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Operational causality in spacetime
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and Faculty of Applied Physics and Mathematics, National Quantum Information Centre, Gdańsk University of Technology,
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The no-signaling principle preventing superluminal communication is a limiting paradigm for physical
theories. Within the information-theoretic framework it is commonly understood in terms of admissible
correlations in composite systems. Here we unveil its complementary incarnation—the ”dynamical no-signaling
principle”—which forbids superluminal signaling via measurements on simple physical objects (e.g., particles)
evolving in time. We show that it imposes strong constraints on admissible models of dynamics. The posited
principle is universal; it can be applied to any theory (classical, quantum, or postquantum) with well-defined rules
for calculating detection statistics in spacetime. As an immediate application we show how one could exploit
the Schrödinger equation to establish a fully operational superluminal protocol in the Minkowski spacetime.
This example illustrates how the principle can be used to identify the limits of applicability of a given model of
quantum or postquantum dynamics.
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I. INTRODUCTION

The problem of causality in quantum theory, ignited by the
famous Einstein–Bohr debate [1,2], has long been a controver-
sial topic. It took a few decades to realize that although quan-
tum correlations are stronger than those available classically,
they do not allow for superluminal transfer of any information
[3,4]. The latter demand, known as the no-signaling principle
is now recognized as an essential feature of any physical the-
ory. It prevents the logical inconsistencies that might emerge
from the incompatibility of correlations between spacelike-
separated events with the causal structure of spacetime. While
met in both classical and quantum physics, it turned out to
leave room for postquantum theories [5–12].

Yet, there exists a second face of no-signaling connected
with the inherent dynamics of simple physical systems, such
as the time evolution of a single particle. In the domain of
classical physics, the existence of tachyons (when allowed
to interact with ordinary matter) would readily imply the
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possibility of superluminal communication. However, quan-
tum particles do not have a definite position in space when
propagating per se, so the ‘classical’ protocols of informa-
tion transfer do not automatically apply. Furthermore, the
quantum measurement effectuates a dramatic change in the
particle’s dynamics. Consequently, although several formal
results [13–18] have suggested that quantum wave packets can
propagate superluminally, it is unclear whether this implies
operational faster-than-light communication (cf., for instance,
[16] vs [19] or a more recent work [20]).

In this article we formulate the dynamical no-signaling
principle, which says that one must not be able to exploit
the inherent dynamics of any physical phenomenon for su-
perluminal signaling. From this standpoint we identify the
operational constraints on both dynamics and measurement
schemes. The adopted formalism of measures on spacetime
is very general and can be applied in any theory: classi-
cal, quantum, or postquantum. We show that, surprisingly,
any conceivable dynamics must abide by a strong classical
constraint related to the evolution of a pointlike particle’s
statistics (see Fig. 1). As a concrete application, we resolve the
controversy around the purported (a)causality of wave-packet
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FIG. 1. Summary of the main result. (a) In classical physics, a
causal propagation of a probability measure (modeling a spatially
distributed physical quantity) must satisfy an optimal-transport theo-
retic condition, (3), which encodes the demand that infinitesimal por-
tions of probability cannot move faster than light or—equivalently—
that the probability ‘mass’ initially contained within a compact set K
must stay in its causal future j+(K). (b) The propagation of a quan-
tum wave packet gives rise to a certain “potential detection statis-
tics,” which does not exist objectively until an actual measurement.
Nevertheless, the present result says—surprisingly—that the causal
structure of spacetime coerces the same optimal-transport theoretic
condition, (3), on the statistics of unperformed [sic] experiments.
(c) The violation of condition (3) leads to an operational protocol
of faster-than-light signaling. Namely, the free decision “to perform
or not to perform” a measurement in the set K taken at a spacetime
point p results in a change in the potential detection statistics in some
other set C outside of the future of both set K and event p. Since this
statistics can be collected at a later event q, this leads to statistical
signaling between the spacelike-separated events p and q.

evolution. This is done, first, by demonstrating that the
Schrödinger equation together with a local detection can
lead to a logical paradox and, second, by recognizing the
pertinence of the physical time and length scales of causality
violation. The latter provide ultimate bounds on the domain of
applicability of a given model of dynamics.

II. MEASUREMENTS AND COMMUNICATION
IN SPACETIME

Our starting point is a spacetime M consisting of events.
The latter are associated with classical (i.e., objective) in-
formation and form the basic elements of any information
processing protocol (cf. [21]). The spacetime has an inbuilt
causal structure, that is, a partial order relation � specifying
which events might influence one another. If such an influence
between two events is precluded, we say that they are space-
like separated. Furthermore, a spacetime must admit (at least
locally) a splitting M ∼= I × S into time range I and space S .
This splitting need not be unique and typically depends on the
choice of the reference frame.

