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Experimental high-dimensional quantum secret sharing with spin-orbit-structured photons
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Secret sharing allows three or more parties to share secret information which can only be decrypted
through collaboration. It complements quantum key distribution as a valuable resource for securely distributing
information. Here we take advantage of hybrid spin and orbital angular momentum states to access a high-
dimensional encoding space, demonstrating a protocol that is easily scalable in both dimension and participants.
To illustrate the versatility of our approach, we first demonstrate the protocol in two dimensions, extending the
number of participants to ten, and then demonstrate the protocol in three dimensions with three participants.
We reconstruct secrets depicted as images with a fidelity of up to 0.979. Moreover, our scheme exploits the
use of conventional linear optics to emulate the quantum gates needed for transitions between basis modes on a
high-dimensional Hilbert space, allowing us to exceed the 1 bit per photon limit of two-dimensional protocols.
Our work offers a practical approach for sharing information across multiple parties, a crucial element of any
quantum network.
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I. INTRODUCTION

In a world where cloud computing environments dominate
our personal and corporate lives, secure communication and
key distribution between multiple parties is a growing con-
cern. This includes the secure sharing of encryption keys, mis-
sile launch codes, bank account information, and social media
profiles. In popular cryptography methods either a single copy
of the encryption key is kept in one location for maximum
secrecy or multiple copies of the same key are kept in different
locations for greater reliability, but at an increased security
risk. Secret sharing is a multiparty communication technique
where a secret is divided and shared among N parties and then
securely reconstructed through collaboration, making it ideal
for storing and sharing information that is highly sensitive,
achieving both high levels of privacy and reliability [1,2].

The first quantum secret sharing (QSS) scheme proposed
the use of particle entangled states [3]. In this protocol,
three parties (Alice, Bob, and Charlie) randomly choose be-
tween two measurement bases and independently measure
their particle. If their measurement results are correlated, Bob
and Charlie can use their measurement bases and outcome
information to determine the result of Alice’s measurement;
otherwise, the round is discarded. Since approximately half
the instances will be discarded the intrinsic efficiency is
about 50%. This protocol was improved to accommodate an
arbitrary number of parties based on multiparticle qubit en-
tanglement states [4], and later to multiparticle d dimensional
entanglement states [5].

Although much theoretical, in both the discreet-variable
[6–14] and continuous-variable regime [15,16], and (to a
lesser extent) experimental [17–19] attention has focused
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on QSS using multiparticle entangled states, progress has
been limited by the intrinsic hurdle that the number of
parties involved is bound by the number of entangled par-
ticles: this makes particle entanglement-based QSS ineffi-
cient and unscalable (multiphoton entanglement is notoriously
inefficient).

As a result of these limitations, two-dimensional QSS
schemes using single photon states have been proposed
[20,21] and implemented [22,23] for a scalable number of par-
ties. The advantage arises in its circular structure, where each
party performs sequential unitary operations on the same sin-
gle photon, instead of several entangled photons which require
convoluted setups. The security was found to be less robust as
compared to quantum key distribution (QKD) and susceptible
to cheating strategies in that dishonest parties could infer some
information about the choice of bases of another party [24,25].
To address this deficiency, multiparty high-dimensional single
photon QSS protocols were theoretically proposed [26–29]
but with few suggestions as to how they might be (practically)
implemented in the laboratory [30–32]. Challenges in high-
dimensional state preparation, transformation, and detection,
the key steps of any QSS protocol, have so far presented
barriers to experimental realization [33].

