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We study the feasibility of meaningful proof-of-principle demonstrations of several quantum repeater
protocols with photon (single-photon and photon-pair) sources and atomic-ensemble-based quantum memories.
We take into account nonunit memory efficiencies that decay exponentially with time, which complicates the
calculation of repeater rates. We discuss implementations based on quantum dots, parametric downconversion,
rare-earth-ion doped crystals, and Rydberg atoms. Our results provide guidance for the near-term implementation
of long-distance quantum repeater demonstrations, suggesting that such demonstrations are within reach of
current technology.
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I. INTRODUCTION

The future quantum internet [1–3] is expected to enable
many applications, including secure communication [4–6],
quantum-enhanced distributed sensing [7,8], and distributed
quantum computing [9]. Despite the recent progress on satel-
lite quantum communication [10,11], quantum repeaters [12],
where entanglement is first generated and stored in a number
of elementary links, followed by entanglement swapping steps
to extend it to the total distance, are expected to be essential
for the quantum internet to become a reality [2]. Our focus
here is on so-called first-generation quantum repeaters [13]
without quantum error correction, and in particular, on quan-
tum repeater protocols with atomic-ensemble-based quantum
memories [14], but we note that there is also a lot of recent
work on near-term quantum repeaters with single quantum
systems [15–17].

There has recently been significant experimental progress
in the entanglement of two remote quantum memories (corre-
sponding to one repeater link) [18–22]. For example, Ref. [22]
demonstrated entanglement between two 87Rb atomic ensem-
bles separated by 22 km of coiled fiber. Simple repeater
demonstrations with two links are now being envisioned by
various experimental groups. It is therefore important to make
realistic theoretical predictions for such demonstrations.

Previous papers have studied the performance of repeaters
with imperfect ensemble-based memories [14,23–27], but
they have typically either focused on more long-term sce-
narios and made assumptions that are not quite realistic yet,
such as a high degree of multiplexing, or have made idealiza-
tions that may affect quantitative rate predictions, such as a
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simple cutoff for the storage time, rather than an exponential
decay. Decoherence in ensemble-based memories results in a
reduction of efficiency rather than fidelity [28]. While this is
positive from the point of achieving high final-state fidelity
in quantum repeater protocols, it complicates the derivation
of accurate repeater rates because it makes the swapping
probabilities time dependent.

Here we focus on near-term repeaters with two links, and
each node contains only the minimum necessary number of
memories (one or two). We treat the effects of nonunit mem-
ory efficiency that decays exponentially in time, including
the resulting time dependence of the swapping probabili-
ties. We evaluate the performance of four repeater schemes,
namely, that of Ref. [29], which uses single-photon sources
and single-photon Bell measurements, that of Ref. [24],
which combines deterministic photon-pair sources with two-
photon Bell-state measurements, as well as two schemes that
combine nondeterministic photon-pair sources with single-
photon [30] or two-photon [25] Bell-state measurements. We
consider some promising implementations for each repeater
scheme, such as quantum memory based on rare-earth-ion
doped crystals [31–43] and Rydberg atoms [44–48], as well
as photon sources based on spontaneous parametric down-
conversion (SPDC) [49], quantum dots [50–52], and Ryd-
berg atoms [47,53,54], and we base our performance esti-
mates for the different repeater schemes on the experimental
status quo.

The plan of the paper is as follows. In Sec. II, we intro-
duce the four quantum repeater schemes that we focus on
in this paper. In Sec. III, we analyze the effect of imper-
fect quantum memories on repeater performance. In Sec. IV
we outline the most promising implementations. In Sec. V,
we give numerical results for repeater rates under realistic
conditions.
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FIG. 1. Sketches of quantum repeater protocols we mainly dis-
cuss in this paper. Here we show the two-link version of these re-
peater protocols. (a) Single-photon source (SPS) with single-photon
BSM (1 + 1). (b) Deterministic photon-pair source (dPPS) with
two-photon BSM (2 + 2). (c) Nondeterministic photon-pair source
(ndPPS) with single-photon BSM (2̃ + 1). (d) Nondeterministic
photon-pair source (ndPPS) with two-photon BSM (2̃ + 2).

II. REPEATER PROTOCOLS

The basic principle of the quantum repeaters is to reduce
the transmission loss by dividing the distance into small
segments (links), where the entanglement is generated via
Bell-state measurement (BSM) in each segment and then
extended via entanglement swapping [14]. In this paper we
focus on four repeater schemes, denoted using the form of “a
+ b,” where “a” represents the type of photon sources and “b”
represents the type of BSM. We list these repeater schemes as
follows:

(i) 1 + 1: A single-photon source (SPS) with single-
photon BSM scheme [29] is shown in Fig. 1(a). The “1 +
1” protocol uses deterministic single-photon sources at each
node. A single photon is generated in each node and sent

through a local beam splitter with probability γ stored in a
quantum memory and 1 − γ injected to the central interfer-
ometer. As the central beam splitter erases the which-path
information, the successful detection of a single photon in the
central station will create an entangled state of two memories
in the Fock space.

(ii) 2 + 2: A deterministic photon-pair source (PPS) with
two-photon BSM scheme [24] is shown in Fig. 1(b). The
protocol uses deterministic entangled photon-pair sources that
emit a photon-pair sending to quantum memory and central
station, respectively. Depending on the qubit encoding (time
bin, frequency, polarization, etc.), the two-photon BSM will
project the two quantum memories into the entangled state in
the corresponding space.

(iii) 2̃ + 1: A nondeterministic photon-pair source
(ndPPS) with single-photon BSM scheme [30] is shown in
Fig. 1(c). The ndPPS emits a photon pair probabilistically,
with one photon stored in the quantum memory and another
sent to the central station. As for the “1 + 1” scheme, a
successful single-photon BSM will project the two memories
into the entangled state in the Fock space. Similar to the
scheme proposed by Duan, Lukin, Cirac, and Zoller (DLCZ),
scheme [55], the emission probability should be small to
suppress multipair emission.

(iv) 2̃ + 2: A nondeterministic photon-pair source
(ndPPS) with two-photon BSM scheme [25,56] is shown in
Fig. 1(d). This scheme is similar to the “2 + 2” scheme
while using nondeterministic entangled photon-pair sources.
It is possible, albeit with small probability, to get coincident
photon-pair emission from two ndPPSs. The successful two-
photon BSM will project the two memories into the two-
photon entangled state. Again the multipair emission prob-
ability has to be kept small; the associated errors can be
mitigated by appropriately designed entanglement swapping
[56] and photon-number resolving detection [25].

