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Finding good quantum codes using the Cartan form
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We present a simple and fast numerical procedure to search for good quantum codes for storing logical qubits
in the presence of independent per-qubit noise. In a key departure from past work, we use the worst-case
fidelity as the figure of merit for quantifying code performance, a much better indicator of code quality than,
say, entanglement fidelity. Yet our algorithm does not suffer from inefficiencies usually associated with the use
of worst-case fidelity. Specifically, using a near-optimal recovery map, we are able to reduce the triple numerical
optimization needed for the search to a single optimization over the encoding map. We can further reduce the
search space by using the Cartan decomposition, focusing our search over the nonlocal degrees of freedom
resilient against independent per-qubit noise, while not suffering much in code performance.
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I. INTRODUCTION

Interest in building quantum computing devices has grown
steadily, with rapid progress in the last few years with the fresh
injection of industry support. Current quantum computing
devices, like those from IBM, Google, and Rigetti, comprise
only a few (at best, tens of) qubits and are quite noisy. We
are right now in the “NISQ era” [1], a term referring to the
near-to-intermediate-term situation where physical devices
are too noisy and too small to implement regular quantum
error correction (QEC) and fault tolerance schemes to deal
with the noise in the device. While experimenters work hard
to improve the physical qubits and their operation, from the
theory side, there is a strong need to find better QEC and fault
tolerance schemes with lower resource overheads, essential
for the eventual implementation of robust and scalable quan-
tum computing devices.

The goal of QEC is to offer protection against the loss of
information due to noise, e.g., unwanted evolution due to the
interaction with the physical environment. Generally, QEC
[2–6] (see also a recent review Ref. [7]) tries to store the
information to be protected in a special part of the quantum
state space with the property that errors due the noise can be
identified and their effects removed through a recovery pro-
cedure. In its broadest sense, QEC includes passive methods
like decoherence-free subspaces and noiseless subsystems
[8–11], where the information is stored and protected in a part
of the state space unaffected by the noise and hence requires
no recovery operation; more commonly, QEC refers to the
situation where active recovery is needed, which is the typical
situation.

Much of the existing work on QEC centers around codes
capable of removing the effects of arbitrary errors on indi-
vidual qubits, powerful enough to deal with general, even

unknown, noise. The stabilizer codes [12], including the
well-known Steane code [3] and Shor code [2], fall into
this category of codes which can correct for single-qubit
errors.

This generality, however, comes at a price: For example,
one cannot find codes capable of correcting an arbitrary error
on any single qubit unless one uses at least five physical
qubits to encode a single qubit of information [13]. In the
current NISQ era, where the question of how to deal with
noise is of primary concern, one expects a reasonable level
of characterization of the noise afflicting the qubits. In this
case, channel-adapted codes [14]—codes tailor made to deal
with the specific noise channel encountered in the physical
device—become of interest. Such codes can be expected,
and are known (see, for example, the four-qubit code for
amplitude-damping noise discovered in Ref. [15]), to be less
demanding in resources.

The most general formulation of channel-adapted codes
requires full knowledge of the noise acting on the entire phys-
ical system through the use of process tomography. Process
tomography, however, is infamously expensive to perform,
with a resource scaling that grows as the fourth power in
the dimension of the system, not to mention the difficulties
having to do with state-preparation and measurement errors.
An accurate joint characterization of multiqubit noise is hence
likely prohibitive in the near future. Instead, one can make
the experimentally well-motivated assumption of independent
noise and regard the full n-qubit noise channel as a ten-
sor product of n single-qubit channels, hence reducing the
problem to characterizing the individual qubit noise, a much
simpler task whose difficulty grows only linearly with the
number of qubits.

This tensor-product structure, often a good approximation
in current devices (see, for example, Ref. [16]), endows the

2469-9926/2020/101(4)/042307(10) 042307-1 ©2020 American Physical Society

https://orcid.org/0000-0001-8252-5174
https://orcid.org/0000-0002-3073-0667
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.042307&domain=pdf&date_stamp=2020-04-06
https://doi.org/10.1103/PhysRevA.101.042307


JAYASHANKAR, BABU, NG, AND MANDAYAM PHYSICAL REVIEW A 101, 042307 (2020)

noise with a local, qubit-by-qubit, character. One then expects
to find good code spaces—regions of the state space resilient
to the noise—among states with a nonlocal structure. This
intuition motivated the original idea of quantum codes, storing
the information to be protected in states entangled across
multiple physical qubits. In our work, we again put it to good
use: We focus our search for good channel-adapted codes on
states with a nonlocal nature, identified by using a Cartan
decomposition of the encoding operation.

The question of finding channel-adapted codes can be
formulated as an optimization problem [17–21], one of
finding the combination of code and recovery that optimizes
a chosen figure of merit for the given noise channel. When
the figure of merit is the average entanglement fidelity [22],
one only has a double optimization over encoding (of a
given block length) and recovery. This problem is known
to be tractable via convex optimization techniques [18–20].
However, if the worst-case fidelity [12]—a better figure
of merit that assures a minimum performance—is used
instead, an additional numerical minimization of the fidelity
measure is needed, because one cannot generally write down
a closed-form expression for the worst-case fidelity. This
leads to a triple-optimization problem.