Here we realize an experimental high-dimensional sin-
gle photon QSS protocol using photons that are vectorially
structured in their orbital angular momentum (OAM) and
polarization. Our approach requires only simple linear optical
elements: spin-orbit coupling optics to prepare the initial state,
waveplates with dove prisms to encode the secret in the
sequential phase transformation of each party, and a determin-
istic detector for all basis elements in the high-dimensional
vector space. We successfully implement this protocol in two-
dimensions for ten parties and three dimensions with three
parties. Our approach is scalable in the number of participants,
highly efficient, and provably secure.
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FIG. 1. General scheme for a four party single qubit QSS scheme. (a) The distributor, R1, prepares an initial state from a set of d = 2
MUBs. The qubit is then sequentially distributed to each party, who in turn performs a unitary phase operation given by X xn

d Y yn
d . The choice of

X xn is analogous to a change in local states within the basis and a choice of Y yn corresponds to a change of basis. The last participant sends the
qubit back to the distributor. The distributor requests that parties R2, R3, R4 broadcast their choice of yn and performs a measurement in a basis
that leads to a deterministic result. The distributor can generate a secret key x(scrt) by using the measurement result to reset their choice of xn.
The other parties, upon collaborating and broadcasting their choice of xn, can also generate the same secret key x(scrt). We also show the state
preparation for d = 3 dimensions. Note that the operators are cyclic in three dimensions because of the cyclic property of MUBs in odd prime
dimensions. (b) The distributor can securely encrypt a message by applying a simple XOR encryption operation using their generated secret
key. The encrypted message, after being distributed, can be decrypted by each participant using their own secret key. At no point is the secret
key shared among any participants.

II. SINGLE PHOTON QUANTUM
SECRET SHARING PROTOCOL

We begin by extending the single photon QSS protocol [26]
to prime dimensions and then we outline the general structure
of an N-party QSS scheme using a single photon state. In
this protocol multiple participants perform local operations on
a single photon encoded in prime d dimensions. Suppose a
participant R1, also known as the distributor, wants to share a
secret key amongst multiple parties, R2, . . . , RN ; then the QSS
protocol can be summarized in four steps (see Fig. 1).

(1) State preparation. The distributor, R1, prepares an
initial single photon state |e(0)

0 〉 from a set of mutual unbiased
bases (MUB) in the desired prime dimension d . In our proto-
col, the MUBs are formulated from the logical basis, |�〉, as

∣∣e( j)
k

〉 = 1√
2

1∑
�=0

ω
1
2 �( j+2k) |�〉 (1)

in two dimensions and in odd prime dimensions (d ′) they are
generalized as [26]

∣∣e( j)
k

〉 = 1√
d ′

d ′−1∑
�=0

ω�(k+ j�) |�〉 , (2)

where k maps onto a mode from the jth MUB and ω =
exp( i2π

d ). Note that �, j, k ∈ {0, . . . , d − 1}.
(2) Distribution. The distributor modulates the photon

initially in the state |e(0)
0 〉 with the operators X x1

d Y y1

d , where
x1, y1 ∈ {0, . . . , d − 1} are chosen randomly and indicate how
many times the operators should be applied. The photon is
then sent sequentially to each participant R2, . . . , RN , who,
upon receiving the single photon, randomly chooses xn, yn ∈
{0, . . . , d − 1}, such that they apply the corresponding unitary
operations X xn

d Y yn

d .
To map between the MUB basis states, each party has

access to two operators: Xd and Yd . The operator Xd is defined
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as

Xd =
d−1∑
�=0

ω� |�〉 〈�| (3)

for prime dimensions. We adapted the protocol [26] for two
dimensions such that the operator Yd is defined as

Y2 =
1∑

�=0

ω
1
2 � |�〉 〈�| (4)

in two dimensions and in odd prime dimensions (d ′) as

Yd ′ =
d−1∑
�=0

ω�2 |�〉 〈�| . (5)

The operator X xn
d cycles through xn modes in the same basis,

while the operator Y yn

d cycles through yn MUBs, as shown
in Fig. 1(a). Using both operators in sequence results in the
mapping between all MUB states, which is crucial in the
implementation of the single photon secret sharing protocol.

