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The evolution of a quantum system towards thermal equilibrium is usually studied by approximate methods,
which have their limits of validity and should be checked against analytically solvable models. In this paper,
we propose an analytically solvable model to investigate the energy transfer between a bosonic bath and a
fermionic chain which are nonlinearly coupled to each other. The bosonic bath consists of an infinite collection
of noninteracting bosonic modes, while the fermionic chain is represented by a chain of interacting fermions with
nearest-neighbor interactions. We compare the behaviors of the temperature-dependent energy current JT and
temperature-independent energy current JT I for different bath configurations. With respect to the bath spectrum,
JT decays exponentially for a Lorentz-Drude-type bath, which is the same as the conventional approximations.
On the other hand, the decay rate is 1/t3 for the Ohmic type and 1/t for white noise, which does not have
conventional counterparts. For the temperature-independent current JT I , the decay rate is divergent for the
Lorentz-Drude-type bath, 1/t4 for the Ohmic bath, and 1/t for the white noise. When further considering the
dynamics of the fermionic chain, the current will be modulated based on the envelope from the bath. As an
example, for a bosonic bath with an Ohmic spectrum, when the fermionic chain is uniformly coupled, we have
JT ∝ 1/t6 and JT I ∝ 1/t3. Moreover, it is interesting that JT is proportional to (N − 1)1/2 at certain times for
perfect state transfer couplings under a Lorentz-Drude or Ohmic bath.
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I. INTRODUCTION

Dissipative phenomena in open systems [1,2] can give rise
to a variety of interesting physical scenarios and have been un-
der extensive study across many different fields, such as quan-
tum optics, many-body physics, and quantum information
sciences. Open systems are notoriously difficult to deal with
exactly due to the complexity of the quantum reservoir, whose
Hilbert space can be prohibitively large. Such systems are
usually tackled with a system-plus-reservoir approach where
one treats the composite system as a whole, and later traces
out the reservoir degrees of freedom to study the reduced
dynamical behaviors of the system under consideration. One
widely used way to model the quantum reservoir is to treat
it as noninteracting harmonic oscillators [3,4]. The dynamics
of two Brownian particles in a common reservoir has been
studied [5] as well as its thermal equilibrium properties [6].
Using a quantum Langevin description, a system-reservoir
model is proposed [7] and a quantum current is observed
which is dependent on various parameters of external noise.
A spin-boson model also provides a clear physical picture for
exploring quantum dissipation effects. This model includes
an impurity two-level system (TLS) coupled to a thermal

*Corresponding author: lianao.wu@ehu.es

reservoir and displays a rich phase diagram in the equilib-
rium regime [1,8]. A generalized nonequilibrium polaron-
transformed Redfield equation with an auxiliary counting field
was developed recently to study the full counting statistics of
quantum heat transfer in a driven nonequilibrium spin-boson
model [9]. For a subsystem which consists of two interacting
spins, this situation effectively corresponds to a subsystem
unharmonically coupled to a bosonic bath, allowing one to
introduce nonlinear effects [10]. Thermal rectification within
a spin-boson nanojunction model is analyzed and analytic
solutions are obtained for a separable model and a nonsep-
arable model [11]. The exact dynamics of interacting TLS
immersed in separate thermal reservoirs or within a common
bath has also been studied [12]. For the device design, such as
in molecular devices, one often needs to consider the scaling
of heat current with system size and time in order to prevent
the devices from disintegrating [13,14], because excess heat
buildup during operation may cause device disintegrating.

However, most theoretical investigations of how a quan-
tum system reaches thermal equilibrium use approximation
methods, such as quantum master equations [15–17], Born-
Oppenheimer methods [18], etc. Typically, such methods
only provide numerical results, hindering a direct picture
of the microscopic processes involved. Responding to this
challenge, we have recently developed an analytic method for
describing the energy transfer in a hybrid quantum system.
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The hybrid quantum system consists of a bosonic bath and
a fermionic chain, which are nonlinearly coupled by using
a dressing transformation. Physically, this prototype quantum
model could be realized in different systems. For example, the
bosonic bath and the fermionic chain correspond to harmonic
solids and metal (or spin). respectively. In Ref. [19], thermal
rectification appears in two different reservoirs connected by
molecular vibration. Our results show that the energy current
can disappear at some times for this nonlinearly coupled
hybrid bath, whereas for two linearly coupled bosonic baths,
a steady current will be obtained [20].

