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Fault-tolerant compass codes
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We study a class of gauge fixings of the Bacon-Shor code at the circuit level, which includes a subfamily of
generalized surface codes. We show that for these codes, fault tolerance can be achieved by direct measurements
of the stabilizers. By simulating our fault-tolerant scheme under biased noise, we show the possibility of
optimizing the performance of the surface code by stretching the bulk stabilizer geometry. To decode the
syndrome efficiently and accurately, we generalize the union-find decoder to biased noise models. Our decoder
obtains a 0.83% threshold value for the surface code in quadratic time complexity.
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I. INTRODUCTION

Fault tolerance plays a central role in scalable and reliable
quantum computation [1–4]. One leading candidate for fault-
tolerant quantum computation is the surface code [5,6], which
lies in the family of topological subspace codes [7]. It has
an estimated fault-tolerant threshold value around 1% [8],
and only requires local interactions. These appealing prop-
erties open a promising path towards large-scale quantum
computation [9–12]. However, implementing a universal set
of logical operations on subspace codes is a challenging
task [13–15]. Another candidate with lower overhead is the
subsystem Bacon-Shor code [16,17]. It is arguably the best
for demonstrating fault tolerance in the near term [18] due
to several practical advantages. For example, one can fault-
tolerantly measure the nonlocal stabilizers by either two-
local measurements [19] or bare syndrome qubits [20]. Also,
asymmetric Bacon-Shor codes with particular size can have
transversal multiqubit controlled-Z gates [21]. However, with-
out code concatenation, the Bacon-Shor code fails to have a
fault-tolerant threshold [19,22].

By gauge fixing the Bacon-Shor code, a large class of
subspace or subsystem codes can be constructed, which are
referred to as compass codes in Ref. [23]. The flexibility of
the code construction has several applications. For example,
it provides a template for constructing topological subsystem
codes [24–26]. From an architectural viewpoint, a subfamily
of compass codes referred to as heavy hexagonal codes has
been proposed to minimize frequency collisions and crosstalk
errors on superconducting qubits [27]. Moreover, it has been
shown that at the phenomenological level, when the noise
model is biased, one can choose asymmetric gauge fixings to
improve the threshold [23]. However, the behavior of compass
codes at the circuit level was not studied in the context of a
low-overhead fault-tolerant scheme.
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In this work, we first show that for a subclass of compass
codes with a Calderbank-Steane-Shor (CSS) structure [28,29],
it suffices to use single syndrome qubits to fault-tolerantly ex-
tract error syndromes. Our protocol is a generalization of the
bare-syndrome-qubit scheme for the surface code [6,30,31]
and for the Bacon-Shor code [20]. Using our bare-syndrome-
qubit scheme, we study the circuit-level performance of a
class of topological subspace compass codes, which can also
be viewed as generalized surface codes, under biased noise
on data qubits. We show that if the gate error rate is low, one
can still benefit from asymmetric gauge fixing even if the gate
does not preserve the bias. We expect that the performance
can be further improved with the help of bias-preserving gates
or fault-tolerant gadgets [17,32–34], and decoding algorithms
for biased noise [35,36].

The bottleneck in the time complexity of our numer-
ical simulation is the decoding process. Instead of using
minimum-weight perfect matching [6,37], i.e., the standard
decoding algorithm for the surface code, we adopt the union-
find decoder [38] to accelerate our simulation. However, the
linear-time union-find decoder only works on unweighted
decoder graphs. For the purpose of studying asymmetric
errors, a weighted decoder graph is needed to capture the
asymmetry. With the cost of increasing the time complexity
to quadratic, we generalize the union-find decoder graph on
weighted decoder graphs. For the surface code, under standard
depolarizing gate errors and measurement errors, we observe
that the use of a weighted graph will improve the threshold
value from around 0.54% to around 0.83%, approaching the
1% threshold value obtained with minimum-weight perfect
matching.

