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Reducing the leakage from qubit levels to other levels is of importance for quantum computation. Here,
we develop a feasible method to effectively suppress this leakage and perform universal quantum gates in a
weakly nonlinear qubit. The method is to exploit periodical two-step modulation of single control parameters
in a artificial large detuning regime. It works well, regardless of whether the strength of control parameter is
known or not. In particular, qubit leakage can also be suppressed in a counterintuitive parameter regime, where
the control field drives the transition of qubit levels with large detuning, but resonance transition with leakage
level. The results demonstrate that this method is robust against parameter perturbations, and the deformation of
square waves does not accumulate the error of qubit operations but affects the gate time. In addition, this method
provides us with a viable approach to measure the control parameters.
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I. INTRODUCTION

Accurate coherent qubit control (two-level system) is an
essential technology in quantum computation [1,2]. Unfor-
tunately, a qubit is difficult to be absolutely isolated from
actual physical systems. This is because system-environment
coupling or unwanted internal coupling exists in multilevel
systems. These inevitable couplings give rise to qubit leakage.
For the former case, many methods have been proposed to
prevent decoherence-induced leakage, including dynamical
decoupling [3–10], the construction of decoherence-free sub-
spaces [11–17], etc. Certainly, different methods have their
respective merits and application scope. For instance, the
method of leakage elimination operators [18–20] (a type of
dynamical decoupling) works well on eliminating leakage in
multilevel systems but requires unbounded fast and strong
pulses [21,22], which may be unattainable in experiments.
To be compatible with distinct quantum systems and taking
full advantage of the respective merits, different methods
have been effectively combined in recent studies, such as
incorporating the dynamical decoupling in decoherence-free
subsystems [23–27] and adiabatic leakage elimination opera-
tors [28].

Here, we are interested in the latter case that leakage is
induced by the internal coupling between multiple levels.
Generally speaking, if the coupling strength of system fields
is small enough, the influence of leakage can be dramatically
ignored in anharmonic systems (i.e., the transition frequency
of qubit levels slightly differs from the transition frequency of
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nonqubit levels) [29–34]. Nevertheless, this is a relatively con-
tradictory choice, since strong system-field coupling strength
is in favor of fast quantum operations [35]. Until now, substan-
tial approaches have been introduced to solve this issue. One
celebrated approach is called derivative removal by adiabatic
gate (DRAG) [36–40], and it is a breakthrough in experiments
where the DRAG shaping pulse has been exploited to improve
single-qubit gates [41,42]. Nevertheless, this approach relies
on employing several control parameters and pulse shaping
techniques, increasing the complexity of manipulations. In
particular, DRAG may be invalid for designing pulse shape
if quantum systems show strong parameter perturbations.
Another approach is called composite pulses [43–45], which
is just a finite sequence of pulses with piecewise-constant
values. The composite pulses have the merits of ultrahigh ac-
curacy and robustness to parameter imperfections so that they
have wide applications in quantum information processing.
More recently, this approach has been employed in quantum
dot charge quadrupole qubits to achieve arbitrary single-qubit
rotations with high fidelity [46]. Particularly, when combined
with quantum optimal control [47–53], the error of qubit
operation can easily reach below the fault-tolerant threshold.
The composite pulses are always composed of a mass of dif-
ferent constant values, and the time interval between different
constant values is inequable. As a result, the pulse profile
would be irregular. Besides, it might have the same problem as
DRAG, namely, one should simultaneously modulate several
physical parameters during qubit operations. In this work,
based on inheriting the merits of composite pulses, we are
highly focused on exploring simple and feasible pulses to
realize robust universal quantum operations.

To our knowledge, the implementation of qubit operations
is often based on resonance and near-resonance conditions
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FIG. 1. The energy structure of the nonlinear oscillator coupled
by a control field λ0(t ), where the qubit is formed by |0〉 and |1〉.
(a) The control field λ0(t ) drives the transition |0〉 ↔ |1〉 with de-
tuning δ1. (b) The control field λ0(t ) resonantly drives the transition
|0〉 ↔ |2〉.

(in terms of the qubit-field coupling) but have been scarcely
extended to large detuning conditions. This is due to the
consensus that large detuning conditions cannot promote
quantum state evolution, even freezing the population of qubit
levels. In this work, by taking advantage of large detuning
conditions, we develop a two-step modulation method to elim-
inate qubit leakage as well as reduce the number of control
parameters and simplify pulse wave form. This method is
used to regulate single control parameters with the shape of
a periodical square wave rather than the analytically derived
pulses [36]. Moreover, the two-step modulation method is still
valid, even though the coupling strength of the control param-
eter is unknown. In addition, it is robust against parameter
perturbation and wave-form deformation due to large detuning
conditions. As a by-product, the two-step modulation method
can be employed to experimentally measure unknown control
parameters.

The rest of this paper is organized as follows. In Sec. II
we introduce the physical model used in this work. In Sec. III
we first present the protocol of two-step modulation in detail
and provide an expression of the effective Hamiltonian of the
system. Then we illustrate some examples of implementing
qubit operations by strength modulation. In Sec. IV we phe-
nomenologically give the typical expression of the evolution
operator in two-step modulation. In Sec. V we discuss the
leakage error, the validity of the rotation wave approximation
(RWA), the physical mechanism, and the experimental feasi-
bility of two-step modulation. In Sec. VI we demonstrate by
numerical calculations that this method is robust against noise,
including parameter perturbations, wave-form deformations,
and decoherence. The conclusion is given in Sec. VII.

II. PHYSICAL MODEL

Consider the model that the d-level nonlinear oscillator
is coupled by a control field, which can be used to describe
superconducting qubits [54–63], nanomechanical oscillators
[32], etc. As shown in Fig. 1(a), the qubit is composed of
the two lowest levels |0〉 and |1〉 of the nonlinear oscillator.
In the laboratory frame, the system Hamiltonian for a d-level

structure reads (h̄ = 1)

H(t ) =
d−1∑
k=1

(kω0 + �k )|k〉〈k|

+ λ(t )ηk (|k〉〈k − 1| + |k − 1〉〈k|), (1)

where ω0 represents the transition frequency of nearest-
neighbor levels. Specifically, the energy of the kth higher
level is different from kω0 by �k , which is known as the
anharmonicity, and we set �1 = 0. The form of the control
field reads λ(t ) = λx(t ) cos(ωct ) + λy(t ) sin(ωct ), where ωc

is the control field frequency, and λx(t ) and λy(t ) represent
two independent quadrature control parameters. ηk repre-
sents a dimensionless parameter weighting the relative cou-
pling strength of the transition |k − 1〉 ↔ |k〉 and transition
|0〉 ↔ |1〉.

In the rotating frame defined by the unitary operator
U (t ) = e−ikωct |k〉〈k|, the Hamiltonian reads

H0(t ) = U †(t )H(t )U (t ) − iU †(t )U̇ (t )

=
d−1∑
k=1

δk (t )|k〉〈k| + ηk[λ0(t ) + λ∗
0(t )e−2iωct ]|k〉〈k − 1|

+ ηk[λ∗
0(t ) + λ0(t )e2iωct ]|k − 1〉〈k|, (2)

where δk (t ) = �k + kδ1(t ), δ1(t ) = ω0 − ωc is the detuning
of the qubit with respect to the control field, and λ0(t ) =
λx (t )

2 + i λy (t )
2 . When 2ωc � |λ0(t )|, employing RWA, the

Hamiltonian becomes

H0(t ) =
d−1∑
k=1

δk (t )|k〉〈k| + ηkλ0(t )|k〉〈k − 1| + H.c. (3)

In the following we study the dynamical evolution of the
nonlinear oscillator by the Hamiltonian (3) in this frame.