II. MODEL

Consider two baths (HLB and HRB) connected by a central
system HS . The central system S consists of two interacting
fermions. The left bath LB is modeled as a collection of
noninteracting bosonic modes [3,4], maintained at a fixed
temperature T = β−1, with kB = 1. The right bath RB is
modeled as a one-dimensional fermionic chain with nearest-
neighbor interactions. The total Hamiltonian is given by

H = HS + HLB + HRB + VL + VR, (1)

where VL (VR) is the interaction between the left (right) bath
and the central system. Treating the central system and the
fermionic right bath as a whole, we denote Hch = HS + HRB +
VR and rearranged the indices so that the interacting fermions
in the central system are labeled 1 and 2 and the sites in the
fermionic chain are labeled 3 through N ,

Hch = HS + HRB + VR = −
N−1∑
i=1

τi(c
†
i ci+1 + c†i+1ci ), (2)

where HS=−τ1(c†1c2+c†2c1), HRB =−∑N−1
i=3 τi(c

†
i ci+1+

c†i+1ci ), VR = −τ2(c†2c3 + c†3c2), c†i is a standard fermionic
creation operator, and τi is the coupling constant between
the nearest-neighbor sites. Additionally, we take τi > 0
which corresponds to ferromagnetic couplings throughout.
Hch may describe a chain of interacting spinless fermions,
which can be mapped to a one-dimensional XY chain under a
Jordan-Wigner transformation. The mapping of the fermion
number ni = c†i ci to the Pauli matrix σz is 2ni = σ z

i + 1. This
is true for an open-ended chain or a periodic chain [21–24].
Here, we consider an open-ended chain. For simplicity, the
total Hamiltonian H can be written as (see Fig. 1)

H = Hch + HB + V, (3)

where HB = HLB = ∑
α ωαb†αbα is the bosonic bath’s Hamil-

tonian (or phonons if zero-point energy is added). b†i is the
bosonic creation operator, and ωα is the frequency of the αth
mode. Note that the total number of excitations M = ∑

i c†i ci

in the chain remains constant, and thus the z component of the
total spin is a conserved quantity. We can discuss problems
in a fixed subspace for certain excitations. For simplicity,
we only consider the M = 1 case. We will study the energy
transfer between the bath and the chain next. The energy
current will be zero after some time t for a finite length chain,
at which point thermal equilibrium is reached.

FIG. 1. A schematic representation of the model. The bosonic
bath and the fermionic chain are connected by two fermions. The
fermionic chain can be mapped to a one-dimensional spin chain and
the bosonic bath is at a finite temperature T while the fermionic chain
is at zero temperature.

A specific interaction V = VL can be introduced by the
so-called dressing transformation W †(Hch + HB)W with a dis-
placement operator W = exp [

∑
α (�αb†α − �∗

αbα )n1], where
the fermion number n1 = 1

2 (σ 1
i + 1). Clearly, it is possible

to introduce different types of interactions using different
types of dressing transformations [15]. The exact form of the
interaction operator is now given by

V =
∑

α
ωα

(
�∗

αbα + �αb†α + |�α|2)n1

+τ1(c†1c2e�∗
αbα−�αb†α − 1 + H.c.). (4)

�α parametrizes the system-bath coupling strength, and is
assumed to be a complex number.