II. BACKGROUND

A. Compass codes

The Bacon-Shor code with distance n, denoted by BSn,
is a subsystem code encoding a single logical qubit into an
n × n square lattice of qubits [16,19,39]. For convenience,
we label the rows and columns of the lattice from 1 to n,
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FIG. 1. The construction of a 5 × 5 compass code. We start with
a 5 × 5 Bacon-Shor code whose stabilizer group is generated by∏

i Xi, jXi, j+1 and
∏

j Zi, jZi+1, j , which correspond to the rectangles
with blue and red boundaries, respectively. After gauge fixing the
Bacon-Shor code, the stabilizer generators are cut by cells with
the opposite color. For example, the stabilizer generator

∏
j Xj,2Xj,3

is cut by two red cells in the second column into three pieces
X1,2X1,3X2,2X2,3, X3,2X3,3X4,2X4,3, and X5,2X5,3.

denote the qubit on row i and column j by qi, j , and denote an
operator O acting on qi, j by Oi, j . The stabilizer group of BSn,
denoted by S , is generated by

∏
i Xi, jXi, j+1 (1 � j < n) and∏

j Zi, jZi+1, j (1 � i < n). The gauge group of BSn, denoted
by G, is generated by two-local operators Xi, jXi, j+1 (1 � i �
n, 1 � j < n) and Zi, jZi+1, j (1 � i < n, 1 � j � n).

Generally speaking, a compass code is a gauge fixing of
the Bacon-Shor code [23]. If the enlarged stabilizer group is
maximal, we obtain a subspace code. One can also construct
subsystem codes by leaving some gauges unfixed. We focus
on a subclass of compass codes which can be easily visualized
by coloring cells of the lattice. To describe this, we first index
each cell by the label of its top-left qubit; then we color each
cell by red or blue, or leave it blank. If the (i, j)-th cell
is red, we fix the gauge

∏i
k=0 Xk, jXk, j+1 ∈ G. If it is blue,

then we fix
∏ j

k=0 Zi,kZi+1,k ∈ G. For those uncolored cells,
there are no corresponding gauge fixes. Figure 1 presents an
example of a 5 × 5 compass code. Note that since we only
perform X - and Z-type gauge fixes, the resulting code is still
a CSS code. Indeed, bit-flip (X -type) errors and phase-flip
(Z-type) errors can be decoded separately. Importantly, an
X -type (Z-type) error on a single qubit only changes no more
than two syndrome checks. This property guarantees that
when we have perfect syndrome extraction gadgets, decoding
algorithms for the surface code [37,38,40] can be directly
applied on compass codes. In fact, when all cells are colored,
the resulting code is exactly a surface code defined on a
planar graph [6]. In particular, the subspace Shor code and
the rotated surface code correspond to a uniform coloring and
a checkered coloring, respectively.

B. Decoder graph

A standard approach for decoding the surface code is to
build two decoder graphs to decode X - and Z-type errors sep-
arately. In the following, we briefly review how to construct
the decoder graph for Z-type errors only. The construction of
the decoder graph for X -type errors is similar.

We first consider surface codes without boundaries. X -type
syndrome checks are vertices of the graph, while qubits are
edges. For each qubit, we link the two X -type syndrome
checks with support on that qubit by an edge. Z-type errors
form a collection of paths in the graph, and only the syn-
dromes at endpoints of these paths will flip. The decoding
problem then becomes finding the most probable collection of
paths, given the endpoints of paths only. For symmetric noise
models, an efficiently computable choice is the collection with
the minimum total length, which can be further formulated
as a minimum-weight perfect matching (MWPM) among the
given endpoints [6,37]. For each two endpoints, the weight
of matching them is simply their distance in the decoding
graph. For asymmetric noise, one can weight each edge e
by ln ( 1−pe

pe
), where pe is the probability that a Z-type error

occurs on the corresponding qubit [6]. Note that if two edges
e1, e2 with error probabilities p1, p2, respectively, link the
same pair of vertices, then one can merge them as a single
edge e, associating an error probability pe = p1(1 − p2) +
(1 − p1)p2.