(3) Measurement. After receiving the single photon from
the last participant, the distributor requests that parties
R2, . . . , RN broadcast their choice of yn in a random order,
keeping their value of xn a secret. By considering the sum
of all yn, the distributor chooses a measurement basis from
the MUB set in such a way that the measurement leads to
a deterministic result. In prime dimensions this is equivalent
to applying the local unitary operator Y J

d and measuring the
photon in the basis |e(J )

k 〉, where

J =
N∑

n=1

yn modd. (6)

The final measurement result obtained by the distributor is
labeled a ∈ {0, . . . , d − 1}. Since the measurement is per-
formed in a basis that yields a correlated result, the efficiency
of the protocol is 100% [29]. If Eq. (6) holds, the participants
have a strongly correlated selection of xn, satisfying

N∑
n=1

xn + C = a modd, (7)

where we define C = � 1
2

∑N+1
n=1 yn� for two dimensions, which

accounts for the additional X2 operator imparted by every odd
number of Y2 operators, and C = 0 in odd prime dimensions,
due to the cyclic property of the operators in d ′ dimensions.

(4) Key generation. The distributor resets his value of
x(scrt)

1 = (a − x1 + C) modd according to the measurement
result a. Consequently, if participants R2, . . . , RN collaborate
and reveal among themselves their choice of xn, they can re-
construct the distributors secret value x(scrt)

1 = ∑N
n=2 xn modd ,

which was previously only known to the distributor R1. By
repeating this procedure, the distributor can share a secret key
among the remaining N − 1 participants. Using the secret key,
the distributor can securely encrypt a message and distribute
it to the participants, who in turn can use their own secret key
to decrypt the message, as in Fig. 1(b).

Participant R1 checks the security, such that he randomly
selects a subset of rounds. The degree of security specifica-
tions determines the size of the subset. In order to increase the

security, as justified in [29], R1 must make sure that the subset
of valid rounds includes a round in which each participant
broadcasts his choice of yn last. Each participant reveals
their inferred value x(scrt) for the subset of rounds, which is
compared to the value determined by the distributor. If there
is a discrepancy any dishonest eavesdropping or cheating
strategy is exposed.

In the next step, we investigate the necessary tools to
implement a high-dimensional single photon QSS scheme.
We explore vector modes and how we can implement unitary
phase operators using simple linear optics.

III. EXPERIMENTAL REALIZATION

Here, we introduce the tools (operations) needed for single
photon QSS in prime dimensions. Lastly, we show how the
protocol can be implemented in both d = 2 and d = 3 dimen-
sions using polarization and OAM control.

A. Two-dimensional realization

If we consider the polarization subspace coupled with the
OAM subspace, spanned only by |�|, we can construct a two-
dimensional mode set, i.e., H2 = span({|R〉 |�〉 , |L〉 |−�〉}) as
illustrated in Fig. 2(a). The basis states can be mapped as
orthogonal column vectors,

|R〉 |�〉 =
(

1
0

)
, |L〉 |−�〉 =

(
0
1

)
. (8)

This allows us to map the MUBs [see Fig. 2(b)] as row vectors
in matrix form as follows:

M1 = 1√
2

(
1 1
1 −1

)
, M2 = 1√

2

(
1 i
1 −i

)
. (9)

The first step in implementing the protocol is preparing the
photon in the initial state within our MUB set. We generated
the initial state, |e(0)

0 〉 = 1√
2
(|R〉 |�〉 + |L〉 |−�〉) denoted by

|�0〉, from a horizontally polarized photon incident on a spin-
orbit coupling q-plate [34,35].

The next step is to find a way to independently move
between each MUB state by applying the required operators.
This is easily implemented by a half waveplate (HWP). It is
straightforward to see that a HWP acting on the initial state
|e(0)

0 〉 induces a relative phase difference, ei4θ , between the
circular polarization states. This can be summarized as

Û (θ ) ∝
(

1 0
0 ei4θ

)
, (10)

where θ ∈ {0, π/8, π/4, 3π/8} is the rotation angle of
the HWP, corresponding to the transformations Û (θ ) =
{X 0