It is important to notice the different requirements for
different repeater schemes. To begin with, single-photon BSM
requires encoding qubits in the Fock space, which cannot
be used directly for quantum communication tasks, and thus
postselection is necessary to convert the qubits into a useful
two-photon entanglement state analogous to qubit states in
two-photon BSM [14]. Besides, a single-photon BSM requires
phase stability, while the phase is automatically stabilized in a
two-photon BSM. On the other hand, for schemes with SPS,
the frequency should match both memory and the telecom
band, in comparison to schemes with dPPS and ndPPS, where
the two photons from a photon pair should match the memory
frequency and telecom band, respectively. In the situation
of frequency mismatching, frequency conversion may be re-
quired [57,58].

III. MATHEMATICAL DERIVATION

A. General framework of rates calculation

1. Two-link situation

Let us start with the entanglement generation process,
which is probabilistic. One has to try many times until the
entanglement is successfully generated. After each attempt,
one has to wait for the Bell-state measurement signal that
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tells whether the attempt is successful. If not, the memories
need to be emptied and one needs to try again. In this
paper, we do not consider the time of memory reinitialization
(negligible compared with communication time), and thus
the time required for each attempt is T0 = L0/c, where L0

is the length of elementary link and c = 2 × 108 ms−1 is the
speed of light in an optical fiber. Considering an entanglement
generation probability of p0 and the case that entanglement
is generated until the nth attempt, the probability distribution
function (PDF) for n is thus

P(n) = p0(1 − p0)n−1. (1)

We do not consider the dark count of the detector since it
can be considerable small. Superconducting nanowire single-
photon detectors with a 30-Hz dark count rate are already used
in measurement-device-independent quantum key distribution
[59] and with a millihertz dark count rate are also demon-
strated in laboratory [60].

Now let us consider the repeater with two links, where the
entanglement is generated independently with probability p0

for each link. The entanglement swapping can be performed
only after the entanglement is established in both links. We
define variables n1 and n2 as the number of attempts to
establish the two links, respectively, and thus the joint PDF
for these two variables is P(n1, n2) = p2

0(1 − p0)n1+n2−2. We
further define three variables nmax, nmin, and ndif , denoting
max{n1, n2}, min{n1, n2}, and |n1 − n2|, respectively. Obvi-
ously, they are related by nmax = nmin + ndif . It is useful to
show the probability distribution function of ndif ,

p(ndif ) =
⎧⎨
⎩

2p0(1−p0 )ndif

2−p0
ndif �= 0

p0

2−p0
ndif = 0,

(2)

and the expectation of these variables,

〈nmax〉 = 3 − 2p0

(2 − p0)p0
; 〈nmin〉 = 1

(2 − p0)p0

〈ndif〉 = 2 − 2p0

(2 − p0)p0
.

(3)

We call nmaxT0 the “preparation time” and ndif T0 the “decay
time” (waiting time). This is to say, the entanglement swap-
ping is processed after the preparation time, and the entangled
state of one link is destroyed during the decay time. The
memory decay, as it will not decrease the fidelity but the
efficiency [28], is modeled as the following general situation:

α|�〉〈�| + (1 − α)ρ

decay−−→ e−�t/τmα|�〉〈�| + (1 − e−�t/τmα)ρ ′, (4)

where |�〉〈�| represents the maximized entangled state that
we are interested in, ρ and ρ ′ are “unwanted states” that have
no contribution to the repeater performance, and �t and τm are
the decay time and the lifetime of the memory, respectively. It
is important to notice that the “efficiency” mentioned above
is actually ηme−�t/τm , where ηm is the efficiency of quantum
memory without decay. To make a clear distinction between
memory efficiency and lifetime, we call ηm the memory
efficiency in the text.

The decay time in Eq. (4) is the waiting time for the
single-photon BSM, while it is two times the waiting time for
two-photon BSM, since both memories in a link will decay.
The entanglement swapping probability ps and resultant state,
therefore, depend on the decay time and thus ndif . This depen-
dence can be understood via the following calculation. Before
swapping, one has to establish two neighboring links which
could not be perfect and thus we consider two mixed states:

ρ1 = α1|�1〉〈�1| + (1 − α1)ρ1,

ρ2 = α2|�2〉〈�2| + (1 − α2)ρ2,
(5)

where |�1〉 and |�2〉 are the entangled state and ρ1, ρ2 are
the unwanted state. After swapping, the new state can be
expressed as

ρ = α|�12〉〈�12| + (1 − α)ρ, (6)

where |�12〉 is the entangled state determined by the Bell-state
measurement, and ρ is the unwanted state. It is important to
notice that the unwanted state in the single-photon BSM is
a pure vacuum state, while in two-photon BSM it contains
the resultant states from both single-memory decay and two-
memory decay (vacuum state). For the two-photon BSM, the
swapping will eliminate all other cases than the entangled
state. The expression of α and the success probability ps

depend on the type of Bell-state measurement (BSM). Single-
photon BSM will create a vacuum state, since it cannot
exclude the situation where the two photons are stored in the
two local nodes in neighboring links. Therefore, the fidelity of
resultant state α is

α = α1α2

α1 + α2 − α1α2ηd
, (7)

and the success probability is

ps = 1
2

(
α1ηd + α2ηd − α1α2η

2
d

)
, (8)

where ηd is the detector efficiency. It is important to note that
the definition of fidelity and success probability is different
from the definition in Ref. [14], where we substitute the
product of detector efficiency and memory efficiency ηdηm

with only the detector efficiency ηd . This is because we will
consider the memory efficiency in the entanglement genera-
tion process, where an unsuccessful storage or retrieval of the
photon will create a vacuum state, and thus α1 and α2 depend
on the memory efficiency.

On the other hand, the resultant state of two-photon BSM
should be a pure entangled state and thus the fidelity is

α = 1. (9)

The success probability is simply

ps = α1α2η
2
d

/
2, (10)

where the half is the intrinsic success probability of the usual
two-photon BSM.