It is standard to accept that the causal structure of space-
time is defined by the constant speed of light in vacuum,
but other options are also conceivable (cf., for instance,
[22]). In any case, we say that a dynamical law is acausal

or superluminal if it implies influences between spacelike-
separated events. The incompatibility of dynamics with the
assumed casual structure typically leads to logical paradoxes,
which spoil the model’s consistency (see Fig. 4 for an explicit
example).

The simplest two-party communication protocol entails
two definite events: signal sending p and signal reception q.
The sender (Alice) is active; she can freely choose the bit she
desires to communicate. On the other hand, the receiver (Bob)
passively gathers the incoming information. The communica-
tion is effective if Alice’s free choice changes Bob’s detection
statistics registered during the event q. Clearly, if the change in
Bob’s statistics is tiny, then Alice should send multiple copies
of her signal. The communication is called superluminal if q
is not in the causal future of p.

A probability measure μ supported on St := {t} × S is a
natural mathematical object tailored to model the statistics of
a basic binary measurement at a given time t ∈ I . Indeed, if
a detector or an array of detectors is located at time t in a
compact region of space K ⊂ St , μ yields a concrete number,
μ(K) ∈ [0, 1]. The compactness of K reflects the demand of
the locality of the measuring device (cf. [23,24]).

Let us stress that the “detection” is purely operational and
signifies a detector click—which constitutes an objective bit
of information—registered in region K. The interpretation is
secondary and depends on the theory. For instance, if the
signal had been carried by a classical-like particle, the click
would mean that the detection was an actual event located
somewhere in K. Had it been a quantum particle instead, the
only admissible conclusion would be that the particle was not
outside of K at moment t with certainty.

The time evolution of a probability measure on a spacetime
M is defined [18,25] as a map t �→ μt such that supp μt ⊂
St . It models the time evolution of purely potential detection
statistics associated with the dynamics of a simple physical
system, such as a propagating quantum particle. The number
μt (K) answers the question, What is the probability of signal
detection if a detector covering a region K is switched on at a
moment in time t? The basic signaling task requires two local
operations, so only the initial and final measures—μ := μs

and ν := μt , respectively—are relevant.
Consider now an actual measurement checking whether

the signal at an initial time s is within the compact set K.
The impact of the measurement on the final measure at some
later time t is taken into account with the help of conditional
measures

ν( · |mK), mK ∈ {0, 1},

where mK = 1 (mK = 0) corresponds to the situation where
the measurement has been (has not been) performed at time s.
The statistics of the measurement {P(r|mK)} with the possi-
ble results r ∈ {+,−,∅} (corresponding to “signal detected,”
“signal not detected,” and “not applicable,” respectively) sat-
isfies the rules:

P(+|1) = μ(K), P(−|1) = 1 − μ(K), P(∅|1) = 0,

P(+|0) = 0, P(−|0) = 0, P(∅|0) = 1.

(1)
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Another consistency condition,

ν(·|0) = ν, (2)

must hold, because the absence of the measurement does not
disturb the dynamics.

III. CAUSAL EVOLUTION OF STATISTICS

A classical particle is bound to travel along a future-
directed causal curve. In other words, its propagation marks
a one-parameter family of events pt for t ∈ I , with ps � pt

for all s � t . Because classical particles carry objective infor-
mation, any “tachyon” violating the causal order � transfers
information to a forbidden region of spacetime, eventually
resulting in the logical inconsistency of the model.

This classical picture has been formally extended in
[18,26] to the measure-theoretic setting [see Fig. 1(a)].

Causal evolution (CE) condition. The inequality

μs(K) � μt ( j+(K)), (3)

with j+(K) := J+(K) ∩ St , must hold for all compact K ⊂
supp μs and for all s � t .

The CE condition is a relativistic invariant, i.e., it does not
depend on the adopted splitting M ∼= I × S [25]. It encodes,
via the theory of optimal transport (cf. [25,26]), the following
classical intuition:

Each infinitesimal part of the probability distribution must
travel along a future-directed causal curve.

This demand has a clear justification when μ models the
statistical distribution of an ensemble of classical particles,
e.g., dust or fluid. In this context, condition (3) grasps the
demand that none of the elements constituting the considered
physical medium can propagate superluminally.