For surface codes with boundary, there will be some qubits
covered by only one X -type syndrome check, which leads to
open edges in the decoder graph. Indeed, a path might have
only one endpoint. To address this issue, one has to close those
open edges by introducing extra vertices, which are allowed to
be paired with the flipped syndromes.

At the phenomenological level, i.e., when considering im-
perfect measurements, multiple rounds of syndrome extrac-
tion have to be applied, and the decoder should be able to
capture measurement errors. To achieve this, we construct
a new decoder graph with dimension 2 + 1 [6,8,30,31]: for
each round of extraction, we make a copy of the initial
decoder graph to identify data errors in this round, and for two
adjacent rounds, we link the corresponding vertices together
to represent measurement errors.

III. FAULT TOLERANCE WITH BARE
SYNDROME QUBITS

At the circuit level, the problem of decoding compass
codes becomes more complicated: errors on the syndrome
qubits might propagate to the data qubits through two-
qubit gates and lead to high-weight data errors. Although
universal fault-tolerant protocols can be directly applied so
that syndrome-qubit errors become distinguishable [41–45],
the resource overheads are usually prohibitive, and it will
be difficult to represent these errors in the decoder graph.
However, in the extreme case in which the stabilizers have
the lowest weight, the surface code can be decoded fault
tolerantly with just bare syndrome qubits [6,31]. As another
extreme case, the Bacon-Shor code also has a bare-syndrome-
qubit fault-tolerant scheme using a carefully designed gate
sequence [20]. One naturally seeks to generalize such simple
protocols on arbitrary compass codes, whose existence was
shown in Ref. [23].

To address this, we observe that in the language of com-
pass codes, the fault-tolerant schemes for two different codes
have a unified description: for each Z-type stabilizer check
S = Zi, j1 Zi+1, j1 · · · Zi, j2 Zi+1, j2 (1 � i < n, 1 � j1 � j2 � n),
we assign a syndrome qubit aS initialized to |0〉, and then
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FIG. 2. Fault-tolerant syndrome extraction using bare syndrome qubits on a compass code. On the left, each red rectangle represents a
Z-type stabilizer. CNOT gates are applied from data qubits to ancilla qubits in the order specified by the dashed arrows. If a Z-type error occurs
on the ancilla qubits after each CNOT gate represented by a dashed red line, those propagate to the three groups of data qubit errors circled in
the middle. The right-hand picture represents the decoder graph, with the three corresponding correlated errors highlighted in red.

apply controlled-NOT gates between data qubits and aS , where
the data are control qubits and aS is the target qubit. Finally,
we measure aS in the Z basis. The ordering of the controlled-
NOT gates has the following zigzag pattern:

qi,j1 qi,j1+1 · · · qi,j2

qi+1,j1 · · · qi+1,j2−1 qi+1,j2
.

Although a single Z-type error on the syndrome qubit might
propagate through the two-qubit gates, leading to errors of the
form Zi, j′Zi+1, j′+1 · · · Zi, j2 Zi+1, j2 or Zi+1, j′+1 · · · Zi, j2 Zi+1, j2 ,
these errors will flip at most two checks that cover the two
leftmost qubits, respectively. To represent these errors, one
can add edges crossing the faces of the decoder graph. We
notice that the new decoder graph is a triangulation of the
original one. An important fact is that such a triangulation
does not create any shortcut between two boundaries, which
indicates that our scheme is distance preserving. See Fig. 2 for
a demonstration of the bare-syndrome-qubit scheme working
on the compass code in Fig. 1. Note that for the Bacon-
Shor code, since its decoder graph is a chain without any
inner faces, errors on syndrome qubits will not introduce any
new edges. For the rotated surface code, all new edges are
perpendicular to the logical-Z operator. Therefore, a shortest
path between two boundaries will never cross these edges.
Indeed, neglecting these edges in the decoder graph will
not reduce the code distance. For the subspace Shor’s code,
however, there exist shortest paths crossing the new edges,
which demonstrates the necessity of the triangulation.