2 Y 0
2 , X 0

2 Y 1
2 , X 1

2 Y 0
2 , X 1

2 Y 1
2 }. In this way, Fig. 2(b) shows that

we can move independently between all MUBs.
Once the initial state is sent through a set of even N

consecutive HWPs, allowing each party to apply their unitary
operator, the final state of the photon will be

|�N 〉 = ei�

√
2

[|R〉 |�〉 + ei� |L〉 |−�〉], (11)

where � = (−i)N e−2i[
∑N

n=1 (−1)n+1θn] and � =
4

∑N
n=1 (−1)n+1θn. The distributor then applies the

042303-3



MICHAEL DE OLIVEIRA et al. PHYSICAL REVIEW A 101, 042303 (2020)

FIG. 2. Illustration of the spin-orbit coupled modes that form our computational basis, from which we construct our MUBs. (a) Right
circularly polarized light is shown in red, left circularly polarized light is shown in green, and linear polarization in blue. (b) We realize the
operators in d = 2 using a half waveplate (HWP). A HWP at θ = π/4 realizes the X2 operator, cycling between the states within the same
basis; at θ = π/8 we realize the Y2 operator, moving between MUBs. Note that the Y2 operator is not cyclic, due to the extra X2 operator that
is imparted by every odd number of Y2. (c) Here we show the cyclic nature of the operators in d = 3. A dove prism (DP) allows us to realize
the X3 gate, cycling between the states within the same basis, and a half waveplate (HWP) allows us to realize the Y3 gate, cycling between the
MUBs.

corresponding operator for φJ ∈ {0, π/2} using a HWP,
such that performing the measurement in the basis

1√
2
(|R〉 |�〉 + eiφJ |L〉 |−�〉) leads to the deterministic result.
Next, we discuss the detection system used to distinguish

between all MUB states. The different states can be deter-
ministically detected using a combination of geometric phase
control and multipath interference, as seen in Fig. 3(a). The
photon was mapped onto two polarization dependent paths
(a and b) using a combination of quarter waveplates (QWP)
and a polarizing beam splitter (PBS), such that the state of the
qubit becomes

|�N 〉 = ei�

√
2

[|R〉a |1〉a + ei� |L〉b |−1〉b], (12)

where the subscripts a and b refer to the polarization depen-
dent paths. The photon paths were interfered at a 50:50 beam
splitter (BS), setting the dynamic phase difference between
the two paths to π/2. An extra reflection was added to one
path so that the number of reflections, and thus the polariza-
tion of the two output paths, was automatically reconciled.
Henceforth, we will drop the polarization kets in the expres-
sion as the polarization information is path dependent. The
resulting state after the BS is

|� ′
N 〉 = ei�

2
[(1 − ei�) |1〉c + i(1 + ei�) |−1〉d ], (13)

where the subscript c and d refer to the output paths of the
beam splitter. From this equation we see that the detection
scheme is in fact deterministic for given values of �, such
that all the light will be in either path c or d .

Next, we extend the two-dimensional implementation to
three dimensions, using a similar linear optics setup.

B. Three-dimensional realization

We now consider a mode set that spans a three-dimensional
(qutrit) space of spin-orbit coupled modes, i.e., H3 =
span({|R〉 |0〉), |R〉 |�〉 , |L〉 |−�〉}) as depicted in Fig. 2(a). If
we map the basis states as orthogonal column vectors, i.e.,

|R〉 |0〉 =
⎛
⎝1

0
0

⎞
⎠, |R〉 |�〉 =

⎛
⎝0

1
0

⎞
⎠, |L〉 |−�〉 =

⎛
⎝0

0
1

⎞
⎠, (14)

the MUBs can be mapped as row vectors in matrix form as

M1 = 1√
3

⎛
⎝1 1 1

1 ω ω2

1 ω2 ω

⎞
⎠, M2 = 1√

3

⎛
⎝1 1 ω

1 ω 1
ω 1 1

⎞
⎠,

M3 = 1√
3

⎛
⎝ 1 1 ω2

1 ω2 1
ω2 1 1

⎞
⎠, (15)

