up(χ ) together with the projection operation
Pp

BR act like a projection operation Pp(χ ) on the path

subsystem, Udet together with the energy phase shift Ue(γ )
and dc spin flipper act like a projection operation on the
energy subsystem Pe(γ ), and the spin phase shift Us(α)
together with Ps(0) act like a projective measurement Ps(α)
on the spin. Therefore,

N (α, χ, γ ) ∝ E [Ps(α)Pp(χ )Pe(γ )]. (A2)

To measure the Mermin witness M, using this perfect
crystal interferometer, one proceeds as in Sec. V.
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