In our work, we focus on finding channel-adapted codes
that minimize the worst-case fidelity for the storage of a
single qubit of information, the standard approach to quantum
computing. We argue that we can, in practice, reduce
the original triple optimization to a single optimization.
Specifically, we remove the need for an optimization over
the recovery. Instead, we make use of the Petz recovery [23],
shown to be near-optimal in Ref. [24]. The use of the Petz
recovery further permits the use of an analytical expression
for the worst-case fidelity for codes encoding a single logical
qubit. This removes the need to numerically minimize the
fidelity over the state space. Thus, we only need optimize
over the encoding operation. Furthermore, a key aspect of this
work is that we can reduce the difficulty of this remaining
numerical optimization over all possible encodings by
employing a Cartan decomposition of the encoding operation,
motivated by the noise-locality–code-nonlocality dichotomy
described earlier. We vary only over the nonlocal pieces of the
decomposition, thereby reducing the dimension of the search
space. Altogether, these steps give a fast and easy algorithm
for finding good channel-adapted codes for the worst-case
fidelity, the preferred figure of merit for quantum computing
tasks.

Our paper is organized as follows: In Sec. II, we first review
the mathematical formalism of channel-adapted codes and the
present the steps that reduce the problem to a single optimiza-
tion. We describe the use of the Cartan decomposition to help
simplify the search in Sec. III. We present several examples in
Sec. IV to illustrate our method, and conclude in Sec. V.

II. THE OPTIMIZATION PROBLEM

We begin by describing the various ingredients in our
approach to the problem of finding channel-adapted codes for
the worst-case fidelity measure. We explain how to reduce the
problem to a single optimization, over the encoding operation.

A. Basic formulation

Consider a physical quantum information processing sys-
tem of dimension d , with Hilbert space H. The noise acting
on the system can be described by a quantum channel, i.e.,
a completely positive (CP) and trace-preserving (TP) linear
map, denoted by E . E acts on B(H), the set of linear oper-
ators on H, E : B(H) → B(H). Its action can be written as
E (·) = ∑N

i=1 Ei(·)E†
i , for a set of (nonunique) Kraus operators

{Ei}N
i=1, a structure that assures the CP nature of the map.

The Kraus operators further satisfy
∑N

i=1 E†
i Ei = 1, for the

TP property.
To protect the quantum information from damage by the

noise, QEC proposes to store the information—assumed to be
a d0-dimensional Hilbert space H0 of states—in a d0(�d)-
dimensional subspace C of H, the Hilbert space of the phys-
ical system. We refer to C as the codespace. The encoding
operation W—a unitary operation, and hence invertible—is a
one-to-one mapping of states from H0 to C, W : B(H0) →
B(C) ⊆ B(H). The action of the noise E on the encoded state,
the output of W , can then be regarded as E : B(C) → B(H).
After the action of the noise, the QEC protocol applies a
suitable recovery map R, a CPTP map R : B(H) → B(C)
that restores the state into the codespace, and in the process
removing (hopefully most of) the errors due to the noise. If
we want, we can then decode the physical state back into the
quantum informational state of H0 by applying the decoding
operation, W−1.

Traditionally, the QEC protocol, specified by the pair
(W,R) for given H0 and H, is chosen to satisfy (at least
approximately) what are known as the QEC conditions [6,24],
for successful removal of the errors caused by the noise.
Here, it is more straightforward to think directly in terms
of an optimization problem. For that, we first quantify the
performance of a code C (or, equivalently, W) with recovery
R for the noise process E by a measure that compares the
output state of the QEC protocol (R ◦ E )(ρ) to the input
state ρ ∈ B(C). An often-used measure is the fidelity (see,
for example, Ref. [12]), defined for two states ρ and σ as
F (ρ, σ ) = Tr[(ρ1/2σρ1/2)1/2]. For a pure ρ = |ψ〉〈ψ |, and
for σ ≡ M(ρ), where M is a CPTP map, we write the square
of the fidelity—a more convenient quantity—as

F 2(|ψ〉,M) = 〈ψ |M(|ψ〉〈ψ |)|ψ〉. (1)

To characterize the performance of a given pair (W,R) for
noise E , we use the worst-case fidelity,

F 2
min(W,R; E ) ≡ min

|ψ〉∈H0

F 2(|ψ〉,W−1 ◦ R ◦ E ◦ W ). (2)

Above, we have used the fact that the fidelity function F is
jointly concave in its arguments, so that the minimum fidelity
over all states is always attained on a pure state, i.e., it suf-
fices to minimize over state vectors in H0. The minimization
over |ψ〉 ∈ H0 usually has to be done numerically unless
one has special properties in the problem (as we will see
below). Alternatively, one can make use of the fidelity loss
quantity,

η(W,R; E ) ≡ 1 − F 2
min(W,R; E ). (3)

We can now state the basic formulation of the optimization
problem for channel-adapted codes: For given noise E , and the
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available dimension d of the physical system, the best code
is given by the solution to the following optimization over
encoding operation W and recovery R,

argmax
W

argmax
R

F 2
min(W,R; E )

= argmin
W

argmin
R

η(W,R; E )

= argmax
W

argmax
R

min
|ψ〉∈H0

F 2(|ψ〉,W−1 ◦ R ◦ E ◦ W ).