In the ideal case, ηk = 0 (k > 1), the control field induces
only the transition between qubit levels, and other higher
levels cannot participate in this transition. As a result, the
Hilbert space of the nonlinear oscillator can be projected into
two irrelevant parts: the qubit subspace and the outside of the
qubit subspace. Then the unitary operator of the nonlinear
oscillator is expressed as Ui = Uqb ⊕ eiφUos, where Uqb acts
only on the qubit subspace, Uos acts only on the outside
of the qubit subspace, and φ is an irrelevant relative phase.
Therefore, universal qubit operations are easily achieved by
modulating the control parameters. For instance, the Y gate
Uqb = σy is implemented by setting δ1(t ) = 0, λx(t ) = 0, and
λy(t ) = ξ , which satisfy

∫ tg
0 ξdt = π

2 , where tg denotes the
gate time.

Nevertheless, in the general case, ηk �= 0, the control field
unavoidably induces the transition between qubit levels and
higher levels. As a result, the undesired leakage into other
higher levels leads to an error of qubit operations. To over-
come this shortcoming, one can simultaneously regulate three
independent control parameters [i.e., λx(t ), λy(t ), and the
detuning δ1(t )] to effectively remove most of the leakage error
[36]. At the same time, the shapes of three control parameters
are always not familiar, since they are achieved from a set
of differential equations. As a result, this would increase the
difficulty of experimental operations. In the following, we
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demonstrate that modulating only a single parameter [e.g., the
detuning δ1(t ) or control parameter λx(t )] can also achieve the
same goal, while other control parameters remain unchanged
during the evolution process. Moreover, the modulation shape
is extremely simple and common, i.e., the periodical square
wave.

III. TWO-STEP MODULATION PROTOCOL

To begin with, we need to explicitly point out the control
parameters in two-step modulation. In the weakly nonlin-
ear qubit, the parameters {λx(t ), λy(t ), δ1(t )} are individually
adjustable. As a result, several adjustment manners can be
performed in two-step modulation. For brevity, we enumerate
two of their paradigms: (i) λy = 0, λx is fixed, and we peri-
odically modulate δ1(t ), which we call frequency modulation
[64]; (ii) λy = 0, δ1 is fixed, and we periodically modulate
λx(t ), which we call strength modulation. Note that other
adjustment manners can be analyzed in a similar way, and we
do not illustrate them here again.

A. Frequency modulation

In frequency modulation, the Hamiltonian of the system
reads (d = 3)

H0(t ) = δ1(t )|1〉〈1| + [�2 + 2δ1(t )]|2〉〈2|
+ λx|1〉〈0| + η2λx|2〉〈1| + H.c., (4)

where the detuning δ1(t ) is periodically modulated by a re-
peated two-step sequence,

δ1(t ) =
{
δ, t ∈ [mT, mT + τ ],
δ′, t ∈ (mT + τ, (m + 1)T ]. (5)

T is the square-wave period, m ∈ N. That is, within a period,
the detuning of system is δ in time interval [0, τ ], and becomes
δ′ in time interval (τ, T ]. For concise representation, the
system Hamiltonian is labeled by H0 when the detuning is
δ, while the system Hamiltonian is labeled by H ′

0 when the
detuning is δ′. In addition, we mark τ ′ ≡ T − τ hereafter.

In principle, the values of δ and δ′ can be arbitrary but must
be different from each other. Once δ = δ′, the time-dependent
Hamiltonian (4) becomes static without any modulations. As
a result, qubit operations cannot be achieved since the system
dynamics cannot evolve in a large detuning regime (|δ| � λx).
Experimentally, it has two ways to adjust the detuning δ1(t ).
The first way is to change the transition frequency of qubit
levels. This situation can be realized by adding an external
magnetic flux with square-wave shape [65–70]. The other way
is to change the frequency of the control field. Namely, the
frequency of the control field is modulated with a square-wave
shape, which can be achieved by a square-wave generator.

There are two critical requirements for two-step modu-
lation in the nonlinear oscillator. The first one is that the
coupling between the qubit and control field is always in a
large detuning regime during the whole evolution process,
namely, |δ1(t )| � |λx|. The other one is that the time interval
τ (τ ′) for the corresponding Hamiltonian H0 (H ′

0) should

satisfy

τ = (2n + 1)π

E1 − E0
, τ ′ = (2n′ + 1)π

E ′
1 − E ′

0

, n, n′ ∈ N, (6)

where Ek and E ′
k (k = 0, 1) are the two lowest eigenenergies

of the Hamiltonian H0 and Hamiltonian H ′
0, respectively.

Therefore, the square-wave period reads

T = τ + τ ′ = (2n + 1)π

E1 − E0
+ (2n′ + 1)π

E ′
1 − E ′

0

. (7)

Obviously, under two-step modulation, the evolution operator
of the system at arbitrary evolution time t = t ′ + mT can be
expressed as

U (t ) = Te−i
∫ t

0 H0(t )dt (8)

=
{

e−iH0t ′
(e−iH ′

0τ
′
e−iH0τ )m, t ′ ∈ [0, τ ],

e−iH ′
0(t ′−τ )e−iH0τ (e−iH ′

0τ
′
e−iH0τ )m, t ′ ∈ (τ, T ],

where T is the time-ordering operator. Note that the evolution
operator (8) exactly describes the system dynamics, and we
refer to the exact evolution or exact dynamics in the following.

To analyze the dynamical behaviors of the system, we
need to give the specific expression of the time-independent
effective Hamiltonian Heff , which is defined by [71]

U (T ) = e−iH ′
0τ

′
e−iH0τ ≡ e−iHeff T . (9)

Compared to other periodic works [72,73], the remarkable
difficulty is that we cannot employ the Baker-Campbell-
Hausdorff expansion to achieve Heff , since the modulation
frequency ω = 2π

T is the same (even small) magnitude to the
energy gap of system. By making use of the second-order
perturbation theory, the effective Hamiltonian of the nonlinear
oscillator approximatively reads (see Appendix A for details)

Heff = iλeff |0〉〈1| − iλeff |1〉〈0|, (10)

where the constant λeff = 2λx |δ′−δ|
T δδ′ .

It is easily found that the effective Hamiltonian (10) con-
tains only the dynamical evolution of qubit levels |0〉 and
|1〉, and the higher level |2〉 has been eliminated. Although
the effective Hamiltonian (10) is derived from d = 3, it is
also suitable for higher levels (d > 3) of the nonlinear os-
cillator. Moreover, one readily finds from Eq. (10) that the
system dynamics now can be regarded as Rabi-like oscillation
between qubit levels with “Rabi frequency” λeff . Therefore,
the relevant quantum gates of the nonlinear oscillator can
be implemented by choosing different evolution times. For
instance, we can implement a Y gate at gate time tg = (1+4l )π

2λeff

and an iSWAP gate at gate time tg = (1+8l )π
4λeff

, l ∈ N, etc. On
the other hand, if λx = 0 and λy are fixed, we can obtain the
X gate at gate time tg = (1+4l )π

2λeff
. Remarkably, if the initial

state of the system is |0〉, the final state of the system would
be |1〉 at tg = (1+4l )π

2λeff
, which realizes population inversion

between qubit levels. It is worth mentioning that tg might not
be exactly equal to mT in practice, but it does not affect main
results, since we can interrupt the two-step sequence when the
evolution time reaches tg.
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FIG. 2. The evolution operator U (tg) =∑5
i, j=0 Ui, j |i〉〈 j| imple-

mented by two-step modulation of the control parameter λx in a
six-level nonlinear oscillator, where λx/λ0 = 1, λ′

x/λ0 = −1, λy = 0,
�2/λ0 = 3, δ1/λ0 = 3.6, ηk = √

k, �k+1 = k(k+1)
2 �2, k = 1, . . . ,4.

B. Strength modulation

Alternatively, we can achieve relevant qubit operations in
nonlinear oscillators by strength modulation, where λy(t ) = 0,
δ1 is fixed, and λx(t ) is modulated by a two-step sequence:

λx(t ) =
{
λx, t ∈ [mT, mT + τ ],
λ′

x, t ∈ (mT + τ, (m + 1)T ]. (11)

Experimentally, strength modulation can be implemented
by adjusting the phase (amplitude) of the control parameter
λx with the phase (attenuation) modulator. And the phase
(attenuation) modulators need to work under the square-wave
shape.