III. CALCULATION OF ENERGY EXPECTATION
VALUE AND ENERGY CURRENT

In this section, we will give a general analysis of the energy
current between the bosonic bath and the fermionic chain. The
energy current operator can be defined as [15]

J = i[V, HB]. (5)

The expectation value of the energy current is given by

J (t ) = Tr[ρ0Ĵ], (6)

where ρ0 = ρB ⊗ ρch is the initial density operator of the
whole system and Ĵ = eiHt Ĵ (0)e−iHt . Equivalently, the energy
current may be rewritten as

J (t ) = ∂〈HB(t )〉
∂t

, (7)

where 〈HB(t )〉 = Tr[ρ0ĤB(t )] is the energy expectation value
of the bath, where ĤB = eiHt ĤB(0)e−iHt . Note that a posi-
tive value represents an energy current from the bath to the
chain and vice versa. The bosonic bath at temperature T
is modeled as a canonical ensemble with distribution ρB =
exp(−βHB)/Tr[exp(−βHB)].

It can be readily shown that

U †
0 b†αU0 = b†αeiωαt , (8)

and

U †
0 c†1U0 = c†1 (t ) =

∑
l

f ∗
1,l c

†
l , (9)
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where U0 = e−i(HB+Hch )t and f1,l is the transition amplitude of
an excitation (the |1〉 state) from site 1 to site l in the chain.
We restrict the fermion chain to have only one excitation.
Denoting |l〉 as the state where the one fermion excitation
is at site l , we write the initial state of the fermion chain as
|
(0)〉 = 1√

a

∑a
l=1 |l〉, where the 1 excitation is restricted to

the first a sites. Then, 〈HB(t )〉 can be expressed as (neglecting
the time-independent part)

〈HB(t )〉 = 〈HB(t )〉T + 〈HB(t )〉T I , (10)

where 〈HB(t )〉T is the temperature-dependent part,

〈HB(t )〉T = 1

a

∑
α
ωα|�α|2〈D(�)〉eq

{
2 coth

βωα

2
sin ωαt

× Im[F (t )] + 2(1 − cos ωαt )Re[F (t )]

}
,

(11)

and 〈HB(t )〉T I is the temperature-independent part,

〈HB(t )〉T I = 1

a

∑
α
ωα|�α|2[(1 − 2 cos ωαt )| f11|2 + G(t )],

(12)

where 〈D(�)〉eq = exp (− 1
2

∑
α |�α|2 coth βωα

2 ) is the expec-
tation value of the displacement operator in the thermal equi-
librium state, and F (t ), G(t ) indicate the dynamics of the
chain and depend on the initial state of the chain. The explicit
definitions of F (t ) and G(t ) are given for three different
initial states in the following sections. Next, we will discuss
the behavior of the energy current for different initial states,
different spectra for the bosonic bath, and different coupling
configurations in the fermionic chain.

IV. ENERGY CURRENT FOR DIFFERENT INITIAL
STATES OF THE CHAIN

Now we discuss the energy current for some different
initial states. The energy current in the contact can also be
expressed as two parts,

J = JT + JT I , (13)

where

JT = 2

a

∑
α
ωα|�α|2〈D(�α )〉eq

×
{

coth
βωα

2
[ωα cos ωαt Im[F (t )]

+ sin ωαtd Im[F (t )]/dt] + ωα sin ωαt Re[F (t )]

+ (1 − cos ωαt )d Re[F (t )]/dt

}
(14)

is the temperature-dependent current, and

JT I = 1

a

∑
α
ωα|�α|2[2ωα sin ωαt | f11|2

+(1 − cos ωαt )d (| f11|2)/dt + dG(t )/dt] (15)

is the temperature-independent current.
(i) |
(0)〉 = |1〉. In this case, a = 1, F (t ) = 0, G(t ) = 0,

and JT = 0. Therefore, the current is independent of the

temperature and represents a pure quantum current. We also
note that if the initial state is prepared as α|0〉 + β|1〉, i.e., the
first site is an arbitrary pure state α|0〉 + β|1〉 and all other
sites at state |0〉, the state on site one cannot be transferred to
other sites under the chain dynamics.

(ii) |
(0)〉 = 1√
N

(|1〉 + |2〉 + · · · + |N〉), now a = N, F (t )

= f ∗
1,1

∑N
l=2 f1,l , G(t ) = ∑

l,m=2 f ∗
1,l f1,m .