In the entanglement swapping process, if the first link es-
tablishes the entanglement first, the memory in this link would
decay and thus α1 = α0exp(−ndif T0/τm), α2 = α0, where α0

is the entangled state fidelity after entanglement generation.
Therefore, the swapping probability in both cases, and the
state fidelity after swapping in the single-photon BSM situ-
ation, depends on ndif .
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Now let us calculate the average entanglement distribution
time (EDT) for the two-link situation. Without loss of gener-
ality, we consider a successful entanglement swapping after
rth swapping attempts, and the EDT for this case is given by
the following expression:

T (1)
tot =

∞∑
k=1

[(
k∑

r=1

nr,maxT0

)
pk,s

k−1∏
r=1

(1 − pr,s)

]
, (11)

where the subscript k denotes the kth swapping attempt,
and therefore

∑r
k=1 nk,maxT0 is the total preparation time in

total r swapping attempts and pr,s
∏r−1

k′=1(1 − pk′,s) is the
corresponding probability. The expectation of the EDT also
requires averaging nk,max and nk,dif , which is difficult since
both pk,s and nk,max depend on nk,dif . It is easier to rewrite
nk,max as nk,dif + nk,min, where nk,min is independent with nk,dif .
It is, however, still difficult to calculate analytically the result
without assumptions on 〈nk,dif ∗ pk,s〉, where pk,s depends on
the waiting time and therefore with nk,dif . We define a new
variable β = 〈nk,dif ∗ pk,s〉/〈nk,dif〉〈pk,s〉, and clearly, we have

0 < β < 1, (12)

where the right side < is because nk,dif and pk,s are negatively
correlated. The numerical evidence discussed in Appendix B
suggests that in single-photon BSM,

β ≈ 1. (13)

On the other hand, in the two-photon BSM, β can reach lower
bound and upper bound in Eq. (12) in different regimes: in
the low-p0 regime, β ≈ 1, while in the high-p0, high-lifetime
regime, β ≈ 0.

With Eqs. (13) and (12), we can simplify Eq. (11),

〈
T (1)

1tot

〉 = 1

〈ps〉 (〈ndif〉 + 〈nmin〉)T0 = 〈nmax〉
〈ps〉 T0, (14)

for single-photon BSM, and

〈nmin〉
〈ps〉 T0 <

〈
T (1)

2tot

〉
<

〈nmax〉
〈ps〉 T0 (15)

for two-photon BSM, where the detailed derivation can also
be found in Appendix A. It is important to notice that for two-
photon BSM, T (2)

2tot can be estimated using the average of the
lower and upper bound (〈nmin〉T0/〈ps〉 + 〈nmax〉T0/〈ps〉)/2 =
T0/p0〈ps〉. As we can see from Eq. (3), in the worst case 〈nmax〉
is no more than 3〈nmin〉, and the error rate of this estimation is
thus no more than 50%, which is still a good estimation since
repeater rates vary over many orders of magnitude.

2. Postselection and beyond two links

Though we have given the EDT for repeater schemes with
single-photon BSM in Eq. (14), the entanglement is imperfect
and cannot be used directly for quantum communication
purposes and thus postselection is necessary. To implement
postselection, a separate chain of two links is placed in such a
way that the two end nodes are placed at the same location
as the two end nodes from the original chain, respectively.
After entanglement is established in both chains, single-
photon BSM is performed at each end and projected the state
into a two-photon entanglement state [55]. The treatment of

the postselection is analog to the four-link situation (nesting
level of 2). It is important to note EDT beyond two links is
interesting in general, even if our motivation here is to include
postselection.

We consider the establish time T1 and T2, and state fidelity
α1 and α2, respectively, for two sublinks. The average estab-
lish time and the state fidelity are given in Eqs. (14) and (7).
Here we follow the same procedure in the two-link situation
and consider the postselection is successful at the jth attempt.
The EDT is expressed as

T (2)
tot =

(
j∑

i=1

Ti,max

)
p j,ps

j−1∏
i′=1

(1 − pi′,ps), (16)

where the subscript i represents the ith postselection attempt,
pi,ps = αi,1αi,2exp(−Ti,dif r) is the postselection probability
for the ith attempt, Ti,max = max{Ti,1, Ti,2}, and Ti,dif = |Ti,1 −
Ti,2|. Hence,

∑ j
i=1 Ti,max is the total time for a success in jth

postselection attempt and pj,ps
∏ j−1

i′=1(1 − pi′,ps) is the corre-
sponding probability. The calculation also requires averaging
j, Ti,max, and Ti,dif , which is difficult since both Ti,max and pi,ps

depend on them, and we do not know the exact probability
distribution function. Fortunately, we can bypass the problem
with solid approximations. First, it is safe to claim that αi,1 is
independent with Ti,1 and the same for αi,2. This is because
αi,1 is defined in Eq. (7), and it only depends on the waiting
time in the first entanglement swapping. Thus, we rewrite the
postselection probability as

pi,ps = 〈αi,1〉〈αi,2〉exp(−Ti,dif r). (17)

Then we substitute Ti,max with Ti,min + Ti,dif , where Ti,min =
min{Ti,1, Ti,2} and is independent with Ti,dif . If we define β ′ =
〈Ti,dif pi,ps〉/〈Ti,dif〉〈pi,ps〉, similar to Eq. (12), we have

0 < β ′ < 1, (18)

which gives the lower bound and upper bound of T (2)
tot :

〈Tmin〉
〈α〉2〈exp(−Tdif r)〉 <

〈
T (2)

tot

〉
<

〈Tmax〉
〈α〉2〈exp(−Tdif r)〉 , (19)

where we have used 〈αi,1〉 = 〈αi,2〉 = 〈α〉. So far, we have
not made assumptions on the probability distribution function
on T1 and T2, which is necessary to derive the expectation
value of Tmin, Tmax, and exp(−Tdif r). Here we assume the
established time for one sublink, i.e., two links, is mT0, where
the probability distribution function of m is P(m), which is
defined in Eq. (1) except substituting p0 for

p′
0 = 2p0〈ps〉/3. (20)

This assumption gives the same expectation value of the
established time for two links as given in Eq. (14), while
the probability distribution function is different. In fact, the
numerical evidence in Appendix B shows that by substituting
p0 for p′

0 in Eqs. (2) and (3), it gives a good approximation of
the probability distribution function of Tdif and expectation of
Tmin and Tmax. Thus we can calculate the lower bound and the
upper bound in Eq. (19), and similar to the treatment in the
two-photon BSM situation, we use the average of the lower
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bound and the upper bound to approximate 〈T (2)
tot 〉,

〈
T (2)

tot

〉 ≈ 〈Tmax〉 + 〈Tmin〉
2〈α〉2〈exp(−Tdif r)〉 . (21)

B. Two-link repeater performance for different schemes

One can calculate the average entanglement distribution
time from Eqs. (21) and (15) for single-photon BSM and two-
photon BSM, respectively. Here we give a detailed procedure
of calculating repeater rates for each repeater scheme.