(4)

This is the triple optimization over the encoding W , the recov-
ery R, and the input state |ψ〉 mentioned in the introduction.

We note that, in principle, one could also add an optimiza-
tion over the dimension d of the physical state space used to
encode H0. For the current situation of independent noise on
the physical system, one expects better fidelity with a larger
number of physical qubits, as this will gives better “delocal-
ization” of the information. However, in the current NISQ
era, the number of physical qubits available for encoding the
information will largely come from practical constraints. We
thus take d to be fixed, and find the best (W,R) for that
given d .

B. The Petz recovery

We first reduce this triple-optimization problem to a double
optimization over W and |ψ〉 only by choosing a suitable
recovery R. For any noise channel E and codespace C,
we choose the corresponding Petz recovery RP, defined as
[23,24],

RP(·) ≡
N∑

i=1

PE†
i E (P)−1/2(·)E (P)−1/2EiP, (5)

where {Ri ≡ PE†
i E (P)−1/2}N

i=1 constitute the Kraus operators
of RP. Here, P is the projector onto the codespace C, and the
inverse of E (P) is taken on its support. The Petz recovery,
even though it is usually not the recovery that achieves the
smallest worst-case fidelity for a given E and C, was shown to
be near optimal in Ref. [24]. Specifically, this near-optimality
is captured by the bounds (Corollary 4 of Ref. [24]),

ηRop � ηP � ηRop

[
(d0 + 1) + O

(
ηRop

)]
, (6)

where ηRop and ηP are the fidelity losses if we had used the
optimal and Petz recoveries, respectively (for the same W and
given E). For d0 = 2, the case we will focus on, we see that
the Petz recovery gives a good indicator of the performance of
the chosen codespace under the optimal recovery; the use of
the Petz recovery does not give a significant deterioration in
performance. This justifies our use of the Petz recovery, a map
with a simple analytical form, as a good proxy for the optimal
recovery, the latter usually accessible only numerically.

Having fixed the recovery map as RP, our optimization
problem reduces to a double optimization,

argmax
W

min
|ψ〉∈H0

F 2(|ψ〉,W−1 ◦ RP ◦ E ◦ W ). (7)

We denote the fidelity loss for an encoding W as ηW ≡
η(W,RP; E ); the optimal encoding Wop is then the one that
attains ηop ≡ minW ηW .

C. Fidelity loss for qubit codes

The optimization problem of Eq. (7) can be fur-
ther simplified by noting that the worst-case fidelity
min|ψ〉∈H0 F 2(|ψ〉,W−1 ◦ RP ◦ E ◦ W ) for encoding W , or
equivalently, the fidelity loss function ηW , has a simple form
for the case of qubit codes (i.e., d0 = 2) with the Petz recov-
ery. Specifically, ηW can be easily computed via eigenanalysis
[24]. We recall the steps here, for completeness.

We encode a qubit H0 into a two-dimensional codespace
C. For an orthonormal basis {|v1〉, |v2〉} on C, the Pauli basis
{σα}α=0,x,y,z (orthogonal but not normalized) for operators on
C can be defined in the usual way as

σ0 =|v1〉〈v1| + |v2〉〈v2| = P ≡ 12, (8)

σx =|v1〉〈v2| + |v2〉〈v1|,
σy = − i(|v1〉〈v2| − |v2〉〈v1|),
σz =|v1〉〈v1| − |v2〉〈v2|. (9)

Codestates ρ ∈ B(C) can then be described by using the
Bloch-ball representation,

ρ = 1
2 (12 + s · σ ), (10)

where s = (sx, sy, sz ) is a real three-dimensional vector—the
Bloch vector for ρ—with Euclidean length |s| � 1, and σ =
(σx, σy, σz ).

Consider the channel M : B(C) → B(C) composed from
the noise followed by the Petz recovery, acting solely on the
codespace, M ≡ RP ◦ E ◦ P . P (·) ≡ P(·)P is the map that
enforces the precondition that we start in the codespace. M is
both trace preserving [M†(P) = P] and unital [M(P) = P],
and its action can be expressed in the Pauli operator basis as
the matrix

M =

⎛
⎜⎝

1 0 0 0
0
0 T
0

⎞
⎟⎠, (11)

with real matrix entries Mαβ ≡ 1
2 Tr{σαM(σβ )}; T is a 3 × 3

matrix of the α, β = x, y, z entries. The action of M on an
input state ρ ∈ B(C) can then be expressed in terms of the
action on the Bloch vector as s 	→ s′ ≡ T s. The fidelity loss
ηW (for given encoding W that defines the C subspace) is
then, by straightforward algebra,

ηW = max
s,|s|=1

1
2 (1 − sTTsyms) = 1

2 [1 − tmin(W )], (12)

where Tsym ≡ 1
2 (T + T T), and tmin(W ) is the smallest eigen-

value of Tsym. Here, the superscript T denotes the transpose
operation.