(iii) |
(0)〉 = 1√
2
(|1〉 + |2〉), a = 2, F (t ) = f ∗

1,1 f12, G(t )

= | f1,2|2.
Note that the analytical expression of the energy current

above is obtained without approximations. In the next section,
we will discuss case (iii) as an illustrative example.

V. EFFECTS OF THE SPECTRUM DISTRIBUTION
FOR THE BOSONIC BATH

When the chain-bath couplings are weak (�α/τα→0),
which corresponds to the Markovian limit, the displace-
ment operator expectation value in the thermal equi-
librium can be approximated as its first-order term
exp (− 1

2

∑
α |�α|2 coth βωα

2 ) ≈ 1. Additionally, in the high-
temperature T , or low-frequency limit ωα → 0, the hyper-
bolic cotangent coth ωα

2T → ∞, so the dominant term will be
the first two terms in Eq. (14). Using the Taylor expansion

for the hyperbolic cotangent coth x =
∞∑

n=1

22nB2nx2n−1

(2n)! (where

0 < |x| < π and Bn is the nth Bernoulli number) and taking
the first order for x → 0, the current in Eq. (14) can be further
reduced to

JT = 2T
∑

α
|�α|2

[
sin ωαt

d Im[F (t )

dt

+ ωα cos ωαt Im[F (t )]

]
. (16)

Denoting � as an overall coupling strength factor, the energy
current JT , JT I for different spectrum distributions of the bath
can then be written in this simplified form.

(i) Lorentz-Drude-type bath [25], whose the spectrum den-
sity ρ(ω) = ω

ω2
d +ω2 . The temperature-dependent energy cur-

rent is given by

JT = πT |�|2e−ωd t

[
d Im[F (t )]

dt
− ωd Im[F (t )]

]
. (17)

In this case, the current decays exponentially with time t ,
modulated by F (t ), which comes from the chain’s dynamics
and finally it reaches zero. Then the thermal equilibrium state
is obtained. The envelope is an exponentially decreasing line.
For JT I , it is divergent in the Lorentz-Drude bath.

(ii) Ohmic bath, with a spectrum density ρ(ω) =
π
2 ωe−ω/ωc , where ωc is the cutoff frequency. For a long-time
limit (ωct ) � 1,

JT ≈ 2πT |�|2
ωct4

[
t
d Im[F (t )]

dt
− 3 Im[F (t )]

]
, (18)

JT I ≈ π |�|2
2

[
3

t4

∣∣ f1,1(t )
∣∣2 + 6

ωct4
d (

∣∣ f1,1(t )
∣∣2

)/dt

+ ω3
c d (

∣∣ f1,1(t )
∣∣2 + ∣∣ f1,2(t )

∣∣2
)/dt

]
. (19)
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Therefore, for JT the envelope becomes 1/t3 while for JT I it
is 1/t4 for Ohmic baths. The quantum current decreased more
quickly than the classical current for the Ohmic bath. Note
that for JT I , in the long-time limit, the current JT I will only
depend on the chain’s dynamics.

(iii) A “white-noise” spectrum where the frequency dis-
tributes uniformly with a cutoff frequency,

ρ(ω) =
{

1 (0 < ω � �),
0 (otherwise),

then the energy current in the long-time limit (t � 1) is given
by

JT ≈ 2T |�|2
{[

�

t
sin �t

]
Im[F (t )]+ (1−cos �t )

t

d Im F (t )

dt

}
,

(20)

JT I ≈ |�|2
{[

�2 sin �t

t

]∣∣ f1,1(t )
∣∣2 − � sin �t

t
d (

∣∣ f1,1(t )
∣∣2

)/dt

+�2

4
d (

∣∣ f1,1(t )
∣∣2 + ∣∣ f1,2(t )

∣∣2
)/dt

}
. (21)

The envelope for the currents is 1/t . Note that for JT I (t ) the
current depends on the chain’s dynamics only in the long-time
limit.