1. The “1 + 1” scheme

In the “1 + 1” scheme, the single photon emitted from each
source will be partially transmitted to the central beam splitter
and the memory (controlled by a local beam splitter). With
one click after the central beam splitter, i.e., the single-photon
Bell-state measurement, the entanglement is claimed to be
a success while a mixed state α(0)|�〉〈�| + (1 − α(0) )|0〉〈0|
is produced. The success probability is 2γ (1 − γ )ηtηsηd +
2γ 2ηt (1 − ηt )ηsηd , where γ is the transmission coefficient,
ηt = exp(−L0/Latt ) is the transmission loss, Latt the fiber at-
tenuation length, and ηs is the single-photon source efficiency.
The first term is the case that only one photon is sent to the
central beam splitter, while the second term represents both
photons being sent to the central beam splitter while one of
the photons is lost due to the fiber attenuation. The success
probability of entanglement generation can be approximated
as

p0 = 2γ ηtηsηd , (22)

since ηt 
 1. The fidelity of the resultant state with unity-
efficiency quantum memory is 1 − γ , while an unsuccessful
storage or retrieval of the photon will cause a vacuum compo-
nent. Thus, considering the memory efficiency ηm, the fidelity
of the resultant state is

α(0) = ηm(1 − γ ). (23)

It is important to note that the memory efficiency here is the
product of storage efficiency and the retrieval efficiency, i.e.,
efficiency without considering decay.

Based on Eqs. (7) and (8) and with α1 = α(0) and α2 =
α(0)exp(−n(1)

dif r), we can derive the average fidelity after swap-
ping,

〈α(1)〉 =
〈

α(0)exp
( − n(1)

dif r
)

1 + (1 − α(0)ηd )exp
(−n(1)

dif r
)〉

, (24)

and the average swapping probability

〈
p(1)

s

〉 = α(0)ηd

2

〈
1 + (1 − α(0)ηd )exp(−n(1)

dif r)
〉
. (25)

The average entanglement distribution time can now be calcu-
lated via Eq. (21).

2. The “2̃ + 1” scheme

The “2̃ + 1” scheme is similar to the DLCZ scheme since
the probability of photon-pair emission should be small to
suppress multipair emission. It is important to notice that in
Sec. III A we have defined the source efficiency ηs, which

TABLE I. Repeater scheme implementations.

Schemes Implementations

1 + 1 QDs + REIs; RAs
2 + 2 QDs + REIs; RAs
2̃ + 1 PDC + REIs
2̃ + 2 PDC + REIs

refers to the probability to extract a photon in a deterministic
photon source, while the analog in a nondeterministic photon
source is the emission probability. In this paper we do not
distinguish these two terms and call them “source efficiency”
ηs. The success probability of the state after entanglement
generation can be easily derived as

p0 = 2ηtηsηd . (26)

As ηs 
 1, one can ignore the situation of coincident emis-
sion, and thus the fidelity of resultant state is

α(0) = ηm. (27)

Similarly, the average fidelity after swapping is

〈α(1)〉 =
〈

exp
(−n(1)

dif r
)

1 + (1 − ηd )exp
(−n(1)

dif r
)〉

, (28)

and the average swapping probability is〈
p(1)

s

〉 = ηd

2

〈
1 + (1 − ηd )exp

(−n(1)
dif r

)〉
. (29)

3. The “2 + 2” scheme and the “2̃ + 2” scheme

The calculation for the “2 + 2” scheme and the “2̃ + 2”
scheme are the same, but it is worth noting that ηs in the non-
deterministic source is much smaller than the deterministic
source. The probability generation probability for the 2 + 2
scheme and 2̃ + 2 scheme is

p0 = η2
t η

2
s η

2
d

/
2, (30)

where the one half is the intrinsic success probability of two-
photon BSM. The fidelity of the created mixed state is

α(0) = η2
m. (31)

The average success probability can thus be derived from
Eq. (10):

〈ps〉 = η2
dη

4
m〈exp(−ndif r)〉/2. (32)

IV. IMPLEMENTATION

In this section, we consider physical platforms for both
quantum memories and photon sources. For quantum mem-
ories, we focus on rare-earth-ion based memory [31–43] and
Rydberg atom-ensemble memory [44–48], which are evalu-
ated in terms of memory lifetime and efficiency. As for photon
sources, we consider quantum dots as SPS [50,51] and dPPS
[52], Rydberg atoms as SPS [53,54] and semi-dPPS [47],
and spontaneous parametric downconversion source as ndPPS
[61,62]. Thus, we propose the implementations for repeater
schemes we mentioned in Sec. II, shown in Table I.
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A. Rare-earth-ion based quantum memory

Rare-earth-ion (REI) doped crystals are attractive as quan-
tum memories [63], especially on storage efficiency [43,64],
multimode capacity [38,65], and polarization qubit storage
[66,67]. At cryogenic temperatures, rare-earth-ion doped
crystals exhibit long ground-state coherence time: the electron
spin coherence time of milliseconds is seen in many experi-
ments [31,32], and the nuclear spin coherence time can reach
seconds or even hours [33–36].

The relevant transitions in rare-earth ions in solids have
narrow homogeneous lines in combination with large inho-
mogeneous broadening. This can be used to create a peri-
odic structure of narrow absorption peaks, so-called atomic
frequency combs (AFC) [68]. AFC is of great interest in
the repeater applications since it allows efficient storage and
readout of multiple temporal modes, which could greatly
enhance the repeater performance [26]. The temporal modes
range from dozens to thousands, with a typical storage time
of milliseconds level and efficiencies in free space ranging
from 1%–35% [37–41]. Though theoretically the upper bound
for AFC quantum memory efficiency is unity, the requirement
of a large optical depth [68] is hard to achieve. Putting
the memory inside an asymmetric optical cavity can greatly
enhance the efficiency by meeting “impedance matching”
conditions [69]. So far, 53% [42] and 56% [43] memory
efficiencies have been reported in cavity-based AFC memory,
with milliseconds of storage time.