D. A single numerical optimization

In this way, we have reduced the minimization needed
to compute the worst-case fidelity in Eq. (7) to a simple
diagonalization of a 3 × 3 matrix and taking the smallest
eigenvalue. We thus finally have only a single optimization
left to do to find the best channel-adapted code,

argmin
W

1
2 [1 − tmin(W )]. (13)
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The optimization over the encoding W has to be done
numerically. We parametrize the search space as follows:
Every codespace C is specified by d0 orthogonal pure states in
H, forming a basis for C. Varying over the codespace can then
be thought of as starting with a fixed basis with d0 elements,
and then applying a rotation of the basis, via a unitary operator
U , in the full d-dimensional Hilbert space of the physical
system. Choosing different C then corresponds to choosing
different unitary operators U . The search space is then the set
of all d-dimensional unitary operators, a space specified by d2

real parameters.
Observe that tmin(W ) has to be computed numerically for

each W . This means that we do not have a closed-form
expression for the gradient of our objective function, so that
standard optimization methods that require a formula for the
gradient do not work. This is easily solved, however, by going
to methods that estimate the gradient numerically within the
gradient-descent algorithm. A well-known approach, the one
that we used here, is the Nelder-Mead search technique (also
known as the downhill simplex method; see, for example,
Refs. [25,26]).

III. SIMPLIFYING THE SEARCH: THE CARTAN
DECOMPOSITION

As stated earlier, the optimization over W involves a d2-
dimensional search. For n-qubit physical systems, the typical
experimental scenario, where d = 2n, the search space dimen-
sion grows exponentially with n. It would hence be useful to
further reduce the complexity of the search by considering a
restricted search over the set of encoding unitaries W . For
that, we recall our focus, as motivated in the introduction,
on noise channels with a tensor-product structure over the n
qubits. This local structure in the noise suggests the use of
codes with a nonlocal nature. To separate the nonlocal pieces
of the unitary search space from the local pieces, we make use
of the Cartan decomposition, as described in Sec. III.

Our search space, originally comprising elements in the
unitary group U(2n) for an n-qubit code, can be restricted
to elements of the special unitary group SU(2n) without
loss of generality. We then use the Cartan decomposition
originally proposed in Ref. [27], whereby any n-qubit unitary
is realized as a product of single-qubit (local) and multiqubit
(nonlocal) unitaries. The specific parametrization we use is
due to Ref. [28], where the standard Pauli basis is employed
to decompose an arbitrary element of SU(2n) in terms of its
local and nonlocal parts in an iterative fashion.

Cartan form of the encoding unitary

Recall that the special unitary group SU(d )—the group of
d × d complex matrices with determinant one—forms a real
Lie group of dimension d2 − 1. Let SU(d ) denote the corre-
sponding Lie algebra, the algebra of traceless anti-Hermitian
d × d complex matrices with the Lie bracket −i[·, ·], i.e., (−i)
times the commutator.

The central idea behind the Cartan form is the fact that any
element of SU(2m) can be represented, up to local unitaries,
using elements of two Abelian subalgebras hm and fm (m =
2, 3, . . . , n) of SU(2m). This was shown in Ref. [27] via an

iterative decomposition of the form U = U ′HU ′′, where H
is generated alternately from elements of hm and fm, while
U ′ and U ′′ belong to the subgroup of SU(2m) generated by
a subalgebra orthogonal to hm and fm. The exact structure of
the decomposition depends on the choice of an appropriate
basis for SU(2m) that can be obtained recursively for m =
2, 3, . . . , n.

For example, for n = 2, one can use twofold tensor prod-
ucts of the single-qubit Pauli operators (I, X,Y, Z) as basis
elements for SU(4). Using this basis to partition SU(4) into
orthogonal subspaces leads to an identification of the Abelian
subalgebras h2 = span{XX,YY, ZZ} and f2 = {0}. This leads
to the well-known Cartan form for U ∈ SU(4) [29,30],

U = (U1 ⊗ U2)e−i(c1XX+c2YY +c3ZZ )(U3 ⊗ U4), (14)

where U1,U2,U3, and U4 ∈ SU(2) are local, single-qubit uni-
taries, and c1, c2, and c3 are scalar parameters for the nonlocal
operators.

Following this intuition from SU(2), Ref. [28] showed that
a basis comprising n-fold tensor products of the single-qubit
Pauli basis can be obtained for any SU(2n) by an iterative
process, which partitions SU(2n) into Abelian subalgebras
hn and fn. The Cartan decomposition of any n-qubit unitary
operator can then be obtained as follows:

Cartan decomposition [28]. Any U ∈ SU(2n), for n > 2
can be decomposed as

G = K (1)F (1)K (2)JK (3)F (2)K (4). (15)

Here, each K (i) denotes a product operator from SU(2n−1) ⊗
SU(2), F ( j) ≡ exp(−i f ( j) ) and J ≡ exp (−ih) are unitary op-
erators nonlocal on the entire n-qubit space, with h ∈ hn and
f ( j) ∈ fn. The decomposition can be applied recursively to
further decompose each SU(2m) operator in K (i), in the form
of Eq. (15), for m = 2, 3, . . . , n − 1.