where ω = exp( i2π
3 ).
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FIG. 3. Generalized experimental setup of a single photon quantum secret sharing scheme, showing the state preparation, distribution, and
measurement steps for (a) d = 2 and (b) d = 3 dimensions. The initial states are generated using a combination of geometric phase optics
[i.e., a q-plate (QP)]. The initial state is then sequentially communicated to each participant, who performs a unitary phase operator employed
using simple linear optics such as a half waveplate (HWP) and a dove prism (DP). A HWP in the measurement step was used to perform the
measurement in the same basis each time. The different states can be deterministically detected (a) using a combination of geometric phase
control and multipath interference using beam splitters (BM) and polarizing beam splitter (PBS), or (b) via modal decomposition using a
spatial light modulator (SLM). M are mirrors.

The initial state was prepared using a interferometric
combination of a q-plate, HWP, and beam splitter, as in
Fig. 3(b). We further engineer the required operators by using
a half waveplate in combination with a dove prism (DP)
as illustrated. As before, the HWP induces a relative phase
difference, e4iθ , between the circular polarization DOF and the
DP imparts a phase which is proportional to the OAM state. A
mirror after the dove prism is needed to invert the final OAM
state. The unitary transformation, in the basis from Eq. (14),
can be summarized as

Û (θ, γ ) ∝
⎛
⎝1 0 0

0 e−2iγ �2 0
0 0 e2iγ �3+4iθ

⎞
⎠, (16)

where θ ∈ {0, π/6, 2π/6} is the rotation angle of the HWP
and γ ∈ {0, π/3, 2π/3} is the rotation angle of the DP. The
DP allows us to realize the X3 gate, cycling between the states
within the same basis, and the HWP allows us to realize the
Y3 gate, cycling between the MUBs [see Fig. 2(c)].

The detection system included mapping our vector basis to
a scalar basis using a set of half waveplate and quarter wave-
plates. We measured the detection probabilities of each MUB
state by performing optical inner-product measurements using
match filters encoded on the SLM via modal decomposition,
which is used extensively in both classical and quantum
studies [36], as well as vector mode detection [37].

First, to perform the modal overlap between the normalized
spatial modes ψ (r) and φ(r), we simply compute the inner
product

c = 〈φ|ψ〉 =
∫∫

φ∗(r)ψ (r) d2r, (17)

where r = (x, y) and |c|2 is the overlap probability determin-
ing the correlation between the two modes. Accordingly, any
arbitrary input field, ψ (r), can be correlated with a second
mode φ(r), where |c|2 = 1 for a high correlation, meaning
the modes are equivalent, and |c|2 = 0 for no correlation
meaning that the modes are orthogonal. Optically, φ(r) can
be a match filter in the form of a hologram encoded on an
SLM. Therefore, the detection modes were encoded as phase
and amplitude holograms on a Holoeye Pluto spatial light
modulator (SLM)—a well established technique for spatial
mode detection [36]. As such the overlap probability |c|2 can
be obtained by taking the Fourier transform of the product
φ∗(r)ψ (r), which is the output mode after the match filter,
and hence yielding the state

A(kx, ky) =
∫∫

φ∗(x, y)ψ (x, y) e−i(kxx+kyy)dx dy, (18)

where kx, ky are transverse wave vectors in Cartesian coordi-
nates. Evaluating the on-axis point (kx, ky) = (0, 0) results in
Eq. (17). Therefore,

A(0, 0) =
∫∫

φ∗(r)ψ (r)d2r = c (19)

results in the intensity at the field center, I (0, 0) = |A(0, 0)|2,
being the modal overlap weighting (equivalently detection
probability) |c|2.

Alternatively, using a quantum Fourier transform (QFT) to
map between the MUB superpositions of OAM modes to the
OAM standard basis, one can deterministically sort the MUBs
and thereafter sort the OAM modes. In three dimensions, a
QFT for OAM has been proposed [38]. The technique exploits
the tritter [39], by using path and phase control. Once the
mapping between the MUB and OAM basis is achieved, mode
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sorters can be used deterministically to measure the OAM
modes [40]. Mode sorting has been extensively used for both
scalar [41] and vector modes [42].