Since the detailed derivations of the effective Hamiltonian
in strength modulation are similar to those of frequency
modulation, the expression is similar to Eq. (10):

H ′
eff = iλ′

eff |0〉〈1| − iλ′
eff |1〉〈0|, (12)

where the “Rabi frequency” λ′
eff = 2(λx−λ′

x )
T δ

. As an example,
we plot in Fig. 2 the evolution operator U (tg) at gate time
tg = 2.45/λ0, which is highly consistent with the ideal X gate.
In this simulation, the levels of the nonlinear oscillator are
chosen d = 6, and the results demonstrate that the subspace
of qubit operation is almost isolated in the Hilbert space,
indirectly proving the suppression of leakage from the qubit
to other levels.

Next, we present a counterintuitive phenomenon in
strength modulation, where the physical model is plotted in
Fig. 1(b). To be specific, the control field λ0(t ) still drives
the transition |0〉 ↔ |1〉 with large detuning δ1. However, the
detuning δ1 exactly matches the transition frequency between
|1〉 and |2〉 now. In other words, the control field λ0(t ) reso-
nantly drives the transition |0〉 ↔ |2〉 at the same time. Thus,
the Hamiltonian can be expressed as (d = 3)

H0 = δ1|1〉〈1| + λ0(t )|1〉〈0| + λ0(t )|2〉〈0| + H.c. (13)

It is a commonsense that Rabi oscillation occurs between
|0〉 and |2〉 under static Hamiltonian (13) without two-step
modulation. However, this Rabi oscillation is utterly helpless,
even harmful for qubit operations, since the qubit basis is
{|0〉, |1〉} rather than {|0〉, |2〉}, and it would cause a large
leakage from qubit subspace.

FIG. 3. The time evolution of population Pl = |〈l|ψ (t )〉|2 (l =
0, 1, 2) of each level under strength modulation of {λx, λ

′
x}, where

λ′
x = −λx , λy = 0, δ1/λx = −48, τ1 = π

E1−E0
, τ ′

1 = π

E ′
1−E ′

0
, and |ψ (t )〉

represents the system state at evolution time t .

The situation is completely changed when we employ the
following strength modulation:

λx(t ) =
{

λx, t ∈ [mT, mT + τ ],

−λx, t ∈ (mT + τ, (m + 1)T ].
(14)

where λy(t ) = 0, and 1.00,0.00,0.00 the time intervals
τ and τ ′ also satisfy the condition: τ = (2n+1)π

E1−E0
, τ ′ =

(2n′+1)π
E ′

1−E ′
0

, n, n′ ∈ N. Figure 3 represents the time evolution of

population Pl = |〈l|ψ (t )〉|2 (l = 0, 1, 2) of each levels under
strength modulation, where |ψ (t )〉 represents the system state
at time t . The results demonstrate that Rabi-like oscillation
would occur between |0〉 and |1〉, regardless of the resonance
condition between |0〉 and |2〉 in the original system. It is
further shown in Fig. 3 that the populations of the leakage
level |2〉 are nearly frozen during evolution process. There-
fore, this counterintuitive phenomenon can offer us alternative
preferences to realize universal qubit operations, since the
undesired leakage is sharply suppressed.

IV. PHENOMENOLOGICAL DESCRIPTION OF
TWO-STEP DYNAMICS

In two-step modulation, the dynamics described by the
effective Hamiltonian (10) or (12) is fairly consistent with
the exact dynamics of the system in a long timescale, but
it is invalid in short timescales. In principle, it is easy to
know the short-time dynamics of the system if we find out
the explicit expression of evolution operator U (t ) in Eq. (8)
at arbitrary time t . However, the exact solution is difficult
to obtain in two-step modulation since the system no longer
satisfies resonance conditions.

To better describe the exact dynamics for short timescales,
taking frequency modulation as an example, the phenomeno-
logical estimation for the evolution operator of a qubit can be
written as (see Appendix B for details)

U es
qb (t ) =

(∣∣ues
11(t )

∣∣e−ies
11(t )

∣∣ues
12(t )

∣∣∣∣ues
21(t )

∣∣e−ies
21(t )

∣∣ues
22(t )

∣∣e−ies
22 (t )

)
, (15)

where the global phase is ignored and the expressions of
amplitudes and phases read∣∣ues

11(t )
∣∣ = ∣∣ues

22(t )
∣∣ = √| cos2(λefft ) − A(t )|,
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FIG. 4. The average error of (a) amplitudes and (b) phases as a
function of δ′ in frequency modulation, where λx/λ0 = 1, �2/λ0 =
3, η2 = √

2, δ/λ0 = 40. (c) The exact evolution and estimated evo-
lution of amplitudes when δ′ = 50. In the inset, one can see more
clearly that the estimated evolutions (dashed-red and dashed-pink
lines) coincide well with the exact evolution (solid-yellow and solid-
cyan lines).

∣∣ues
12(t )

∣∣ = ∣∣ues
21(t )

∣∣ = √| sin2(λefft ) + A(t )|,

es
11(t ) = −

[
1√
2

Am

(
sin g(t ) − 1

2

)
+ 1

]
arctan ϑ − π

2
,

es
22(t ) = g(t ) − arctan ϑ − π

2
,

es
21(t ) = π + g(t ), A(t ) = Am sin2

[
g(t )

2

]
sin(2λefft ),

Am = λx(δ + δ′)
δδ′ , ϑ = λ2

x

λ2
eff

[2mod(λefft/π ) − π ],

and the T-periodic function g(t ) reads

g(t ) =
{

−π
τ

t, t ∈ [mT, mT + τ ],
π
τ ′ (T − t ), t ∈ (mT + τ, (m + 1)T ].

To quantify the deviation between the exact and estimated
dynamical evolution, we define the average error within the
gate time:

Ōer = 1

tg

∫ tg

0
|Oex(t ) − Oes(t )|dt, (16)

where Oex(t ) and Oes(t ) represent the time evolution of phys-
ical parameters governed by the exact evolution operator U (t )
[described by Eq. (8)] and the estimation evolution operator
U es

qb (t ) [described by Eq. (15)], respectively.
Figures 4(a) and 4(b) demonstrate the average error of

amplitudes and phases as a function of detuning δ′ at gate
time tg = π

2λeff
, respectively. The results show that the esti-

mated expressions of amplitude and phase are pretty accurate
to describe the exact evolution process since the value of

average error is considerably small. As a concrete example,
we plot in Fig. 4(c) the amplitudes as a function of evolution
time when δ′ = 50, where the solid lines and dashed lines
are described by the exact evolution operator U (t ) and the
estimation evolution operator U es

qb (t ), respectively. It is shown
that the solid lines are in high agreement with the dashed lines.
Hence, the exact dynamics U (t ) of the system in frequency
modulation can be effectively described by the estimated
expression U es

qb (t ) at arbitrary time t . Furthermore, the green
lines in Fig. 4(c) represent the time evolution of the system
governed by the evolution operator Ueff (t ) = e−iHeff t with the
“Rabi frequency” λeff . We find that the system dynamics is
well fitted by green lines in the long timescale, implicitly
proving the validity of the effective Hamiltonian (10). On the
other hand, one also observes in Figs. 4(a) and 4(b) that the
values of ūer

22 and ̄er
22 are dramatically larger than other values

when δ′ is large. The reason is that we do not take into account
leakage from the qubit to other levels in the expression U es

qb (t ).
When considering the leakage, the correction of amplitude
|u12(t )| should be∣∣uco

12(t )
∣∣ = ∣∣uco

21(t )
∣∣ = √1 − 2ξ 2

∣∣ues
21(t )

∣∣, (17)

where ξ = |
η2λx
δ′+�

(e
−i �πAm

λx +e−i �π
δ )− η2λx

δ+�
(1+e−i �π

δ )

1−e
−i �πAm

λx +iλeff T
|. Since qubit level

|1〉 interacts with other levels during the evolution process,
the correction of |u22(t )| is intricate and we do not discuss
it here. Of course, to further reduce the leakage from qubit
level |1〉, one can employ composite two-step modulation; see
Appendix C for details.