As in the n = 2 case, the Cartan decomposition for n > 2
again separates out the local and nonlocal degrees of freedom
in an iterative fashion. However, for n > 2, a second Cartan
decomposition is required in order to identify the factors that
are nonlocal on the entire n-qubit space. This stems from the
fact that a pair of nontrivial Abelian subalgebras hn, fn maybe
identified for any n > 2, and this leads to a two-step decom-
position. First, using the generators of the subalgebra hn, we
obtain the unitary J ∈ SU(2n), as well as U ′,U ′′ ∈ SU(2n),
such that G = U ′JU ′′ for any G ∈ SU(2n), n > 2. Further
Cartan decompositions of U ′ and U ′′ using the generators of
fn give the form G = K (1)F (1)K (2)JK (3)F (2)K (4), where the
operators K (i) ∈ SU(2n−1) ⊗ SU(2) are no longer nonlocal
on the entire n-qubit space. Starting with the bases for h2,
f2 identified above, Ref. [28] provides a simple recursive
prescription to identify the bases for the subalgebras hn, fn,
for any n > 2.

To illustrate how the above prescription can be used to
obtain a nice parametrization of the encoding unitaries for
QEC, we explicitly write down the Cartan form for n = 3 and
4. Any element of SU(23) can be constructed by using the
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formalism in Eq. 15 as

U = K (1)F (1)K (2)JK (3)F (2)K (4),

F (i) = e−i(c(i)
1 XXZ+c(i)

2 YY Z+c(i)
3 ZZZ ),

J = e−i(a1XXX+a2YY X+a3ZZX+a4IIX ). (16)

As stated above, K ( j) ∈ SU(4) ⊗ SU(2), and each element in
SU(4) can be obtained similarly from Eq. (14). Recall that
the standard description of any unitary in SU(23) requires 63
real parameters, whereas the recursive Cartan decomposition
described in Eq. (16) requires a total of 82 real parameters.
However, the key advantage of using the Cartan parametriza-
tion is that the nonlocal factors of any unitary in SU(23) are
easily described in terms of 22 real parameters, namely, the set
of ten real parameters {a1, a2, a3, a4, c(i)

1 , c(i)
2 , c(i)

3 } along with
three real parameters for each of the four SU(4) factors.

Similarly, we note that any element U ∈ SU(24) can be
decomposed as

U = K (1)F (1)K (2)JK (3)F (2)K (4),

F (i) = exp
(−i

(
c(i)

1 XXIZ + c(i)
2 YY IZ

+ c(i)
3 ZZIZ + c(i)

4 IIXZ + c(i)
5 XXXZ

+ c(i)
6 YY XZ + c(i)

7 ZZXZ
))

, i = 1, 2,

J = exp(−i(a1IIIX + a2XXIX + a3YY IX

+ a4ZZIX + a5IIXX + a6XXXX+
+ a7YY XX + a8ZZXX )), (17)

where K ( j) ∈ SU(8) ⊗ SU(2), j = 1, 2, 3, and 4. Such
a decomposition requires a total of 362 real parameters
including the set {a1, a2, a3, . . . , a8, c(i)

1 , c(i)
2 , . . . , c(i)

7 } which
parametrizes the fully nonlocal factors.

We can further simplify our numerical search by fixing
the local components in the Cartan form and searching only
over the nonlocal degrees of freedom. This greatly reduces
the dimension of our search space and allows us to search
much more quickly, compared with the unstructured search.
This restriction only to nonlocal degrees of freedom, as we
see in our examples in Sec. IV, does not lead to substantial
loss in fidelity.

As an aside, we note that choosing the local unitaries in
the decomposition appropriately allows us to construct encod-
ing unitaries with simple structures that permit easy circuit
implementations of the encoding procedure. An example of
such a structured encoding would be to set all the K (i)s in
Eq. (15) to be the identity operator, thus reducing the form
of the encoding unitary to U = F (1)JF (2). This implies the
following form for the encoding unitary in the case of SU(23):

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ 0 0 0 0 ∗ ∗
∗ ∗ 0 0 0 0 ∗ ∗
0 0 ∗ ∗ ∗ ∗ 0 0
0 0 ∗ ∗ ∗ ∗ 0 0
0 0 ∗ ∗ ∗ ∗ 0 0
0 0 ∗ ∗ ∗ ∗ 0 0
∗ ∗ 0 0 0 0 ∗ ∗
∗ ∗ 0 0 0 0 ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

where ∗ refers to some nonzero complex number. Such a
structured encoding U with only nonlocal Cartan factors is
easy to implement using only single-qubit gates and the CNOT

gate, as explained in Appendix A.

IV. EXAMPLES

Let us now demonstrate the performance of our approach
to finding good codes through a few examples. We consider
n-qubit noise channels of the form E = E1 ⊗ E2 ⊗ · · · ⊗ En,
where Ei is a single-qubit channel on the ith qubit. The first
few examples are for the cases where all the Ei are the same
channel, corresponding to the common experimental situation
where all the qubits see the same environment and hence
undergo the same noise dynamics. We look at three examples:
Ei is the amplitude-damping channel, the rotated amplitude-
damping channel, and an arbitrary (randomly chosen, no
special structure) single-qubit channel.