B. Rydberg atoms: Rydberg-state-based photon sources
and ground-state quantum memory

Rydberg states are characterized by a high principal quan-
tum number and a corresponding large size [70]. Due to the
large dipole moments and strong dipole-dipole interactions,
the excitation of Rydberg atoms would shift the excited energy
levels of nearby atoms, which excludes the resonance excita-
tion of these atoms and is called the Rydberg blockade [44].
The Rydberg blockade, as the central topic of Rydberg atom
(RA) application in quantum information processing, makes
it possible to realize photon sources [47,53,54] and quantum
memories [44–48].

Both SPS and semi-dPPS can be realized in Rydberg atom
ensembles. The SPS relies on the Rydberg blockade effect,
where the shifting in the energy level will inhibit transition
into all but a single excitation state [44]. The spin-wave state
is then converted into a light field by retrieving the excitation
back to the intermediate level [53]. Room-temperature SPS
has also been demonstrated, though with low efficiency (4%)
[54]. The semi-dPPS can also be realized via the Rydberg
blockade effect, where two excitations with different momen-
tum can be entangled. After mapping one excitation to a
photon, a photon and an atomic excitation can be entangled in
the polarization domain. With further retrieving the ground-
state excitation, the atom-photon entanglement is converted
into a photon-pair entanglement [47]. The intrinsic efficiency
of this method is 50%, which is semideterministic. In the
future, with more efficient qubit manipulation, 100% intrinsic
efficiency, i.e., nPPS, can also be realized.

Cold atoms are also attractive as quantum memories
since they allow both rapid and deterministic preparation of

quantum states and their efficient transfer into single-photon
light fields [44,45]. Although the optical lifetime of highly ex-
cited Rydberg atoms can reach several hundred microseconds
[70], the optical coherence time is only several microseconds
[46] because Rydberg atoms are sensitive to the environment.
Thus, to realize a long memory lifetime, we need to transfer
the Rydberg excitation to a long-lived ground state. The
demonstrated mapping efficiency from the Rydberg state to
the ground state is already more than 70% [47]. The coherence
time of the excitation stored in the ground state or spin wave is
mainly limited by the motion of the atoms and the fluctuation
of the residual magnetic field. Combing optical lattice, “clock
state” storage and cavity enhancement readout, 220 ms spin-
wave lifetime and initial intrinsic retrieval efficiency of 76%
have been demonstrated [48]. It is worth noting that the size
of the Rydberg blockade radius poses a limitation on the
number of atoms that can be used. The low optical depth will
decrease the coupling strength between the single photon and
the ensemble, and thus the retrieval efficiency. It is therefore
necessary to couple the ensemble with a cavity to enhance the
overall efficiency.

C. Quantum-dots-based single-photon and photon-pair source

Quantum dots (QDs) [71] are recognized as one of the
best on-demand single-photon sources that possess the highest
quantum efficiency in solid-state quantum emitter schemes
[50]. In one experiment, near-perfect single-photon purity
(99.1%), indistinguishability (98.6%), and high extraction
efficiency (66%) have been reported based on resonant exci-
tation of InAs-GaAs QDs in a micropillar cavity [51].

Photon-pair sources can also be realized by radiative cas-
cades in quantum dots. In a recent experiment, high-fidelity
(90%), pair extraction efficiency (62%), and indistinguisha-
bility (90%) are demonstrated by a single InGaAs quantum
dot coupled to a circular Bragg grating bull’s-eye cavity with
broadband high Purcell factor up to 11.3 [52].

It is important to notice that the overall efficiency is usually
limited by the scattering loss and fiber coupling efficiency, and
the best overall efficiency is about 25% [72]. Fortunately, the
photonic nanowire approach to fabricating efficient quantum
light sources has been proposed [73] and shown great promise
to achieve high extraction efficiency and high fiber coupling
efficiency. The collective efficiency has achieved 72% in
single-photon source based on InAs QDs embedded in a
GaAs photonic nanowire [74]. The photon-pair source has
also been reported in nanowire quantum dots [75–77] with
extraction efficiency around 15%. With further optimization
of the nanowire shape, an extraction efficiency of more than
90% can be expected [73].

D. Parametric-downconversion-based photon-pair source

One of the most widely used techniques to produce an
entangled photon pair is by spontaneous nonlinear parametric
processes. The process that one photon in the pumping laser
goes through materials with second order (χ (2)) can annihilate
into two photons is spontaneous parametric downconversion.
A similar process for third-order (χ (3)) materials is called
spontaneous four-wave mixing (SFWM) [61]. Photons can
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FIG. 2. Rates of various repeater schemes for a total distance of 100 km. The numbers in the contour line represent the corresponding
repeater rates in Hz. The plot shows the situation of two links (nesting level is 1). The corresponding repeater protocols and parameter regimes
are (a) SPS + single-photon BSM(1 + 1) with local beam-splitter transmission probability 0.8 and single-photon emission probability 0.75;
(b) dPPS + two-photon BSM (2 + 2) with photon-pair emission probability 0.5; (c) ndPPS + single-photon BSM (2̃ + 1) with photon-pair
emission probability 0.03; and (d) ndPPS + two-photon BSM (2̃ + 2) with photon-pair emission probability 0.03.

be entangled in polarization, frequency, and time. A recent
outstanding polarization-entanglement source uses narrow-
band spectral filters that eliminate spectral correlations and
has demonstrated high indistinguishability (97%) and purity
(99%) [62]. It is important to note that in order to suppress
the multipair emission, the emission probability should be
low and thus the photon-pair generation process is nondeter-
ministic. On the other hand, it is relatively easy for this type
of source to match the emission frequencies of each photon
to a desired wavelength. For example, one photon can be
in resonance with a quantum memory, while the other one
matches the telecom band of optical fibers.

V. NUMERICAL RESULTS

A. Memory requirements

We first study the repeater rates as a function of memory
lifetime and efficiency. It is worth noting that the efficiency of
photon sources should be predetermined to use Eqs. (19) and
(15) to calculate the repeater rates, defined as the reciprocal

of EDT. We consider high, but realistic efficiencies of 75%
and 50% for SPS and PPS, respectively, and the photon-
pair emission probability 3% for ndPPS. The transmission
coefficient γ = 0.2 in the 1 + 1 scheme, the fiber attenuation
length Latt = 22 km (for telecom-wavelength range around
1550 nm), and the detector efficiency ηd = 0.95. In Fig. 2 we
show the repeater rates for a total distance of 100 km, where
the contour line represents the same repeater rates for various
parameters of memory lifetime and efficiency.