V. DISCUSSIONS

A. Leakage error

Until now, we have demonstrated that two-step modulation
has been successfully employed to implement universal quan-
tum operations, including frequency modulation and strength
modulation. It is worth mentioning that Eqs. (10) and (12) are
effective expressions for periodical two-step modulation and
they do not contain higher levels of the nonlinear oscillator,
since we exploit the second-order perturbation theory. In fact,
the exact evolution U (t ) of the nonlinear oscillator should
include all levels under two-step modulation so that tiny
leakage would always exist when we perform qubit operation.
To quantify the leakage error of qubit operation, we adopt the
Euclidean distance between the ideal qubit operation Uqb and
the exact evolution U (tg), whose definition is [54,74]

Ferror = 1
4 ||Uqb − P†U (tg)P||22, (18)

where ||O||22 = trace(O†O), and P is the projection operator
on the qubit basis {|0〉, |1〉}. The exact evolution U (tg) is
governed by Eq. (8) in two-step modulation.

As an illustration, we plot the relation between leakage
error Ferror and detuning δ′ in Fig. 5 when achieving a Y gate
at gate time tg = π

2λeff
by frequency modulation. The results

demonstrate that the leakage error gradually decreases with
the decrease of the difference between δ and δ′, and frequency
modulation is indeed effective in suppressing leakage error
since the value of Ferror is extremely small. It is worth mention-
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FIG. 5. Leakage error Ferror vs detuning δ′ in three-level non-
linear oscillator by frequency modulation where λx/λ0 = 1, δ/λ0 =
100, η2 = √

2.

ing that the leakage error approaches zero when lim
δ′ → δ

δ′
δ

= 1,

namely, δ′ infinitely approaches δ but δ′ �= δ. In fact, the
decrease of leakage error is at the expense of long evolution
times, which can be confirmed by the “Rabi frequency” λeff in
Eq. (10). Therefore, there is a tradeoff between leakage error
and evolution time in practice.

B. Validity of RWA

As mentioned in Sec. II, the main results are valid by
making use of the RWA. Thus, it is important to know the
regime in which the RWA is well satisfied. Note that the
system dynamics would emerge with Rabi oscillation if we
employ the effective Hamiltonian (10) or (12). However,
the system dynamics is not strictly Rabi oscillation in two-
step modulation (a detailed explanation is given in Sec. IV).
Thus we would use Hamiltonian (3) rather than the effective
Hamiltonian (10) or (12) to explore the validity of the RWA.
For brevity, we label the time evolution of the system state
as |ψO(t )〉 when employing the original Hamiltonian (1)
and label the time evolution of the system state as |ψR(t )〉
when employing Hamiltonian (3) under the RWA. Then, the
following definition can be exploited to study the parameter
range of safely employing the RWA,

PD
l = max

{∣∣PO
l (t ) − PR

l (t )
∣∣}, l = 0, 1, (19)

where PO
l (t ) = |〈l|ψO(t )〉|2 (PR

l (t ) = |〈l|ψR(t )〉|2) represents
the population evolution of level |l〉 without (with) RWA, and
PD

l represents the maximum deviation between two dynamics
during time evolution. Remarkably, a high value of PD

l means
that RWA is no longer suitable, and the RWA would be more
valid when PD

l is lower.
Figure 6 demonstrates the maximum deviation PD

l as a
function of the transition frequency ω0 and the control field
frequency ωc in strength modulation. As expected, the RWA
is quite effective in most of the region when the control
field frequency is much larger than the coupling strength
(ωc � λ0) or the system satisfies a large detuning condition
(|ωo − ωc| � λ0), since the value of PD

l is as low as 0.03.
Furthermore, it can be observed that we cannot employ the
RWA when the control field frequency is low (ωc/λ0 � 1) or
the system is in the near-resonance regime (|ωo − ωc| � 0).

FIG. 6. (a) The maximum deviation PD
0 vs the transition fre-

quency ω0 and the control field frequency ωc. (b) The maximum
deviation PD

1 vs the transition frequency ω0 and the control field
frequency ωc. The initial state is |0〉 in strength modulation, and the
other parameters are λx/λ0 = 1, λ′

x/λ0 = 1.2, λy = 0, �2/λ0 = 3,
and η2 = √

2.

In addition, the RWA is also invalid when ωc/ω0 = 2 or
ω0/ωc = 2, since the detuning δ1 = −ω0 or δ1 = ωc in this
case.

C. Physical mechanism

At first glance, it seems inconceivable to perform qubit
operations by two-step modulation in a large detuning regime.
In fact, the physical mechanism of two-step modulation can be
comprehended from two perspectives. First, the system should
satisfy a frequency match. The frequency ω of two-step modu-
lation exactly compensates the detuning between qubit levels.
This is distinctly confirmed in strength modulation, where the
detuning between qubit levels is δ1 and the frequency ω of
two-step modulation reads

ω = 2π

T
= 2π

τ + τ ′ = 2π
(2n+1)π
E1−E0

+ (2n′+1)π
E ′

1−E ′
0

� δ1

n + 1
. (20)

Here n = n + n′ ∈ N, and we call it a “(n + 1)-photon reso-
nance” condition because the detuning δ1 is n + 1 times the
frequency ω (since this process is different from traditional
n-photon resonance, we use this terminology with quotation
marks). It is easily found from Eq. (20) that different time
intervals τ and τ ′ determine different values of n, namely, they
determine how many “photons” are required to compensate
the detuning between qubit levels. When the system satisfies
the frequency match condition, it is possible that Rabi oscil-
lation emerges between qubit levels in two-step modulation.
However, not all square waves with the same frequency ω

can be used to perform universal qubit operations. Different
square-wave duty ratios affect the dynamical phase during the
evolution process, and the system should satisfy phase match.
For each static Hamiltonian H0 and H ′

0, the dynamical phase
difference between qubit levels |1〉 and |0〉 must be odd times
of π , i.e.,

1 = (E1 − E0)τ = (2n + 1)π, n ∈ N,

′
1 = (E ′

1 − E ′
0)τ ′ = (2n′ + 1)π, n′ ∈ N. (21)

In Fig. 7(a), we plot the maximum population Pmax
1 of

qubit level |1〉 during the evolution process versus different
frequencies ω(= 2π

T ) and duty ratios ζ in strength modulation,
where ζT = τ represents the time interval that the system
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FIG. 7. (a) The maximum population Pmax
1 of qubit level |1〉 and

(b) the maximum population Pmax
2 of leakage level |2〉 during whole

evolution process under strength modulation of {λx, λ
′
x}, where the

initial state is in |0〉, and λ′
x = 0.8λx , λy = 0, δ1/λx = 40, �2/λx =

3, η2 = √
2, τ = π

E1−E0
, τ ′ = π

E ′
1−E ′

0
. (c) The maximum population

Pmax
1 of qubit level |1〉 as a function of duty ratio ζ when ωc = 40

under strength modulation. Pmax
1 � 1 means that there exist Rabi

oscillations between qubit levels meanwhile sharply suppressing the
leakage, and vice versa.

is governed by the static Hamiltonian H0 and (1 − ζ )T = τ ′
represents the time interval that the system is governed by the
static Hamiltonian H ′

0. Among all cases of strength modula-
tion, we can observe that only those frequencies that satisfy
the frequency match condition can realize the transition |0〉 ↔
|1〉 of qubit levels, which is denoted by dark-red vertical
lines in Fig. 7(a), and the (n + 1)th-row dark-red vertical
line (look from left to right) corresponds to the “(n + 1)-
photon resonance” condition. Further inspection reveals that
the (n + 1)th-row dark-red vertical line is divided into (n + 1)
segments. This is because there are (n + 1) possibilities to
constitute the frequency ω of two-step modulation, i.e., the
value of n can be chosen from 0 to n according to the
expression n = n + n′ ∈ N in Eq. (20). Furthermore, only
when the system satisfies the phase match condition can the
transition between qubit levels be achieved very well. This is
confirmed by X marks in Fig. 7(a), where the positions of the
X’s (i.e., frequencies ω and duty ratios ζ ) are calculated by
Eqs. (20) and (21).