IV. DECODER

As mentioned in Sec. II B, our decoding problem can be
formulated as a minimum-weight perfect matching (MWPM)
problem, which can be solved by Edmonds’ blossom al-
gorithm [37]. However, it will take O(n9) time to decode,
since our decoder graph has V = O(n3) vertices and the time
complexity of the blossom algorithm is O(V 3). To accelerate
our simulation, we use the union-find decoder proposed by
Delfosse and Nickerson [38]. The idea of the union-find
decoder is to greedily explore the metric space induced by
the geodesic distance of the decoder graph. It finds a closed

neighborhood of the flipped syndrome such that each path-
connected component of that neighborhood either includes
an even number of flipped syndromes or intersects with the
boundary of the surface. Finally, it pairs flipped syndromes
by paths in the neighborhood arbitrarily. However, the union-
find decoder only achieves almost-linear time complexity on
unweighted decoder graphs. To decode the syndrome more
accurately, we have to generalize it to weighted decoder
graphs, at the cost of higher time complexity.

We first briefly describe the key part of the union-find
decoding algorithm; that is, how to find a neighborhood which
guarantees that the code distance can be preserved. The strat-
egy is to use a greedy heuristic described by the following.
Initially, the neighborhood is set to be the set of flipped
syndromes only. In each step, we choose a path-connected
component with the smallest boundary among those with an
odd number of flipped syndromes. We then enlarge it by
including the points whose distance from that component is
no more than ε. Here, ε > 0 is chosen to be the minimum
value such that either the enlarging components intersect
with another or a new vertex is included. When two compo-
nents intersect with each other, we merge them into a single
component.

Note that for unweighted graphs, components will only
meet at either a vertex or the middle point of an edge. In this
case, one can always choose ε = 1/2. Using the disjoint-set
data structure for merging components [46], one can achieve
O[n3α(n3)] time complexity [38], where α(·) is the inverse
Ackermann function [47], which is less than 5 for any prac-
tical value of n. For weighted graphs, however, components
can meet at any points in the metric space induced by the
decoder graph. Without using advanced data structures, we
have to determine ε by visiting all the edges on the boundary
of the component, which takes O(n3) time. The total time
complexity increases to O(n6), which is still significantly
better than O(n9), the complexity of the blossom algorithm.
We estimate the threshold of the surface code with unweighted
and weighted graphs under the following noise model: each
two-qubit gate is followed by a two-qubit depolarizing chan-
nel with probability p, and each measurement fails with
probability p. Note that we have not included preparation
errors. The simulation results are shown in Fig. 3. We can
see that decoding with weighted decoder graphs improves the
threshold value from 0.54% to 0.83%. As a comparison, we
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FIG. 3. Threshold behavior of the surface code with union-find decoders. Each two-qubit gate is followed by a two-qubit depolarizing
channel with rate p, while each measurement fails with the same rate. The idling errors in the circuit are ignored. (a) If the decoder graph is
unweighted, the threshold is around 0.54%. (b) Using a weighted decoder graph, we obtain a threshold value around 0.83%. (c) The threshold
of minimum-weight perfect matching is around 0.94% in this error model.

obtain a 0.94% threshold value with the use of the minimum-
weight perfect matching decoder.