The figures can provide useful information. To begin with,
the graphs show the potential tradeoff between memory life-
time and efficiency to achieve a target repeater rate, say 1 Hz.
For example, in the 2 + 2 scheme, to realize the target repeater
rate, one can use memories with 1 ms lifetime and 50%
efficiency, or with unity efficiency and 0.2 ms lifetime, or with
15% efficiency and 1 s lifetime.

One can find the most efficient way to improve the repeater
performance by improving the memory parameter along the
gradient in the contour graphs. In particular, one can see
that for a short lifetime but high efficiency, there is limited
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TABLE II. Parameters for numerical calculation

Schemes Implementations Parameters

1 + 1 QDs + REIs ηs = 0.75, ηm = 0.7, τm = 1 ms
RAs ηs = 0.15, ηm = 0.75, τm = 0.22 s

2 + 2 QDs + REIs ηs = 0.5, ηm = 0.7, τm = 1 ms
RAs ηs = 0.15, ηm = 0.75, τm = 0.22 s

2̃ + 1 PDC + REIs ηs = 0.03, ηm = 0.7, τm = 1 ms
2̃ + 2

benefit in improving the efficiency further and vice versa.
Conversely, in the high-lifetime regime (e.g., >10 ms for the
2 + 2 scheme), the gradients of the contour lines are parallel
to the efficiency axis, meaning that the increase in efficiency
will considerably improve the repeater rates. We also notice
that the contour line is more concentrated in the small memory
lifetime (<1 ms) and efficiency (<20%) regime, which means
an improvement in lifetime or efficiency, respectively, in the
corresponding regimes will dramatically improve the repeater
rates.

Moreover, the graphs give the upper bound of the repeater
rates that can be achieved in these schemes for this distance.
The maximum repeater rate under the present assumptions is
of order 10 Hz in the 1 + 1, 2 + 2, and 2̃ + 1 scheme and
10−3 Hz in the 2̃ + 2 scheme. These upper bounds of the
repeater rates, which correspond to perfect quantum memo-
ries, can be improved by using better sources, more links, or
multiplexing [14].

These results were obtained for exponential decay of mem-
ory efficiency as described in Sec. III. In Appendix C we
compare our results to what one would obtain under the
common simplified assumption of a memory cutoff time. The
main conclusion is that the cutoff is not a good approximation
for short lifetimes.

B. Comparison of implementations

Let us now consider the practical implementations in
Table I and give the expected repeater rates with realistic
parameter regimes in Table II. We plot the corresponding two-
link repeater performance with various platforms as a function
of distance in Fig. 3. The solid lines represent the performance
of different implementations that are labeled on the figure. The
schemes with more deterministic sources achieve higher rates,
but even the schemes with nondeterministic sources can allow
meaningful proof-of-principle demonstrations, especially the
2̃ + 1 scheme. Note that the rate for the 1 + 1 scheme
with RAs decreases more slowly with distance under our
assumptions compared with other implementations, mainly
because of the longer memory lifetime.

It is possible to improve the repeater rates by adopting
the optimized memory buffer time protocol of Ref. [16]
that limits the entanglement generation time in elementary
links. We discuss this approach in detail in Appendix D. The
improvement is not dramatic in the considered regime for the
two-link situation (first nesting level), but it might be more
helpful for higher nesting levels.

FIG. 3. Comparison of repeater implementations with two links:
the 1 + 1 scheme with QDs and REIs (A); the 1 + 1 scheme with
RAs (B); the 2 + 2 scheme with QDs and REIs (C); the 2 + 2 scheme
with RAs (D); the 2̃ + 1 scheme with PDC and REIs (E); the 2̃ + 2
scheme with PDC and REIs (F).

VI. CONCLUSION

We have studied the near-term performance of different
quantum repeater protocols under realistic assumptions, in-
cluding, in particular, the effects of exponential memory
decay. We reviewed several promising implementations, in-
cluding the combination of quantum dot sources and rare-
earth-ion memories as well as Rydberg atom ensembles.
Our numerical results can provide useful guidance for the
optimization of memory performance in view of long-distance
proof-of-principle experiments. Our overall conclusion is that
meaningful demonstrations of quantum repeaters with the
relatively simple elements considered here are within reach
of current technology. Beating direct transmission will likely
require further improvements such as multiplexing.
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APPENDIX A: DETAILED DERIVATION
OF EQS. (14) AND (15)

In this section we give a detailed derivation of Eqs. (14) and
(15). Let us recall the original expression of EDT in Eq. (11).
If we substitute nr,max = nr,min + nr,dif , we will get(

k∑
r=1

nr,minT0

)
pk,s

k−1∏
r=1

(1 − pr,s)

+
(

k∑
r=1

nr,dif T0

)
pk,s

k−1∏
r=1

(1 − pr,s). (A1)
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FIG. 4. The relation between β and p0 in different T0/τm regimes: T0/τm = 0.001 (blue dots), 0.01 (yellow triangles), 0.1 (green squares),
and 1 (red diamonds). The first three subfigures show results for single-photon BSM (a, b, and c) and two-photon BSM (d). For a single-photon
BSM situation, we consider fidelity of entanglement generated state α(0), which depends on the memory efficiency, 0.9 (a), 0.5 (b), and 0.1 (c).

To calculate the expectation time, we should average k, nr,max,
and nr,dif (contained in ps). The calculation for the first term
in Eq. (A1) is easy since ps and nmin are independent, while
it is hard in the second term where ps depends on ndif . Let
us first give the expectation value of the first term. As nr,dif is
independent with pr,s, we derive

T0

∞∑
k=1

(
k∑

r=1

〈nr,min〉
)

〈pk,s〉
k−1∏
r′=1

(1 − 〈pr′,s〉

= T0

∞∑
k=1

[
k〈nr,min〉〈pk,s〉

k−1∏
r′=1

(1 − 〈pr′,s〉)

]
= 〈nmin〉

〈ps〉 T0,

(A2)

where we have used that the expectations of nmin and ps are the
same for different swapping attempts, i.e., 〈nr,min〉 = 〈nmin〉
and 〈pr,s〉 = 〈ps〉.