On the other hand, Fig. 7(a) shows that the two-step mod-
ulation we design is robust against the mismatch caused by
time interval τ , since there is a platform where the maximum
population of qubit level |1〉 is high. This can be also verified
in Fig. 7(c), the two-dimensional graph when ω = 40 in
Fig. 7(a). It implicitly reveals that the conditions satisfying
both frequency match and phase match are optimum for qubit
operations, since the value of Pmax

1 is maximum at the position
of the X marks, the center of each dark-red vertical line in
Fig. 7(a). In order to prove whether two-step modulation can
effectively suppress the leakage, we plot in Fig. 7(b) the max-
imum population Pmax

2 of leakage level |2〉 versus different
frequencies ω and duty ratios ζ . The results indicate that the

maximum of Pmax
2 is on the order of 10−3, verifying that the

populations of leakage levels are indeed sharply suppressed
when we perform qubit operations by two-step modulation.

D. Experimental feasibility

Next we discuss the feasibility of the proposed method.
Experimentally, the nonlinear qubit can be found in the
transmon-type Cooper-pair box (CPB) circuit [69,70,75]. In
a CPB circuit, due to the presence of weak anharmonicity in
the transmon regime, the energy spacings of adjacent levels
are different from each other. Thus, the lowest two levels of
the transmon system can be employed to act as a qubit and
the remainder are leakage levels. For a typical transmon qubit
[76–78], the transition frequency of the qubit is ω0/2π =
5 GHz, and the anharmonicity is �2/2π = −200 MHz. When
adopting frequency modulation in Fig. 1(a), we exploit a
frequency modulator with a square wave to generate δ/2π =
−1.2 GHz and δ′/2π = −2.4 GHz. Thus, the period is T =
0.625 ns, the control parameter is λx/2π = 66.7 MHz, and
the gate time of achieving the Y gate is tg = 18.22 ns.
When adopting strength modulation, we control only the
applied voltage to keep λx/2π = 66.7 MHz and λ′

x/2π =
−66.7 MHz. Thus, the period is T = 3.90 ns, the detuning is
δ1/2π = −240 MHz, and the gate time of achieving the X
gate is tg = 5.85 ns. In addition, if we adopt strength modu-
lation for the physical model in Fig. 1(b), we need to control
the applied voltage to keep λx/2π = 100 MHz and λ′

x/2π =
−100 MHz, and the detuning δ1/2π = 4.8 GHz. Then the
period of two-step modulation is T = 0.208 ns, and the gate
time of achieving the Y gate reads tg = 3.92 ns.

Note that since the system dynamics of two-step mod-
ulation can be regarded as Rabi-like oscillation between
qubit levels, different quantum gates can be implemented by
choosing different gate times while the operation sequence
is the same, namely, the two-step sequence. Particularly, the
gate time is controllable, because it is the moment when we
remove the two-step sequence. Thus there are variety ways
of modulating control parameters to realize our scheme in the
transmon qubit.

VI. ROBUSTNESS AGAINST NOISES

A. The effect of parameter perturbation

The universal way of qubit operations is to make the
coupling between qubit levels in the resonance or near-
resonance regime [79–81]. In these regimes, one of the main
characteristics is that the error of qubit operations would
dramatically increase with the existing strong perturbations
in the control parameter. However, this situation can be sig-
nificantly improved in two-step modulation, benefiting from
highly detuning the qubit [|δ1(t )| � λ0].

Suppose that the nonlinear oscillator exists with perturba-
tion in control parameter λ0, and the expression of λ

per
0 reads

λ
per
0 = (1 + ε)λ0, (22)

where ε quantifies the strength of unknown perturbation, and
λ0 is the exact value to calculate the time interval τ (′) in
frequency modulation. Figure 8(a) depicts the leakage error
Ferror versus the perturbation ε when we achieve the Y gate
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FIG. 8. (a) The leakage error Ferror vs the perturbation ε in
frequency modulation, where λx/λ0 = 1, �2/λ0 = 3, η2/λ0 = √

2.
(b) The unknown exact value λx vs the estimated value λest

x under
different frequency modulations, where the purple-dashed line satis-
fies the equation λx = λest

x , and the other parameters are λx/λ0 = 1,
�2/λ0 = 3, η2/λ0 = √

2. (c) The leakage error Ferror vs the hardness
γ in frequency modulation, where the dashed-dot orange line denotes
the value of Ferror at the same gate time, the solid-cyan line denotes
the minimum value of Ferror during the modulation process, and the
inset denotes the concrete shape of square waves with different γ .
The other parameters are λx/λ0 = 1, �2/λ0 = 3, η2/λ0 = √

2.

by different frequency modulations. The results demonstrate
that Ferror is still below 4 × 10−3, even when ε/λ0 = ±5%,
verifying that it makes little difference in the presence of
perturbation. Hence, this modulation method is robust against
the perturbation of control parameter λ0.

What is more, one can employ this robustness property to
measure the unknown coupling strength of control parame-
ters by frequency modulation. In the large detuning regime
[|δ1(t )| � λ0], we directly choose τ = π

δ
and τ ′ = π

δ′ , since
the coupling strength of the control parameters hardly affects
the energy gap of the system. Due to the robust performance
of time intervals τ and τ ′, which is shown in Fig. 7, frequency
modulation is still valid and the leakage from the qubit to
other levels is sharply suppressed, even though the coupling
strength of the control parameter is unknown. Then, according
to Eq. (10), the populations of qubit levels would emerge
with Rabi-like oscillation, and the oscillation period TR can be
readily acquired by means of experimental techniques. Hence
the unknown coupling strength of the control parameter λx can
be estimated as

λest
x = π2(δ′ + δ)

2TR(δ′ − δ)
. (23)

The advantage of this modulation is that we can measure the
coupling strength repeatedly by choosing different values of
detunings. In Fig. 8(b) we plot the unknown exact value λx

versus the estimation value λest
x . One easily observes that all

lines basically coincide with each other, and the estimated

expression of λest
x would be more accurate if the exact value

of λx were smaller. Thus, Eq. (23) is a validity expression to
estimate the unknown coupling strength of control parameter
λx in frequency modulation.

B. The effect of wave-form deformation

In a realistic modulation process, perfect square waves may
not be readily obtained. Here we study this effect on the
leakage error of qubit operations by an approximate square
waves, whose expression reads

δ1(t ) =

⎧⎪⎨
⎪⎩

δ′ + δ−δ′
1+e−γ mod(t/T ) , mod(t/T )< τ

2 ,

δ′ + δ−δ′
1+eγ [mod(t/T )−τ ] , τ

2 �mod(t/T )�T − τ ′
2 ,

δ′ + δ−δ′
1+e−γ [mod(t/T )−T ] , mod(t/T )>T − τ ′

2 .

(24)

The dimensionless parameter γ characterizes the hardness
of square waves. That is, the shape of Eq. (24) approaches
square waves when γ is large, and it becomes perfect square
wave if γ → ∞. Figure 8(c) represents the leakage error
Ferror as a function of γ in frequency modulation, and the
results demonstrate that even when γ is small (e.g., γ = 100),
which means the square wave is in heavy deformation, the
leakage error would not be distinctly enlarged. In particular,
the leakage error stays extremely low with heavy deformation
by suitably selecting the gate time, as shown by the solid-cyan
line in Fig. 8(c). Therefore, this modulation is also robust
against the deformation of the square wave.

C. The effect of decoherence

So far we have not considered the influence of decoher-
ence of qubit operations. In the presence of decoherence, the
Lindblad master equation can be expressed as

ρ̇ = −i[H0(t ), ρ] +
∑

k=1,2

γk

2
(2σk−1,kρσk,k−1

− σk,k−1σk−1,kρ − ρσk,k−1σk−1,k )

+ �k

2
(2σk,kρσk,k − σk,kρ − ρσk,k ), (25)

where σn′,m′ = |n′〉〈m′|, and γk and �k denote the dissipation
and dephasing rate of level |k〉, respectively. Note that the
master equation (25) describes the evolution of density matrix
rather than evolution operator; thus we set the initial state of
the system as |0〉. When we choose the gate time tg = π

2λeff
,

the final state would be |1〉. Figures 9(a) and 9(b) depict
the influence of decoherence on the population P1 of qubit
level |1〉 in strength modulation. It can be easily found that
the effect of decoherence induced by qubit level |1〉 is much
more serious than that induced by leakage level |2〉, because
the population of leakage level |2〉 is dramatically suppressed
during the modulation process. In addition, the population P1

can also reach a high value, even when both the dissipation
rate γ1 and the dephasing rate �1 are large, which benefits
from the short evolution time of the modulation process.