V. BIASED NOISE MODEL

In this work, we are interested in the performance of com-
pass codes with pure dephasing memory errors and unbiased
gate errors. The error model is as follows: each two-qubit gate
is followed by a two-qubit depolarizing channel,

E (ρ) = (1 − pgate )ρ + pgate

15

∑

i

PiρPi,

where Pi runs through all nontrivial two-qubit Pauli operators;
the outcome of each measurement flips with probability pmeas;
each idling qubit experiences a dephasing channel Eidle(ρ) =
(1 − pi )ρ + piZρZ . This follows from a T2 dephasing model
which commonly occurs in quantum devices [48–50]. If we
fix pgate and pmeas, codes with a higher pi threshold will down-
grade the requirement of long-T2 coherence time or reduce the
overhead by doing syndrome extraction less frequently.

If pgate and pmeas are sufficiently small, the errors on data
qubits will be biased to Z . Previous work has shown that when
the memory errors are Z biased and the gate errors are ignored,
one can improve the threshold scaling by fixing more X -type
gauges [23]. One might attempt to apply the same biased

gauge fixing strategy at the circuit level. However, we note
that errors on syndrome qubits will correlate excitations in
different rows of the lattice, which makes the biased gauge
fixing less effective.

To study the effectiveness of biased gauge fixing at the
circuit level, we focus on a subfamily of compass codes,
which is referred to as elongated codes in Ref. [23]. Here
we recall that an n × n elongated code with elongation � is
constructed by coloring those cells (i, j) with i ≡ j (mod �)
by red, and the remaining cells by blue. As the elongation
grows, more X -type gauges are fixed.

We simulate the performance of (2 + 1)-dimensional elon-
gated codes under our noise model. For a lattice of size n,
we apply n rounds of faulty syndrome extraction and an ideal
round at the end, and then decode the syndrome with our
decoder. We note that for codes with larger elongation, each
syndrome qubit interacts with more data qubits. To avoid the
complication of scheduling, we assume that the dephasing er-
rors only happen between two consecutive extraction rounds.

As a demonstration, we fix pgate = 0.3% and pmeas =
0.1%, and compare the performance among � = 2, 3, 4 for
different values of the side length n and the dephasing rate
pi. Note that � = 2 is the usual rotated surface code. The
simulation results for intermediate-size lattices are presented
in Fig. 4. We can observe that when the noise is unbiased,
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FIG. 4. Simulation results for intermediate-size elongated codes with fixed gate error rate pgate = 0.3% and measurement error rate pmeas =
0.1%. pi is the idle error rate and pL is the corresponding logical error rate. (a) 7 × 7 lattice. (b) 9 × 9 lattice. (c) 11 × 11 lattice.
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i.e., pi → 0, the surface code always performs better. For
fixed n, when pi is greater than a critical value, the noise
becomes sufficiently biased and elongated codes outperform
the surface code. However, as the size of the lattice grows, the
critical value increases towards the threshold of the surface
code.

VI. CONCLUSION

In this paper, we provide a simple fault-tolerant scheme for
2D compass codes with direct measurements, which is inde-
pendent of the size of the stabilizer checks. Our scheme unifies
the direct measurement schemes for the Bacon-Shor code [20]
and the (rotated) surface code [31]. With our protocol, we
study the performance of compass codes under circuit-level
noise. We show that for biased error models, it is possible
to boost the performance with a biased gauge fixing. We
expect further improvements with the help of bias-preserving
gates [34].

One drawback of our fault-tolerant scheme is the difficulty
of parallelization of the circuit, which limits its practical use
on systems with high idling error rate. However, it is always

possible to reduce the circuit depth by applying cat-state
measurements [41], and one can balance the circuit depth
against the number of syndrome qubits.

We also generalize the union-find decoder [38] to weighted
decoder graphs, which is of independent interest but also a
crucial part for correcting biased noise on larger lattices. Our
decoder can be considered as a greedy approach for minimum-
weight perfect matching, which surely reduces the computa-
tional complexity. Note that the syndrome validation part of
our algorithm has some similarity to Dijkstra’s shortest-path
algorithm, which indicates the possibility of further reducing
the time complexity by using advanced data structures [51].
We leave this for future work.
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