To calculate the expectation value for the second term
in Eq. (A1), we need an assumption on the expectation
value of nr,dif pr,s. As in the main text, we have defined
β = 〈ndif ps〉/〈ndif ps〉, where 0 < β < 1. In the upper bound
β = 1, the expectation value of the second term in Eq. (A1)
can be expressed as

T0

∞∑
k=1

(
k∑

r=1

〈nr,dif〉
)

〈pk,s〉
k−1∏
r′=1

(1 − 〈pr′,s〉)

= T0

∞∑
k=1

[
k〈nr,dif〉〈pk,s〉

k−1∏
r′=1

(1 − 〈pr′,s〉)

]
= 〈ndif〉

〈ps〉 T0,

(A3)

while in the lower bound β = 0, the expectation value of the
second term in Eq. (A1) is negligible compared to the first
term. Thus, depending on β, the average EDT is different. If
β = 1, the average EDT is the sum of Eqs. (A2) and (A3):

〈nmin〉
〈ps〉 T0 + 〈ndif〉

〈ps〉 T0 = 〈nmax〉
〈ps〉 T0. (A4)

On the other hand, if β = 0, the average EDT is simply the
value in Eq. (A2):

〈nmin〉
〈ps〉 T0. (A5)

APPENDIX B: NUMERICAL EVIDENCE
FOR ASSUMPTIONS

In this section, we give the numerical evidence that sup-
ports our assumptions in the main text, especially Eqs. (13)
and (20). The parameter regime, if not specified, is p0 = 0.01,
r = T0/τm = 1, ηd = 0.95, and α(0) = 1.

First, let us give the numerical evidence for Eq. (13), i.e.,
β = 〈ndif ∗ ps〉/〈ndif〉〈ps〉 ≈ 1 in single-photon BSM. We plot
β as a function of p0, shown in Figs. 4(a)–4(c) with different
choices of state fidelity (after entanglement generation) and
different lifetime regimes. The result shows that the minimum
ratio varies with different p0 − tM regimes and the lowest ratio
in our considered regime is 84%, which means in Eq. (13),
β ≈ 1 is a good approximation. We also plot the ratio in the
two-photon BSM scenario: in the low-p0 regime, β is almost
0, while in the high-p0 and high-memory-lifetime regime, β is
close to 1. The ratio values 0 and 1 correspond to the lower and
upper bounds in Eq. (15), respectively, and thus it is easy to
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FIG. 5. The numerical (blue dot) and theoretical (red solid line) probability distribution for Tdif . The regime is considered as a high-
memory-lifetime regime (T0/τm = 0.01), low-memory-lifetime regime (T0/τm = 1), high-p0 regime (p0 = 0.1), and low-p0 regime (p0 =
0.01). The theoretical prediction fits well with the experimental result.

approximate the average EDT using the average of the lower
and upper bounds.

Second, we show the assumption in Eq. (20) is valid in
the approximation of probability distribution of Tdif and the
expectation value of Tmin and Tmax. Based on the probability
assumption, we plot the theoretical predicted probability dis-
tribution of Tdif in comparison to the numerical result, shown
in Fig. 5. The four subfigures correspond to different p0 − tM
regimes, and the theoretical results (red solid line) fit well with
the numerical result (blue dots) in all considered parameter
regimes. We also compare the theoretical and numerical result
of the expectation value of Tmin and Tmax, shown in Fig. 6.
The theoretical results (blue dots) fit well with the numerical
result (yellow cross) for different τm [Figs. 6(a) and 6(c)] and
p0 [Figs. 6(b) and 6(d)].

APPENDIX C: COMPARISON OF EXPONENTIAL
DECAY AND MEMORY CUTOFF

In this section, we calculate the repeater rates using the
memory cutoff assumption and compare it with our result.
Here we focus on the 2 + 2 scheme.

Given the initial memory state as α|�〉〈�| + (1 − α)ρ, the
memory cutoff assumption is that after time t , the memory
state is

F =
{

α|�〉〈�| + (1 − α)ρ t � τ

ρ ′ t > τ
, (C1)

where ρ and ρ ′ are the “unwanted state,” and τ is usually
the lifetime. It is clear that the fidelity and storage time are
negative correlated, and thus the lower and upper bounds of

the average EDT have the same expression as in Eq. (15). We
notice the only difference is the average swapping probability
〈ps〉. Without loss of generality, we assume the prefactor in
Eq. (10) as 1, and therefore

ps =
{

1 t � τm/2

0 t > τm/2
, (C2)

where τm/2 is because in the 2 + 2 scheme, both memories
will decay. Given t = ndif T0 and the probability distribution
function as shown in Eq. (2), the expectation value of ps is

〈ps〉cut = 1 − 2(1 − p0)τm/2T0

2 − p0
. (C3)

In comparison, with exponential memory decay, the swapping
probability is shown in Eq. (32), and the expectation value is

〈ps〉exp = p0

2 − p0

eT0/τm + 1 − p0

eT0/τm − 1 + p0
. (C4)

We plot the average swapping probability under mem-
ory cutoff and exponential decay in different p0 and τm/T0

regimes, shown in Fig. 7. In the high τm/T0 regimes (>10),
the memory cutoff seems to be a good assumption since the
two expectation values are well matched. However, in the low
τm/T0 regime (
10), we find a distinct difference between
the two values. For example, in the regime τm/T0 = 1, which
is represented by blue lines in Fig. 7, 〈ps〉cut/〈ps〉exp = 48.5
and 521, corresponding to p0 = 0.1 and 0.01. Thus, in the
low-memory time regime (τm ∼ T0), the memory cutoff is not
a good assumption.
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FIG. 6. The numerical (blue dot) and theoretical (yellow x) expectation value of Tmin(a and b) and Tmax(c and d). We plot the dependence
with T0/τm(a and c) and p0(c and d), and find the experimental result and theoretical result fit well.