VII. CONCLUSION

In conclusion, we have demonstrated that universal quan-
tum gates can be achieved by two-step modulation, even
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FIG. 9. (a) The population P1 vs the dissipation rate γ1 and the
dephasing rate �1 of qubit level |1〉 by strength modulation, where
λx/λ0 = 1, λ′

x/λ0 = −1, λy = 0, �2/λ0 = 3, δ1/λ0 = 3.6, η2 = √
2,

d = 3. (b) The population P2 vs the dissipation rate γ2 and the
dephasing rate �2 of leakage level |2〉 by strength modulation, where
the parameters are the same as inset (a).

though the anharmonicity of the nonlinear qubit is very weak
and the coupling strength is unknown. We have deduced the
expression of the effective Hamiltonian by second-order per-
turbation theory and shown that the exact dynamical behaviors
of two-step modulation can be well described by the effective
Hamiltonian in a long timescale and the phenomenological
evolution operator in whole process. The modulation shape
is extremely common, namely, square wave. Particularly, the
deformation of the square wave would not substantially in-
crease the error of qubit operations but change the gate time.
The purpose of artificially adding multiple large detunings
is to sharply suppress the leakage from qubit to other levels
and make qubit operations robust against the perturbation
of control parameters. Thus, the nonlinear oscillator can be
validly reduced to a two-level system, i.e., qubit.

This two-step modulation method would have wide appli-
cations in quantum physics, since the system is no longer
limited to resonance conditions and the values of control
parameters are controllable and adjustable. Note that the
advantages of two-step modulation originate from the large
detuning between qubit levels and are suitable for a gen-
eral three-level system rather than a specific system. While
this work mainly focuses on universal control of qubits and
measuring the coupling strength of control parameters, it can
also find applications in other systems, such as the atomic
system. In a word, the periodic two-step modulation method
would offer us a significant step forward in the development of
qubits, which is feasible for quantum information processing.
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APPENDIX A: GENERAL FORM FOR THE EFFECTIVE
HAMILTONIAN IN TWO-STEP MODULATION:

DERIVATION OF EQS. (10) AND (12)

In this Appendix, we first demonstrate that the Baker-
Campbell-Hausdorff formula cannot be employed to calculate
the time-independent effective Hamiltonian in this physical

model. For simplicity, we only consider a special case of fre-
quency modulation, where the detuning δ1(t ) is periodically
adjusted by the following repeated two-step sequence,

δ1(t ) =
{

δ1, t ∈ [mT, mT + T
2

]
,

−δ1, t ∈ (mT + T
2 , (m + 1)T

]
.

(A1)

As a result, the effective Hamiltonian satisfies the following
equation:

e−iHeff T = e−iH ′
0

T
2 e−iH0

T
2 . (A2)

By using the Baker-Campbell-Hausdorff formula,

eAeB = exp
(
A + B + 1

2 [A, B] + 1
12 [A − B, [A, B]] + · · · ),

(A3)

we can yield the expression of the effective Hamiltonian

Heff = Heff,0 + He f f ,1 + O(T 2),

Heff,0 = λx|1〉〈0| + η2λx|2〉〈1|,

Heff,1 = −i
T

4
[λxδ1|0〉〈1| + η2λx(δ1 − δ2)|2〉〈1|] + H.c.,

(A4)

where Heff,0 and Heff,1 represent the zero-order term and first-
order term of the effective Hamiltonian. As shown in Eq. (7)
of the main text, the square-wave period is approximately
equal to

T = τ + τ ′ = (2n + 1)π

E1 − E0
+ (2n′ + 1)π

E ′
1 − E ′

0

≈ (2n + 1)π

δ1
+ (2n′ + 1)π

δ1
. (A5)

When we choose n = n′ = 0, the period reads T ≈ 2π
δ1

. Then
we substitute the period T into the first-order term of the
effective Hamiltonian Heff,1, and we find that

Heff,1 = i
T

4
[λxδ1|0〉〈1| + η2λx(δ1 − δ2)|2〉〈1|]

≈ −i
π

2

[
λx|0〉〈1| + η2λx

(
1 − δ2

δ1

)
|2〉〈1|

]
. (A6)

Remarkably, the first-order term Heff,1 has the same mag-
nitude as the zero-order term Heff,0. Therefore the effec-
tive Hamiltonian (A4) is diverging, and it is invalid for
employing the Baker-Campbell-Hausdorff formula in this
system.

In order to obtain the effective Hamiltonian of the nonlin-
ear oscillator, one can first calculate the evolution operator
U (T ) = e−iH ′

0τ
′
e−iH0τ within one period. Then by inversely

solving the equation U (T ) = e−iHeff T , we naturally achieve the
effective Hamiltonian Heff . In the following, we introduce this
method in detail.

Since the Hamiltonian of the two-step modulation can be
regarded as two static Hamiltonians H0 and H ′

0, we only need
to study one of the evolution operators (e.g., e−iH0τ ) and the
form of another evolution operator would be similar. At first,
one should achieve the eigenstates and eigenvalues of the
Hamiltonian H0 in Eq. (3) of the main text in order to obtain
the analytical expression of the evolution operator e−iH0τ .
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If the system satisfies the two-photon resonance condition,
i.e., δ2 = 0, the analytical expressions for the eigenstates
and eigenvalues of the Hamiltonian H0 are extremely simple.
Nevertheless, in this work, we do not require this rigorous
condition, i.e., δ2 can be arbitrary but nonzero. As a result,
the expressions of eigenstates become intricate, and they are
quite useless for us. Thus we solve it by standard perturbation
theory.

When λ0 � δ1 (i.e., the large detuning condition), accord-
ing to the second-order perturbation theory, the eigenvalues

Ek and eigenstates |Ek〉 (k = 0, 1, 2) of the Hamiltonian H0

approximatively read (d = 3)

E0 � −δ1a2
1, |E0〉 � |0〉 − a1|1〉,

E1 � δ1 + δ1a2
1 − (δ2 − δ1)a2

2, |E1〉 � a1|0〉 + |1〉 − a2|2〉,
E2 � δ2 + (δ2 − δ1)a2

2, |E2〉 � a2|1〉 + |2〉, (A7)

where a1 = λ0
δ1

� 1, a2 = η2λ0

δ1+�
� 1, and the coefficient of

eigenstates is not normalization. As a result, the evolution
operator of the system becomes

U (t ) = e−iH0t =
2∑

k=0

e−iEkt |Ek〉〈Ek|

= e−iE0t (|0〉 − a1|1〉)(〈0| − a1〈1|) + e−iE1t (a1|0〉 + |1〉 − a2|2〉)(a1〈0| + 〈1| − a2〈2|) + e−iE2t (a2|1〉 + |2〉)(a2〈1| + 〈2|)
� e−iE0t [(|0〉〈0| − a1|1〉〈0| − a1|0〉〈1|) + e−i(E1−E0 )t (|1〉〈1| + a1|1〉〈0| − a2|1〉〈2| + a1|0〉〈1| − a2|2〉〈1|)

+ e−i(E2−E0 )t (|2〉〈2| + a2|1〉〈2| + a2|2〉〈1|)]
= e−iE0t [|0〉〈0| + e−i1 |1〉〈1| + e−i2 |2〉〈2| + a1(e−i1 − 1)(|1〉〈0| + |0〉〈1|) + a2(e−i2 − e−i1 )(|1〉〈2| + |2〉〈1|)],

where we ignore higher-order terms (∼a2
1, a2

2, a1a2), and set 1 = (E1 − E0)t and 2 = (E2 − E0)t . It is instructive to adopt the
matrix form of the evolution operator in the basis {|0〉, |1〉, |2〉}, which reads

U (t ) = e−iH0t =

⎛
⎜⎝

1 a1(e−i1 − 1) 0

a1(e−i1 − 1) e−i1 a2(e−i2 − e−i1 )

0 a2(e−i2 − e−i1 ) e−i2

⎞
⎟⎠, (A8)

where we ignore the global phase e−iE0t . Note that Eq. (A8)
of the evolution operator U (t ) has general form under the
static Hamiltonian H0, and it is a starting point for two-step
modulation.