VI. EFFECTS OF THE FERMIONIC CHAIN
CONFIGURATION

Now we reveal how different configurations of the
fermionic chain can affect the energy current. The transition
amplitude fm,m′ depends on the types of couplings in the chain.
First, we discuss the perfect state transfer (PST) couplings
τk = 2τ

√
k(N − k)/N2. The transition amplitude reads

fm,m′ (t ) = exp
[
i
π

2
(m − m′)

]
dl

m′,m(2τ t ), (22)

where dl
m′,m(2τ t ) is the Wigner d matrix [26]. The indices of

the site number of a one-dimensional chain can be mapped
onto the magnetic quantum numbers m of the total angular
momentum l , such that l = N−1

2 , m = −N−1
2 + k − 1, where

k = 1, 2, . . . , N [27]. Using this relation, we obtain f1,1(t ) =
[cos τ t]N−1, f1,2(t ) = i

√
N − 1 sin τ t[cos τ t]N−2, f1,N (t ) =

(−1)N exp [i π
2 (N − 1)][sin τ t]N−1. Note that the transition

amplitudes f1,n(t ) (n = 1, 2, N) are periodic functions. When
transferring a quantum state from one end to the other end
of the chain, the transmission fidelity is a function of the
transition amplitude and it can periodically reach 1. This is
the so-called perfect state transfer (PST) [27].

For the Lorentz-Drude spectrum, from Eq. (17), the current
is given by

JT = √
N − 1πT |�|2e−ωd t {τ [cos(τ t )]2(N−1)

− τ (2N − 3) sin2 τ t[cos(τ t )]2(N−2)

−ωd sin(τ t )[cos(τ t )2N−3]}. (23)

It is interesting to note that when t = 2nπ/τ , n = 1, 2, . . .,
cos(τ t ) = 1, sin(τ t ) = 0, so we have

JT = √
N − 1τπT |�|2e−2ωd nπ/τ , (24)

i.e., JT ∝ (N − 1)
1
2 . Note that [cos(τ t )]N becomes a δ func-

tion for big N . The current will appear suddenly when t =
2nπ/τ , and disappear at other t , and this behavior will be
modulated by the exponential decreasing which comes from
the thermal bath. A larger bath size will absorb more energy
for the PST couplings.

For an Ohmic spectrum at t = 2nπ/τ , from Eq. (18), JT ∝
(N − 1)

1
2 . For JT I at a long-time limit, it is proportional to

τ

4
(N − 1)[cos 2τ t (cos τ t )2N−6 − (2N − 6) sin τ t sin 2τ t

× (cos τ t )2N−8] − 2τ (N − 1) sin τ t[cos τ t]2(N−1)−1.

Then there exists an oscillating quantum current JT I even for
the long-time limit in the PST couplings with an Ohmic bath,
whose time average vanishes. The underlying physics could
be a quantum effect similar to a persistent alternating electric
current or the superfluid current in Ref. [28]. It might also
be associated with pure dephasing models where the system-
bath coupling commutes with the system Hamiltonian. For
example, in the pure dephasing model [29] where a spin is
coupled to a bosonic bath the same as that in our model, it is
easy to check that there could be a temperature-independent
oscillating quantum current even for the long-time limit. We
mention that the system-bath couplings both in the pure
dephasing and in our model are introduced in terms of essen-
tially the same dressing transformation W . Since the system-
bath couplings in the two models share the same origin, it
seems to suggest that the temperature-independent currents
from the two models have the same physical mechanisms.
However, even so, special caution is still necessary in the
interpretation of the long-time limit, because, different from
the pure dephasing model, the system-bath coupling in our
model does not commute with the system Hamiltonian.

For uniform couplings τi = τ/2, the transition amplitudes
f j,l from site j to l are

f j,l = 2

N + 1

N∑
m=1

sin(qm j) sin(qml )eiEmt , (25)

where qm = πm/(N + 1), Em = −τ cos qm.
Note that the transition probability f1,l (t ) is real when l is

odd, and imaginary when l is even. That is a typical odd-even
effect and it is a universal property for finite systems [30]. The
more evident effects will be displayed for smaller N . Clearly,
when N = 2, Re( f ∗

1,1 f1,2) = 0.