APPENDIX D: IMPROVING THE REPEATER RATES WITH
OPTIMIZED MEMORY BUFFER TIMES

In this section, we focus on the two-photon BSM schemes
(2 + 2 and 2̃ + 2 scheme) with one nesting level. We consider
the protocol of Ref. [16], where we abort the trial and start
over again if the entanglement generation time of the elemen-
tary link exceeds a time threshold τ . Similarly to Eq. (11), the

FIG. 7. Average swapping probability in memory cutoff as-
sumption 〈ps〉cut(diamond) and exponential decay assumption
〈ps〉exp(circle). The plots show the dependence of average swapping
probability with different τm/T0 regime: τm/T0 = 1 (blue), 10 (red),
100 (green), and 1000 (magenta).

entanglement distribution time in this case is thus

T (τ ) =
∞∑

k=1

[(
k∑

r=1

min{nr,maxT0, τ }
)

p′
k,s

k−1∏
r=1

(1 − p′
r,s)

]
.

(D1)

Here p′
r,s is the swapping probability in the rth swapping

attempt and depends on τ as

p′
r,s =

{
ps nmax � τ/T0

0 nmax > τ/T0
, (D2)

which is independent of r. Here ps is the swapping probability
defined in Eq. (32) and is a function of ndif . For simplicity, we
calculate the upper bound of the expectation value of T (τ ):

〈T (τ )〉 ≈ 〈min{nmaxT0, τ }〉
〈p′

s〉
, (D3)

where we have used the condition that 〈nr,max〉 = 〈nmax〉 and
〈p′

r,s〉 = 〈p′
s〉 for all r. The numerator in Eq. (D3) can be

calculated with the PDF for nmax, which is defined as

P(nmax) = 2
nmax−1∑

i=1

P(i, nmax) + P(nmax, nmax), (D4)

where P(n1, n2) = p2
0(1 − p0)n1+n2−2 is the joint PDF of n1

and n2 defined in Sec. III A 1. Thus,

〈min{n′
maxT0, τ }〉

=
τ/T0∑

nmax=1

nmaxT0P(nmax) +
∞∑

nmax=τ/T0+1

τP(nmax). (D5)
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FIG. 8. Average entanglement distribution time with limited en-
tanglement generation time. The parameters used are ηd = 0.95,
ηm = 0.5, p0 = 0.1, and τm = 10T0. The minimum value (maximum
rate) is obtained with τ0 ≈ 16T0, and λ ≈ 1.06.

Calculating the denominator requires the conditional prob-
ability (conditioned on nmax � τ/T0) of ndif . The joint proba-
bility of ndif and nmax is

P(ndif , nmax) = 2P(n1 = nmax, n2 = nmax − ndif ). (D6)

The conditional probability is

Pc(ndif ) = P(ndif |nmax � τ/T0)

=
∑τ/T0

nmax=ndif +1 P(ndif , nmax)∑τ/T0
nmax=ndif +1 P(nmax)

. (D7)

We can now calculate the denominator as

〈p′
s〉 =

τ/T0−1∑
ndif =0

ps(ndif )Pc(ndif ). (D8)

Now the average entanglement distribution time defined in
Eq. (D3) can be calculated with Eqs. (D5) and (D7). Consid-
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FIG. 9. The ratio λ of Eq. (D9), which represents the improve-
ment achieved by optimizing the memory buffer time.

ering τ0 such that 〈T (τ0)〉 = max〈T (τ )〉, we define

λ = 〈T (∞)〉
〈T (τ0)〉 , (D9)

representing the ratio of entanglement distribution rates for
the case with and without limited memory buffer times.

In the numerical calculation, we use detector efficiency
ηd = 0.95 and memory efficiency ηm = 0.5, and thus λ de-
pends only on the memory lifetime τm and the entanglement
generation probability p0. To give an example, we plot the
dependence of the average entanglement distribution time on
the time threshold τ in the case that p0 = 0.1, and τm =
10T0, see Fig. 8. As the time threshold increases, the average
entanglement generation time first decreases and reaches a
minimum value at τ0. Then it increases and finally reaches
〈T (∞)〉.

To see how the ratio λ depends on p0 and τm, we plot the
numerical results in Fig. 9. It is clear that the improvement
of the repeater rates is concentrated in the low-τm, low-p0

regime. The maximum ratio in the considered regime is about
2.4.
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[15] F. Rozpędek, R. Yehia, K. Goodenough, M. Ruf, P. C.
Humphreys, R. Hanson, S. Wehner, and D. Elkouss, Phys. Rev.
A 99, 052330 (2019).

[16] S. Santra, S. Muralidharan, M. Lichtman, L. Jiang, C. R.
Monroe, and V. S. Malinovsky, New J. Phys. 21, 073002 (2019).

[17] V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H.
Hainzer, and B. Lanyon, Quantum Inf. 5, 72 (2019).

[18] X.-H. Bao, X.-F. Xu, C.-M. Li, Z.-S. Yuan, C.-Y. Lu, and J.-W.
Pan, Proc. Natl. Acad. Sci. USA 109, 20347 (2012).

[19] W. Pfaff, B. Hensen, H. Bernien, S. B. van Dam, M. S. Blok,
T. H. Taminiau, M. J. Tiggelman, R. N. Schouten, M. Markham,
D. J. Twitchen et al., Science 345, 532 (2014).

[20] G. Vittorini, D. Hucul, I. V. Inlek, C. Crocker, and C. Monroe,
Phys. Rev. A 90, 040302(R) (2014).

[21] P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten, R. F.
Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson,
Nature (London) 558, 268 (2018).

[22] Y. Yu, F. Ma, X.-Y. Luo, B. Jing, P.-F. Sun, R.-Z. Fang, C.-W.
Yang, H. Liu, M.-Y. Zheng, X.-P. Xie et al., Nature (London)
578, 240 (2020).

[23] J. B. Brask and A. S. Sørensen, Phys. Rev. A 78, 012350 (2008).
[24] N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M.

George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W.
Sohler, and W. Tittel, Phys. Rev. Lett. 113, 053603 (2014).

[25] H. Krovi, S. Guha, Z. Dutton, J. A. Slater, C. Simon, and W.
Tittel, Appl. Phys. B 122, 52 (2016).

[26] O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy,
Phys. Rev. Lett. 98, 060502 (2007).

[27] E. Shchukin, F. Schmidt, and P. van Loock, Phys. Rev. A 100,
032322 (2019).

[28] M. U. Staudt, M. Afzelius, H. de Riedmatten, S. R. Hastings-
Simon, C. Simon, R. Ricken, H. Suche, W. Sohler, and N. Gisin,
Phys. Rev. Lett. 99, 173602 (2007).

[29] N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de
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