Next, we need to determine the time intervals τ and τ ′ in
two-step modulation, where the dynamical phase difference
between qubit levels |0〉 and |1〉 of the system should be
odd times of π , i.e., 1 = (E1 − E0)τ = (2n + 1)π, ′

1 =
(E ′

1 − E ′
0)τ = (2n′ + 1)π, n, n′ ∈ N. To be specific, when

the time evolution of the system under static Hamiltonian H0

satisfies 1 = (2n + 1)π , we immediately switch to the static
Hamiltonian H ′

0, and when the time evolution of the system
under the static Hamiltonian H ′

0 satisfies ′
1 = (2n′ + 1)π , we

immediately switch back to the static Hamiltonian H0.

Note that there are several kinds of physical parameters
that can become variable in two-step modulation, such as
the quadrature control parameters λx(t ), λy(t ) or the detuning
δ1(t ). Here, we enumerate two paradigms of them. One is that
the quadrature control parameters are fixed (i.e., λy = 0 and
λx is a constant) and the detuning is variable [cf. Eq. (5) in the
main text], which we call frequency modulation. The other is
that we set the detuning δ1 to be fixed and the control param-
eter λx to be variable [cf. Eq. (11) in the main text, λy = 0],
which is called strength modulation. For simplicity, we give
the detailed derivative procedure of frequency modulation.
According to Eq. (A8), in two-step modulation, the evolution
operator within a period T reads

U (T ) = U (τ ′)U (τ ) = e−iH ′
0τ

′
e−iH0τ =

⎛
⎜⎝

1 2a1 0

2a1 −1 a2(e−i2 + 1)

0 a2(e−i2 + 1) e−i2

⎞
⎟⎠
⎛
⎜⎝

1 2a′
1 0

2a′
1 −1 a′

2(e−i′
2 + 1)

0 a′
2(e−i′

2 + 1) e−i′
2

⎞
⎟⎠

=

⎛
⎜⎝

1 b1 0

−b1 1 b2

0 b3 b4

⎞
⎟⎠, (A9)

where b1 = 2(a1 − a′
1), b2 = a2e−i′

2 (1 + e−i2 ) −
a′

2(1 + e−i′
2 ), b3 = −a2(1 + e−i2 ) + a′

2e−i2 (1 + e−i′
2 ),

b4 = e−i(2+′
2 ), and we also ignore higher-order terms. It

is worth mentioning again that the above approximations

are valid on the large detuning condition (λ0 � |δ1|). Since
the diagonal terms U11 = U22 �= U33, the off-diagonal terms
±b1 are major contributions for the eigenstates of U (T ),
and we then ignore the off-diagonal terms b2 and b3 (the
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leakage caused by b2 and b3 can be canceled by composite
two-step modulation, as shown in Appendix C). In addition,
due to b1 � 1, the equations 1 = cos(b1) and b1 = sin(b1)
hold approximately. Therefore, the system dynamics can
be regarded as Rabi-like oscillation in qubit levels, without
stimulating other levels. On the other hand, suppose that
the effective Hamiltonian of the nonlinear oscillator has the
following form:

Heff = iλeff |0〉〈1| − iλeff |1〉〈0|, (A10)

where the unknown coefficient λeff is required to be solved.
Hence, the effective evolution operator in the basis {|0〉, |1〉}
reads

Ueff (t ) = e−iHeff t =
(

cos(λefft ) sin(λefft )

− sin(λefft ) cos(λefft )

)
. (A11)

According to the definition U (T ) ≡ e−iHeff T [71], we would
obtain the equation b1 = λeffT . As a result, we readily achieve
the constant λeff = 2λ0|δ′−δ|

T δδ′ . Note that the derivative procedure
of strength modulation is similar to that of frequency modula-
tion, and the effective Rabi frequency is λ′

eff = 2(λx−λ′
x )

T δ
.

APPENDIX B: PHENOMENOLOGICAL DESCRIPTION OF
THE EVOLUTION OPERATOR IN TWO-STEP

MODULATION

In this Appendix, we explain how to achieve the estimation
expression of amplitudes in the evolution operator (15) in
the main text. According to the effective Hamiltonian in
Eq. (10) in the main text, the time evolutions of ampli-
tudes are mainly dominated by the trigonometric functions:
cos(λefft ) or sin(λefft ). On this basis, there should exist a
time-dependent term A(t ) to describe rapid oscillation during
two-step modulation. By making use of the normalization
condition, we can immediately give the following estima-
tion expressions: |ues

11(t )| = |ues
22(t )| =

√
| cos2(λefft ) − A(t )|

and |ues
12(t )| = |ues

21(t )| =
√

| sin2(λefft ) + A(t )|, where A(t ) is
unknown. To determine the estimation expression of A(t ), we
must be confronted with the following facts:

(i) The amplitude of A(t ) should be closely connected
to the detunings δ(′) of two-step modulation. That is, the
amplitude of A(t ) is smaller when the detunings δ(′) are larger,
which is reflected in the term Am.

(ii) The period of the rapidly oscillating term A(t ) should
coincide exactly with the period of two-step modulation,
which is reflected in the term sin2[ g(t )

2 ], where g(t ) represents
a periodic function with the period T .

(iii) By carefully observing the evolution process of two-
step modulation, we find that the amplitude of rapid oscil-
lation is not always invariable and approaches zero in the
vicinity of λefft = mπ , m ∈ N. Thus, the value of A(t ) is
also determined by the effective “Rabi frequency,” which is
reflected in the term sin(2λefft ).

According to the above facts and combining with
numerical simulations, the estimation expression of A(t ) is
given by A(t ) = Am sin2[ g(t )

2 ] sin(2λefft ), where Am = λx (δ+δ′ )
δδ′

and g(t ) = {− π
τ

t, t ∈ [mT, mT + τ ]
π

τ ′ (T − t ), t ∈ (mT + τ, (m + 1)T ]. The numerical
calculations in Fig. 4(a) of the main text show that the

estimation expression of amplitudes is describes the actual
evolution process well, since the value of average error is
considerably small, on the order of 10−3. Then we briefly
explain the estimation expression of phases in the evolution
operator. For the off-diagonal term es

21(t ), one can easily
find that the value linearly increases with the evolution time
when ignoring the period T , which is reflected in the term

g(t ) = {− π
τ

t, t ∈ [mT, mT + τ ]
π

τ ′ (T − t ), t ∈ (mT + τ, (m + 1)T ]. However, there exists
a phase transition from 0 (π ) to π (0) in the vicinity of the
evolution time t = mπ/λeff , m ∈ N, which is described by the
term arctan ϑ . So the estimation expression of es

22(t ) reads
es

22(t ) = g(t ) − arctan ϑ − π
2 . Combining with numerical

simulations, the estimation expression of es
11(t ) is given

by es
11(t ) = −[ 1√

2
Am( sin g(t ) − 1

2 ) + 1] arctan ϑ − π
2 . Note

that the variable range of the actual value of phases is large in
the vicinity of evolution time t = mπ/λeff , m ∈ N, leading to
the generation of a large error for the estimation expressions.
As a result, the average errors of phases are accordingly larger
than those of amplitudes.

Since U (T ) is a unitary matrix, there exists a unitary trans-

formation V =
(V11 V12 V13

V21 V22 V23
V31 V32 V33

)
to make it diagonalization,

i.e.,

VU (T )V † =

⎛
⎜⎝

ei(b1+ε1 ) 0 0

0 e−i(b1+ε2 ) 0

0 0 e−i(2+′
2+ε3 )

⎞
⎟⎠, (B1)

where εk � bk ∈ R is a small quantity, k = 1, 2, 3. For the
expression of Eq. (15) in the main text, we do not take
into account the leakage from the qubit to other levels,
i.e., V31 = V13 = V32 = V23 = 0. When considering the leak-
age, the correction of amplitude |u12(t )| approximately reads
|uco

12(t )| � |uco
21(t )| =

√
1 − 2ξ 2|ues

21(t )|, where ξ = |V31
V21

| can
be determined by the secular equation of the unitary matrix
U (T ).