When N is infinite, the transition amplitude can be calcu-
lated as f1,1 = 1

2 [J0(τ t ) + J2(τ t )], where Jn(t ) is the Bessel
function of the first kind. When l > 1 and n = 0, 1, 2, . . .,

f1,l =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
τ t lJl (τ t ), l = 4n + 1,

− i
τ t lJl (τ t ), l = 4n + 2,

− 1
τ t lJl (τ t ), l = 4n + 3,

i
τ t lJl (τ t ), l = 4n + 4.

(26)

From the expression of f1,1 and f1,2, we can see that for
both PST couplings and uniform couplings, f1,1 is real and f1,2

is imaginary. Then Re[F (t )] ≡ 0 [F (t ) = f ∗
1,1 f1,2] in Eq. (14).

Thus even if we do not consider the high temperature or low
frequency, the last two terms can be neglected for PST or
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uniform couplings. Using an Ohmic spectrum for the bosonic
bath as an example,

JT ≈ 2πT |�|2
ωc

{
2J1J3 − J2[J0 − J2]

4τ 2t5
+ 6J1J2

τ 2t6

}
, (27)

JT I ≈ π |�|2
2

[
3

t4

∣∣ f1,1(t )
∣∣2 + 6

ωct4
d (

∣∣ f1,1(t )
∣∣2

)/dt

+ω3
c d (

∣∣ f1,1(t )
∣∣2 + ∣∣ f1,2(t )

∣∣2
)/dt

]
. (28)

When t → ∞, Jn(t ) ≈
√

2
πt cos (t − nπ

2 − π
4 ), so JT ∝

1/t6 = (1/t3)2, where the bath spectrum and chain’s dynam-
ics both contribute a factor of 1/t3. On the other hand, JT I ∝
1/t3 only, which corresponds to the dissipation in the uniform
chain. Here, we would like to point out that when N → ∞
and t → ∞, it is shown that the asymptotic behaviors of
JT might be unclear due to complexities of the asymptotic
processes, for instance, the order of taking limits N → ∞
and t → ∞. A simple analytical asymptotic expression of the
PST couplings sheds light on the issue: JT ∝| � |2 √

N/t3 is
allowed to be a finite value if N → ∞ and t3 → ∞ share
the same asymptotic speeds. The underlying physics for the
possibility of the existence of this finite current and the
relation between the asymptotic behavior and the Markovian
assumption need further research. The ratio of JT (t )/JT I (t ) ≈
T tan (τ t− π

4 )
2τω4

c t3 is proportional to temperature T , coupling intensity

1/τ , cutoff frequency 1/ω4
c , and time 1/t3 modulated by a tan

function.

VII. CONCLUSIONS

We analytically calculate the energy current between a
bosonic bath and a fermionic chain. For our system, only
an initial entanglement state in the chain can induce a
temperature-dependent energy current. The energy current
J (t ) depends on both the bosonic bath spectrum and the cou-
pling mechanisms within the fermion chain. With respect to
the effects of the bath spectrum, JT will decrease to zero, with
an exponential decay for the Lorentz-Drude type which is in
accordance with the conventional Markovian approximation.
On the other hand, it is proportional to 1/t3 for an Ohmic
spectrum, and 1/t for white noise. For JT I , the effect of the
bath spectrum becomes divergent, 1/t4 and 1/t , respectively.
When different coupling configurations in the fermion chain
are introduced, the envelope of the energy current will be
modulated. For PST couplings, the oscillation is governed by
a periodical function and for uniform couplings it is governed
by the Bessel function of the first kind. Additionally, for PST
couplings, with a Lorentz-Drude or Ohmic bosonic bath, JT is
found to be proportional to (N − 1)1/2 at certain times. This
behavior can be interpreted as larger baths have the capacity
to absorb more energy. Our work gives an exactly analytical
expression for the energy current in hybrid nonlinear quantum
structures.
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