In each example, we use the form of the encoding unitary
in Eq. (15) to perform both unstructured as well as structured
search over the space of all encoding unitaries. In an un-
structured search, we retain the general form of the encoding
unitary in Eq. (15), using all parameters, local and nonlocal,
in our search. For the structured search, we have two different
approaches. In the case of a structured search with trivial local
unitaries, we set all the local [SU(2)] unitaries in the Cartan
decomposition in Eq. (15) equal to the identity and search only
over the nonlocal parameters in Eq. (15). For example, while
searching over the four-qubit space, we retain the nontrivial
three-qubit nonlocal pieces as well as the two-qubit pieces but
set all the single-qubit unitaries to identity. In addition, for the
example of Sec. IV B, we also implement structured search
with nontrivial local [SU(2)] unitaries where the choice of
the local unitaries in the Cartan decomposition is guided by
the structure of the channel.

A. Amplitude-damping channel

The single-qubit amplitude-damping channel EAD is de-
scribed by a pair of Kraus operators in the computational (σz)
basis {|0〉, |1〉},

E0 = |0〉〈0| +
√

1 − γ |1〉〈1|,
E1 = √

γ |0〉〈1|, (19)

where E1 flips the |1〉 state to the |0〉 state, imitating a “decay”
to the |0〉 state; the deviation of E0 from the identity is needed
for the trace-preserving nature of the channel. We perform
the numerical search outlined in Sec. III and obtain optimal
encodings for E = (EAD)⊗n, for γ � 1, for n = 3 and 4. We
compare the performance of the codes we find with various
known codes; see Fig. 1. The [3,1] approximate code [31] is
the span of the states,

|0L〉 = 1√
2
(|000〉 + |111〉), |1L〉 = 1√

2
(|100〉 + |011〉),

(20)

the [4,1] approximate code [15] is the span of

|0L〉 = 1√
2
(|0000〉 + |1111〉), |1L〉 = 1√

2
(|1100〉 + |0011〉).

(21)
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FIG. 1. Performance of n-qubit codes for amplitude-damping,
using the Petz recovery [Eq. (5)] with structured and unstructured
encodings, for (a) n = 3 and (b) n = 4.

Figure 1 shows that the numerically obtained codes via struc-
tured (with trivial local unitaries) and unstructured search out-
perform the approximate code of the same length in Eqs. (20)
and (21), respectively. We observe that the performance of
the four-qubit optimal codes is even better than the standard
[[5, 1, 3]] code, as seen in Fig. 1(b). In both cases we have also
plotted the worst-case fidelity for a single unprotected qubit
under the noise channel. The fidelity of the unencoded qubit
falls off linearly with the noise parameter, thus demonstrating
the advantage of using the three- or four-qubit codes found
using our procedure.

Appendix B contains the codewords for the optimal three-
, four-qubit codes found in our search. We also provide
the encoding circuit corresponding to the optimal, structured
three-qubit code, as an example of how the codes that emerge
out of the structured search admit simple encoding circuits.
Finally, we note that our numerical search procedure is indeed
fast: The unstructured search for a specific value of damping
parameter γ takes a few hundred seconds on a standard
desktop computer, while each structured search takes only a
few milliseconds on the same computer.

B. Rotated amplitude-damping channel

Because our Cartan decomposition uses the Pauli basis, it
is important to test if our numerical search is robust against
noise not aligned along the axes used to define the Pauli

basis. For this, we try out amplitude-damping channels where
the damping is no longer in the σz basis. Specifically, we
consider the single-qubit rotated amplitude-damping channel
ERAD described by the Kraus operators

E ′
0 = |v〉〈v| +

√
1 − γ |v⊥〉〈v⊥|,

E ′
1 = √

γ |v〉〈v⊥|, (22)

where {|v〉, |v⊥〉} is a pair of orthonormal vectors on the
Bloch sphere. Such a pair of vectors can be parametrized with
respect to the {|0〉, |1〉} basis by using spherical coordinates,

|v〉 = cos (θ/2)|0〉 + eiφ sin (θ/2)|1〉,
|v⊥〉 = −e−iφ sin (θ/2)|0〉 + cos (θ/2)|1〉, (23)

with θ ∈ [0, π ], φ ∈ [0, 2π ]. The values of {θ, φ} thus
determine the damping direction.

We present numerical search results for the amplitude-
damping channel aligned along three different directions in
Fig. 2. In all three examples, the structured search with
nontrivial local unitaries was implemented by fixing the local
unitaries as U ≡ (|v〉〈0| + |v⊥〉〈1|) ∈ SU(2). For example,
when the damping noise is aligned along the x direction on the
Bloch sphere, the basis {|v〉, |v⊥〉} is the eigenbasis of σx and
the local unitaries are fixed to be the Hadamard gate, which
rotates the {|0〉, |1〉} basis to the {|+〉, |−〉} basis.

Figure 2(a) shows the performance of different codes when
the damping is with respect to the σx eigenstates, whereas
Figs. 2(b) and 2(c) present the results for choices of damping
direction |v〉 not aligned with one of the standard Pauli axes. In
all three cases, we observe that the codes obtained by using the
unstructured search offer only slightly better fidelity than the
codes obtained by using the structured searches. Furthermore,
the codes obtained by using nontrivial local unitaries are often
distinct from and offer better fidelity compared with the codes
obtained by using trivial local unitaries in the search. Once
again, our search procedure is efficient, with the structured
and unstructured searches taking between tens to hundreds
of seconds on a standard desktop computer. As in the earlier
case, we have also compared the performance of the four-
qubit codes with the fidelity of the single unprotected qubit.