APPENDIX C: FURTHER LEAKAGE REMOVAL BY
COMPOSITE TWO-STEP MODULATION

In the above section, in order to deduce the effective
Hamiltonian (A10), we have ignored the leakage caused by
the off-diagonal terms b2 and b3. Generally speaking, the
off-diagonal terms b2 and b3 are the main source of qubit
leakage in two-step modulation. Next we demonstrate that the
leakage caused by the off-diagonal terms b2 and b3 can be
canceled by composite two-step modulation.

At first, we need to proof that the phase θ of the control
parameter λ0 only affects the phase of off-diagonal terms of
the evolution operator in two-step modulation. Suppose that
the Hamiltonian of the nonlinear oscillator reads

H0 =

⎛
⎜⎝

0 λ0eiθ 0

λ0e−iθ δ1 η2λ0eiθ

0 η2λ0e−iθ δ2

⎞
⎟⎠. (C1)
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It is easy to calculate that the eigenvalues Ek (k = 0, 1, 2) of
H0 are roots of the following cubic equation:

E3
k − (δ1 + δ2)E2

k + (δ1δ2 − λ2
0 − η2

2λ
2
0

)
Ek + δ2λ

2
0 = 0.

(C2)

One can find that the eigenvalues Ek do not show any connec-
tion to the phase θ of the control parameter λ0. Furthermore,

we can also give the expression of eigenstates |Ek〉, i.e.,

|Ek〉 = Nk[(Ek − δ2)λ0eiθ |1〉 + Ek (Ek − δ2)|2〉
+ Ekη2λ0e−iθ |3〉], (C3)

where Nk is the normalization constant. As a result, the
evolution operator by static Hamiltonian H0 reads

U (τ ) = e−iH0τ =
2∑

k=0

e−iEkτ |Ek〉〈Ek|

=

⎛
⎜⎜⎜⎜⎝

S11eiθ S12eiθ S13eiθ

S21 S22 S23

S31e−iθ S32e−iθ S33e−iθ

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 0 0

0 −1 0

0 0 e−i2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

S11e−iθ S12 S13eiθ

S21e−iθ S22 S23eiθ

S31e−iθ S32 S33eiθ

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎝

S1 S4eiθ S5ei2θ

S4e−iθ S2 S6eiθ

S5e−i2θ S6e−iθ S3

⎞
⎟⎠, (C4)

where

S1k = Nk (Ek − δ2)λ0, S2k = NkEk (Ek − δ2), S3k = NkEkη2λ0,

S1 = S2
11 − S2

12 + e−i2 S2
13, S4 = S11S21 − S12S22 + e−i2 S13S23,

S2 = S2
21 − S2

22 + e−i2 S2
23, S5 = S11S31 − S12S32 + e−i2 S13S33,

S3 = S2
31 − S2

32 + e−i2 S2
33, S6 = S21S31 − S22S32 + e−i2 S23S33.

We also find that the values of Sl (l = 1, ..., 6) are not affected by the phase θ of the control parameter λ0. Furthermore, the
evolution operator by two-step modulation reads

U (T ) = U (τ ′
1)U (τ1) = e−iH ′

0τ
′
e−iH0τ =

⎛
⎜⎝

S′
1 S′

4eiθ S′
5ei2θ

S′
4e−iθ S′

2 S′
6eiθ

S′
5e−i2θ S′

6e−iθ S′
3

⎞
⎟⎠
⎛
⎜⎝

S1 S4eiθ S5ei2θ

S4e−iθ S2 S6eiθ

S5e−i2θ S6e−iθ S3

⎞
⎟⎠

=

⎛
⎜⎝

S11 S12eiθ S13ei2θ

S21e−iθ S22 S23eiθ

S31e−i2θ S32e−iθ S33

⎞
⎟⎠, (C5)

where

S11 = S1S
′
1 + S4S

′
4 + S5S

′
5, S12 = S4S

′
2 + S1S

′
4 + S5S

′
6, S13 = S5S

′
3 + S1S

′
5 + S4S

′
6,

S21 = S4S
′
1 + S2S

′
4 + S6S

′
5, S22 = S2S

′
2 + S4S

′
4 + S6S

′
6, S23 = S6S

′
3 + S4S

′
5 + S2S

′
6,

S31 = S5S
′
1 + S6S

′
4 + S3S

′
5, S32 = S6S

′
2 + S5S

′
4 + S3S

′
6, S33 = S3S

′
3 + S5S

′
5 + S6S

′
6.

Again, we find that the values of Smn(m, n = 1, 2, 3) are not affected by phase θ of the control parameter λ0. In other words,
phase θ of the control parameter λ0 affects only the phase of off-diagonal terms of the evolution operator in two-step modulation.
Note that Eq. (C5) is the exact expression of the evolution operator in two-step modulation, and Eq. (A9) is the approximate
expression when θ = 0 and λ0 � δ1.

To cancel the leakage caused by the off-diagonal terms S23(�b2) and S32(�b3) in Eq. (C5), we need to introduce another
evolution operator of two-step modulation, which has a phase θ on the control parameter λ0 while other parameters remain
unchanged. Hence, the period of composite two-step modulation is 2T now, and the evolution operator of the system reads

U (2T ) = U (T )U ′(T ) =

⎛
⎜⎜⎜⎜⎝
S11 S12 S13

S21 S22 S23

S31 S32 S33

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

S11 S12eiθ S13ei2θ

S21e−iθ S22 S23eiθ

S31e−i2θ S32e−iθ S33

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝
S ′

11 S ′
12 S ′

13

S ′
21 S ′

22 S ′
23

S ′
31 S ′

32 S ′
33

⎞
⎟⎟⎟⎟⎠, (C6)

where

S ′
12 = S22S12 + eiθS11S12 + e−iθS13S32, S ′

21 = S11S21 + e−iθS21S22 + e−i2θS23S31,
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S ′
13 = S13S33 + eiθS12S23 + ei2θS11S13, S ′

31 = S11S31 + e−iθS21S32 + e−i2θS31S33,

S ′
23 = S23S33 + eiθS22S23 + ei2θS13S21, S ′

32 = S22S32 + eiθS12S31 + e−iθS32S33,

S ′
11 = S2

11 + e−iθS12S21 + e−i2θS13S31, S ′
22 = S2

22 + eiθS12S21 + e−iθS23S32,

S ′
33 = S2

33 + eiθS23S32 + ei2θS13S31.

In the large detuning condition, it has the relation |S13|, |S31| � |S12|, |S12|, |S23|, |S32| � |S11|, |S22|, |S33|. Thus we can safely
ignore the off-diagonal terms S ′

13 and S ′
31. To eliminate the off-diagonal terms S ′

23 and S ′
33, one should satisfy the following

equations:

S23(S33 + eiθS22) + ei2θS13S21 = 0,

S32(S33 + eiθS22) + ei2θS31S12 = 0. (C7)

Due to |S13| � |S31| � 0, we choose the phase θ only to
satisfy the equation (S33 + eiθS22) = 0. On the other hand,
|S22| � |S33| � 1, and the equation can be further reduced as
|S33|(1 + ei(θ+ϑ ′ ) ) = 0, where ϑ ′ denotes the phase difference
between S33 and S22. Hence, when θ = π − ϑ ′, we can cancel
the leakage caused by the off-diagonal terms S ′

23 and S ′
32

in the evolution operator in Eq. (C6). Note that the most
convenient way to find this specific θ is to employ numerical
calculations. That is, we reversely calculate the amplitudes of
S ′

23 and S ′
32 for all θ ∈ [0, 2π ]. Then we naturally achieve this

specific θ corresponding to the minimum value of |S ′
23| and

|S ′
32|.
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