IV. RESULTS

Here we present the results for our implementation of the
quantum secret sharing protocol with single photon states
in d = 2 and d = 3 dimensions. For practical purposes, the
experiment was first performed with a classical light source
and a CCD camera. Later, the light source was attenuated to
an average photon number of μ = 0.02 per pulse. Although
weak coherent states cannot be used without photon splitting
strategies this could, in principle, be overcome by preparing
and testing the transmission properties of some decoy states.
In the single photon regime, the measurement system includes
coupling the photons through fibers to avalanche photon de-
tectors (APD).

A. Two-dimensional results

The two-dimensional detection results of our vector basis
are shown in Fig. 4. This was performed by rotating the angle
θ of the HWP and measuring the intensity of each output
port using a CCD camera at each port [see Fig. 4(a)] and in
the single photon regime, using single photon detectors [see
Fig. 4(b)].

There is an excellent agreement between the experimental
results (data points) and the theory (dashed curves). The
visibility, V , of the detection scheme in each output port was
calculated using the equation

V = |Imax − Imin|
Imax + Imin

, (20)

where I is the intensity in each arm. Spatial filtering was
applied to the data obtained using the CCD camera to remove
unwanted noise, resulting in V = 0.958 ± 0.005. In our sys-
tem, the errors are introduced by the additive imperfections in
the half waveplates causing slight misalignment in the setup.
The visibility for the single photon regime was measured
to be V = 0.924 ± 0.003, which can be accounted for by
the photon loss in fiber coupling and detector dark counts.
Nonetheless, such values imply the use of a well-aligned and
stable interferometer.

For phase-coding setups, the fidelity of the detection sys-
tem is related to the interference visibility by [43]

F = 1 + V

2
. (21)

Hence the fidelity of the system was calculated to be
F = 0.979 ± 0.005 for the classical implementation and F =
0.962 ± 0.003 for the single photon regime. Using this deter-
ministic detector, we can detect any arbitrary superposition of
our vector basis with high fidelity.

B. Three-dimensional results

To demonstrate the feasibility of our secret sharing scheme
in three dimensions, we verify that the d + 1 MUBs are
each orthogonal with respect to each other by measuring
the scattering probabilities. The crosstalk matrix is shown

FIG. 4. Detection of superposition of vector states. Each graph
shows the detection (normalized counts) of the photons in a super-
position of the vector states |� ′

N 〉, generated by rotating the HWP
angle θ , using (a) CCD camera and (b) photo diodes in the single
photon regime. Each data point was generated by averaging over 35
measurements. The dashed lines show the theoretical curve.

theoretically in Fig. 5(a) and experimentally in Fig. 5(b)
and Fig. 5(c), for the classical and single photon regime,
respectively. To obtain the results we first prepared the initial
superposition state |e(0)

0 〉 and applied the X3 and Y3 gates to
iterate through the various basis modes and MUB mode sets.
Using a set of waveplates, we mapped the circular polarization
photon states to the horizontal polarization state and per-
formed projective measurements via modal decomposition.

From the crosstalk matrices, we measured an average
fidelity of F = 0.946 ± 0.003 when using classical light
and similarly we measured F = 0.938 ± 0.001 in the sin-
gle photon regime. In our system, the errors are intro-
duced by imperfections, including the rotation of the dove
prism and half waveplates causing slight misalignment in the
setup.
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FIG. 5. Crosstalk matrices shown theoretically in (a) and experimentally in (b) and (c), for classical light and the single photon regime,
respectively. This shows the scattering probabilities for modes prepared and detected in identical bases (diagonal) and the overlap between
modes from mutually unbiased bases (off diagonal).

C. Security analysis

From the measured detection fidelities, we performed a
security analysis on our QSS scheme for d = 2 and d = 3
dimensions. The results of the analysis are summarized in
Table I.