C. Random local noise

As a third example of the usefulness of our numerical
search procedure, we search for good codes for E⊗n, where
E is a randomly chosen single-qubit channel. A random qubit
channel � is generated from a Haar-random unitary on the
qubit and a single-qubit ancilla initialized to the state |0〉; the
unitary acts jointly on the qubit and the ancilla, after which the
ancilla is traced out, giving a single-qubit channel. We then
admix � with the identity channel to give a family of qubit
noise channels E , for different α ∈ [0, 1],

E (·) = (1 − α)(·) + α�(·). (24)

α parametrizes the noise strength; for small values of α, E
describes weak noise, the practically relevant case.

Using our numerical search procedure we now obtain
optimal four-qubit codes for the class of random local noise
channels described by Eq. (24) in the weak noise regime,
α ∈ [0, 0.1]. For each choice of random �, and hence E for
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FIG. 2. Approximate four-qubit codes for damping along dif-
ferent directions in the Bloch sphere: (a) the x direction (spheri-
cal coordinates {θ, φ} = {π/2, 0}), (b) along the direction {θ, φ} =
{0.7π, 0.1π}, and (c) along the direction {θ, φ} = {0.3π, 0.6π}.

varying α, we use our numerical AQEC approach to identify
good four-qubit codes for the four-qubit channel E⊗4.

Figure 3 shows the fidelities obtained for the optimal codes
for four random choices of �. We compare the performance of
the four-qubit codes obtained via structured and unstructured
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[[5,1,3]] code, Petz map
Unencoded single qubit

FIG. 3. Performance of four-qubit numerical code and the
[[5, 1, 3]] code for random local noise.

searches with the performance of the [[5, 1, 3]] code, for each
random channels. The recovery procedure used in each case
is the corresponding Petz recovery.

In Fig. 3, we observe that the best four-qubit codes—
structured or unstructured—have fidelities linear in the noise
strength α, suggesting that the four-qubit Hilbert space might
not be sufficient to distinguish among the no-error case and
the eight single-qubit errors arising from the weak noise E .
This issue is clearly resolved when we use the [[5, 1, 3]] code
and the corresponding Petz recovery since we the fidelity is
now quadratic to leading order in α. Finally, we note that the
four-qubit codes do yield a better worst-case fidelity than the
single unencoded qubit under the action of the noise channel.

V. CONCLUSIONS

We described a numerical search algorithm to find good
quantum codes, using the worst-case fidelity as the figure of
merit. By choosing the recovery map as the Petz recovery,
we reduced the general problem from a triple optimization
over the encoding, recovery, and input states, to a single
optimization over the encoding map only. Furthermore, the
use of the Cartan decomposition, motivated by the typical
scenario of independent per-qubit noise, allowed for a re-
duction of the search space to structured encodings, with
performance comparable to the more expensive unstructured
ones, as illustrated by our examples.

In our search for the quantum codes we have assumed that
the encoding-decoding gates are perfect. This is of course the
standard assumption in any discussion on QEC codes in the
literature. However, the gates used to do the error correction
are indeed the same ones as those used to do computation, so
this assumption has to be relaxed, taking us into the domain of
fault-tolerant quantum computing [32]. Our work deals with
the first step of finding the optimal code for a given noise
process. Extending this framework to fault tolerance is the
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(a) • •
• •

Rz(−α1)

(b) H • • H†

H • • H†

Rz(−α1)

(c) S • • S†

S • • S†

Rz(α1)

FIG. 4. Quantum circuit implementing (for α1 ∈ R) (a) the
gate e(−iα1Z⊗Z⊗Z ), (b) the gate e(−iα1X⊗X⊗Z ), and (c) the gate
e(−iα1Y ⊗Y ⊗Z ). Here, H ≡ |+〉〈0| + |−〉〈1| is the Hadamard gate, and
S ≡ 1√

2
(1 + iσx ).

next step for future work. In this context, our work provides an
easy platform to explore and discover a large number of good
candidate codes, which can then be individually examined
to find the one that can be most easily implemented in a
fault-tolerant manner.

Furthermore, the ability to identify channel-adapted codes
that involve fewer qubits than the stabilizer codes targeting ar-
bitrary noise might suggest that the corresponding encoding-
decoding circuits might also be smaller in size. In fact, the
well-known four-qubit channel-adapted code due to Leung
et al. [15] does have a much simpler encoding circuit [14]
than the five-qubit stabilizer code, and the encoding circuit is
made up of only Clifford gates.