The quantum bit error rate (QBER), reflecting the prob-
ability of making detection errors, is related to the fidelity
by

QBER = 1 − F, (22)

which is zero for a perfect system. The detection fidelities
translated into an optical QBER between 0.021 and 0.062,
well below the 0.110 and 0.156 bounds for unconditional
security against coherent attacks in two and three dimensions,
respectively [44]. Systematic errors can be attributed to de-
tector dark counts and the interferometric phase drift, which
influences the prepared relative phases. This forced a phase
recalibration before each run.

From the fidelity we can calculate the mutual information,
I . This places a bound on the amount of information that can
be shared between the distributor and participants. This bound
is only due to the generation and detection fidelities, and is not
intrinsic to the protocol itself. This is given by

I = log2(d ) + F log2(F ) + (1 − F ) log2

(
1 − F

d − 1

)
. (23)

TABLE I. Summary of the d = 2 and d = 3 experimental results
for our secret sharing protocol, for both the classical regime using
the CCD camera as a detector and for the single photon regime using
APDs. We show the experimental values of the detection fidelity (F ),
the quantum bit error rate (QBER) in bits per photon, and mutual
information (I) between distributor and participants.

d = 2 d = 3

Measures Classical Quantum Classical Quantum

F 0.979 0.962 0.946 0.938
QBER 0.021 0.038 0.054 0.062
I 0.853 0.767 1.225 1.187

For a perfect system we would expect a value of 1 bit per
photon in a d = 2 qubit system and 1.58 bits per photon in a
d = 3 qutrit system. For d = 3 this was measured to be nearly
1.5× the maximum achievable in d = 2 dimensions. We note
that increasing the dimension of the quantum secret sharing
protocol did result in higher mutual information capacity.

D. Secret key generation

To corroborate the advantage of our protocol utilizing
a higher-dimensional encoding space, we experimentally
shared a secret in both d = 2 and d = 3 dimensions using the
experimental setups described.

In two dimensions, the protocol was performed by N =
10 participants, each equipped with a X2 and Y2 gate (half
waveplate). We ran the protocol for 100 valid runs, resulting
in a generated secret key of 100 bits. The results are shown
in Fig. 6(a), for the identical secret key retrieved by the dis-
tributor and shared between the participants. The distributor’s
secret key was determined by resetting his choice of x1 using
the measurement results and the participants choice of yn. The
participants shared secret key was calculated by summing the
keys of the participants R2, . . . , R10, modulus two.

Next, exploiting the higher-dimensional (d = 3) encoding
space, we shared a secret key between N = 3 participants,
each equipped with the X3 gate (dove prism) and Y3 gate
(half waveplate). The results are shown in Fig. 6(b) for the
secret code retrieved by the distributor and shared between
the participants. The keys are identical as desired. Using the
high-dimensional protocol for 100 valid runs we generated a
secure key that was 158 bits.

V. DISCUSSION

Transverse spatial modes of light carrying orbital angular
momentum have become ubiquitous for encoding quantum
information. Here, OAM modes have proven invaluable for
secure and robust communication, and thus have the potential
to increase the mutual information and security of quantum
channels in QSS. However, despite its many potential advan-
tages, the complete realization of high-dimensional quantum
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FIG. 6. Experimentally generated distributor’s and participants’ secret keys, in (a) d = 2 and (b) d = 3 dimensions, by implementing the
protocol for 100 valid runs. The color bars indicate the measured probability of generating a 0, 1, or 2.

cryptography with OAM, so far, has been limited by technical
difficulties arising in the full manipulation and transmission of
this degree of freedom (DOF). To overcome these restraints,
photon states encoded in different DOFs, called hybrid en-
tangled states, have attracted a lot of attention [45]. Spin-
orbit coupled states, e.g., vector modes, have been used to
complete the entanglement purification in photon pairs for
polarization Bell states [46,47]. Similarly, they have been
used to overcome the limiting channel capacity of superdense
coding [48] and to realize a high capacity QKD protocol [49].

We note that, although we used a weak coherent photon
source, practical deployments require ideal single photon
sources to ensure unconditional security. The engineering of
such sources is an ongoing field of research [50] and as a
result our scheme remains demonstrable. In principle, one
could counter photon splitting attacks by preparing and testing
the transmission properties of some decoy states, modulating
several intensities of weak coherent photons and reserving
one intensity as the signal state. Alternatively, state-of-the-art
single photon emitters or sub-Poissonian sources like SPDC
heralded photons can be used (see our previous QKD demon-
stration [51]). Nevertheless, even Fock states larger than n = 1
have a nonzero detection probability and may pose a security
risk, potentially requiring the use of decoy states. We stress
that we used an attenuated laser source in which the photon
statistics follow a Poisson distribution mainly for the high
spatial coherence which is no different than that of a single
photon source. Correspondingly, the superposition principle
and mutually unbiased basis (the fundamental properties ex-
ploited in our scheme) are inherent properties in both sources,
making both sources equivalent for state encoding and de-
coding protocols. In fact, a myriad of high-dimensional QKD
schemes have been tested this way, using spatially structured
photons in free space [52] and fiber [53].

The efficiency and secure key rate could be improved
for practical deployments, by using commercially accessible
detectors with low dark counts, short detector dead times, high
resolution, and high detection efficiencies. Since our scheme
is adaptable to any wavelength, detectors with up to 93%
efficiency, a dead time of up to 40 ns, a dark count rate

of 1 count per s, and a timing resolution of up to 150 ns
are available at telecom wavelengths—promising quantum
communication speeds in the megahertz regime [54].

Here, we have reported a scheme for sharing secure keys
between multiple parties by interfacing different DOF, namely
spin and orbital angular momentum of single photons in high
dimensions (d = 3). Our scheme can be extended to multiple
participants and requires conventional linear optical elements
making it easily scalable. For a practical implementation
waveplates and dove prisms can be rotated using electroni-
cally driven rotation mounts [55], whose rotation rate would
be the only limiting factor with regards to the generation
rates.

The spatial modes used here can be represented by LG
modes and thus are the natural modes of quadratic media like
free space and optical fiber making them ideal for practical
implementations in long distance communication. So far,
free-space quantum channels have been demonstrated with
satellite-to-ground links [56], intracity free-space links [57],
and in QKD using similar vector modes [58]. Moreover,
our basis modes, if chosen carefully, lie within the first two
mode groups, which may have low group delays and mini-
mal crosstalk. Hence our scheme can also be exploited over
long distances using few mode fibers, as demonstrated up to
1 km for QKD [59]. Applications can also be extended to
underwater channels, previously shown for QKD [60]. The
main application challenge would be overcoming deleterious
effects, like turbulence resulting from local fluctuations in
refractive index of refraction [61], which could reduce the
QBER.

We iterate that QSS protocols involve the sharing of a
random encryption key, as opposed to a predetermined secret
message. Where the latter is necessary, quantum secure direct
communication (QSDC) is a solution, where secret informa-
tion is transmitted directly through a quantum channel without
prior distribution of a secret key [62–66]. Appropriately, the
technique presented here (i.e., using spin-orbit coupled modes
as high-dimensional information carriers) has the potential to
advance the likes of other quantum communication branches,
such as QSDC.
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VI. CONCLUSION

In conclusion, we successfully implemented two-
dimensional single photon QSS for 10 parties. We further
extended our scheme to higher dimensions by interfacing
independent degrees of freedom, providing a natural
extension to high-dimensional QSS. Our approach shows
that by using hybrid polarization and OAM encoding, it is
possible to realize a d = 2 and d = 3 dimensional single
photon QSS using conventional linear optical elements.
Further, by exploiting the nonseparability of polarization and
OAM in our choice of spatial modes, we were able to realize
transitions on a high-dimensional Hilbert space, mapping
between different MUB states, demonstrating the advantage

of interfacing independent DOFs. Our practical scheme is
scalable to an unlimited number of participants and can
be realized using current technologies, without generating
complex multiparticle entangled states.
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