It would be interesting to study how our procedure extends
to the case of passive error suppression techniques such as
decoherence-free subspaces (DFSs) and noiseless subsystems.
We note here that it is indeed straightforward to extend our
search procedure to check for the existence of DFS for a
given noise model. For example, motivated by the existence
of a DFS for correlated amplitude-damping noise [33] on

two qubits, we examined the case of the three- and four-
qubit correlated amplitude-damping noise channels. Prelim-
inary results suggest that our unstructured search procedure,
where we make use of a full, unstructured parametrization
of the encoding unitary, may work well and can identify the
subspaces corresponding to a DFS for both cases.
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APPENDIX A: STRUCTURED ENCODINGS AND
ENCODING CIRCUITS

Here, we describe simple circuits by means of which a
structured encoding of the form given in Eq. (18) can be
implemented. Recall that the Cartan decomposition for such
a unitary is given by

U = F (1)JF (2), (A1)

where the unitary operators {F (1), J, F (2)} are constructed
from elements of an Abelian subgroup of the n-fold Pauli
group. For the case of SU(23), these operators are given by
[see Eq. (16)]

F (1) = e−i(c1XXZ+c2YY Z+c3ZZZ )

= e−ic1XXZ e−ic2YY Ze−ic3ZZZ ,

F (2) = e−ic4XXZ e−ic5YY Ze−ic6ZZZ ,

J = e−i(a1XXX+a2YY X+a3ZZX+a4IIX )

= e−ia1XXX e−ia2YY X e−ia3ZZX e−ia4IIX . (A2)

Following a simple prescription in Ref. [34], we can con-
struct quantum circuits to implement F (1), F (2), and J by
suitably combining the simple circuits given in Fig. 4. The
overall encoding unitary U given in Eq. (A1) is then composed
from the circuits for F (1), F (2), and J as given in Fig. 5.

Figure 5 indicates that the encoding circuits are made up
of CNOT gates and single qubit unitaries which are rotations
about z axis on the Bloch sphere by angles αi determined
by the search parameters. In other words, once we obtain the
optimal code, we can easily encode into the desired subspace
by only changing the rotation angle about the z axis, while
keeping the rest of the components in the encoding circuit
fixed.

(a) H • • H† S • • S† • •

H • • H† S • • S† • •

Rz(−c1(4)) Rz(c2(5)) Rz(−c3(6))

(b) H • • H† S • • S† • •

H • • H† S • • S† • •

H Rz(−a1) H† H Rz(−a2) H† H Rz(−a3) H† Rz(−a4) H

FIG. 5. Circuits for (a) F (1(2)) and (b) J for SU(23).
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TABLE I. Optimal codes for amplitude-damping channel plotted in Fig. 1.

Code Encoding |0L〉 |1L〉 Encoding |0L〉 |1L〉

three-qubit unstructured

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.426 + 0.235i
0.040 − 0.415i
0.014 + 0.084i

−0.312 + 0.323i
0.021 + 0.278i
0.089 + 0.167i

−0.303 + 0.038i
−0.403 + 0.108i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.275 + 0.103i
0.248 + 0.191i
0.116 − 0.116i
0.008 − 0.194i
0.429 + 0.266i

−0.066 − 0.269i
−0.086 + 0.305i
−0.488 − 0.285i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

structured

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.013 + 0.076i
−0.587 + 0.370i
0.000 + 0.000i
0.000 + 0.000i
0.000 + 0.000i
0.000 + 0.000i
0.026 + 0.052i
0.385 + 0.601i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.000 + 0.000i
0.000 + 0.000i

−0.152 + 0.056i
−0.330 − 0.177i
0.491 + 0.763i

−0.044 − 0.095i
0.000 + 0.000i
0.000 + 0.000i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

four-qubit unstructured

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.448 + 0.236i
−0.066 + 0.134i
−0.052 + 0.003i
−0.044 − 0.027i
−0.037 + 0.058i
0.313 + 0.048i

−0.338 − 0.057i
0.001 − 0.060i
0.006 − 0.114i

−0.310 − 0.088i
−0.356 − 0.073i
0.020 − 0.004i
0.059 − 0.004i
0.041 − 0.002i

−0.038 + 0.040i
0.412 + 0.250i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.379 − 0.350i
−0.012 + 0.001i
−0.040 + 0.042i
0.027 − 0.038i
0.038 − 0.024i

−0.170 + 0.292i
0.191 − 0.321i
0.027 − 0.053i
0.031 − 0.041i
0.200 − 0.276i
0.210 − 0.290i
0.027 + 0.077i

−0.014 + 0.033i
0.098 + 0.013i
0.022 + 0.026i
0.356 − 0.276i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

structured

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.580 − 0.352i
0.026 − 0.210i
0.027 + 0.040i

−0.001 + 0.042i
0.000 + 0.000i
0.000 + 0.000i
0.000 + 0.000i
0.000 + 0.000i
0.000 + 0.000i
0.000 + 0.000i
0.000 + 0.000i
0.000 + 0.000i

−0.014 + 0.030i
−0.056 + 0.025i
0.134 − 0.166i
0.048 + 0.662i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.000 + 0.000i
0.000 + 0.000i
0.000 + 0.000i
0.000 + 0.000i
0.186 + 0.028i

−0.353 + 0.178i
−0.434 − 0.017i
−0.099 + 0.059i
−0.191 + 0.123i
0.071 − 0.511i

−0.346 + 0.379i
0.051 + 0.157i
0.000 + 0.000i
0.000 + 0.000i
0.000 + 0.000i
0.000 + 0.000i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

APPENDIX B: OPTIMAL CODES FOR THE AMPLITUDE-DAMPING CHANNEL

We list in Table I the optimal codes obtained by using our numerical search, for the standard amplitude-damping channel,
corresponding to the plots in Fig. 1.
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