However, it seems unlikely that CE might be the proper
incarnation of the no-signaling principle beyond the classical
realm. First, the mere fact of the existence (and of dynamical
emergence) of statistical dependencies between spacelike-
separated parts of a physical system does not necessarily
imply the possibility of superluminal information transfer,
either in quantum mechanics or in a “postquantum” theory
with stronger correlations [5]. Second, CE treats the detection
statistics as if they objectively existed, whereas in quantum
mechanics what evolves is purely potential—“nonexisting”—
statistics. Furthermore, CE makes no reference to the actual
detection process, which, in quantum theory, does change
the signal’s dynamics. Finally, there is no straightforward
connection between the violation of CE for some set K and a
physical signaling process, which involves two definite events,
i.e., points of M rather than sets.

Curiously enough, it turns out that the violation of CE,
when complemented by a minimalistic detection scheme, al-
ways leads to operational superluminal communication. This
surprising conclusion holds independently of whether or not
the detection statistics actually exists before the measurement.

IV. DYNAMICAL NO-SIGNALING

Many of the physical detection events involve the demoli-
tion of the signal carrier—most notably, the photon absorption

in a silicon detector. After such an event, the recorded infor-
mation “click” or “no click” is objective, hence the following
demand is indispensable.

Axiom 1 (A1). If the signal has been detected (r = +) at
time s in region K (mK = 1), then it must be present with
certainty in that region’s future j+(K) for any later time t :

ν( j+(K)|+, 1) = 1. (4)

Let us stress that the adopted detection scheme includes
the von Neumann measurement but is not limited to it. It can
be applied equally well in a nondemolition scenario (cf., for
instance, [27]), in which case after the detection the particle
(or whatever signal carrier one considers) might undergo an
entirely different dynamics than before.

The intuition that the detection process in a region K
must not affect the (potential) statistics outside of J+(K) is
formalized with the help of conditional measures, as follows.

Dynamical no-signaling condition (NS). For any compact
C ⊂ St \ j+(K),

ν(C | 1) = ν(C | 0). (5)

Strikingly, it turns out that the intuitive Axiom 1 and condition
NS jointly imply that the dynamics of measures must obey the
strong classical-like constraint CE. Equivalently,

Proposition 1. Under the assumption of A1, the violation
of CE entails the violation of NS.

The somewhat technical proofs of Proposition 1, and of
Theorem 2 below, are included in Appendix A.

Condition NS, while intuitive, entails information flow
from region K to region C, whereas operational signaling
requires definite events. Nevertheless, it turns out that the
violation of NS can always be exploited for a superluminal
communication between two strictly local agents.

Theorem 2. If NS is violated, the set C for which (5) does
not hold can always be chosen so that there exist spacetime
points q, p1, . . . , pk such that

K ⊂
k⋃

i=1

J+(pi ), C ⊂ J−(q), and pi 
� q, i = 1, . . . , k.

The essence of Theorem 2 is illustrated in Fig. 1(c). In
order to send a superluminal signal we first fill both region
K and region C with detectors. The violation of NS implies
that the measurement effectuated by devices in K changes the
detection probability in C. However, to actually execute the
(statistical) superluminal signaling we would need, first, to
orchestrate the measurement in K and, second, to gather the
statistical information from C. This amounts to the existence
of sending event(s) p1, . . . , pk and a readout event q, such that
pi � q for all i.

In the simplest scenario (k = 1) there is a single sending
event and so statistical signaling from p1 to the spacelike-
separated q is straightforward. Theorem 2 says that the set
C can always be chosen in such a way that the readout is
performed at a single event q. This is exactly the situation
depicted in Fig. 1(c).

On the other hand, set K might have a more complicated
shape (see Appendix B for an example), in which case k > 1
sending events are needed. For concreteness let us assume
that k = 2, as in Fig. 2. Observe first that a measurement
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FIG. 2. Diagram illustrating an instance of Theorem 2 with two
senders: a passive one, Alice 1 (A1), and an active one, Alice 2 (A2).

performed in just one of the regions, K1 or K2, does not lead
to the violation of NS, for if it were to do so, a single sending
event would suffice. Consequently, we can assume that one
of the senders, say Alice 1, is passive and has an always-
on detector (mK1 = 1). The active sender, Alice 2, decides
whether or not to perform a measurement (mK2 = 1 or 0),
which fixes the value of the communicated bit because mK =
mK1 · mK2 = mK2 . The value of this bit can be statistically
inferred by Bob from the difference between ν(C | mK = 1)
and ν(C | mK = 0). The generalization to k > 2 senders is
straightforward.

Conclusion. A violation of NS always has operational
consequences; it enables a protocol suitable for operational
superluminal communication.

We have presented the constraint on free evolution of
potential detection statistics and the admissible change of
measure on the positive result of the detection by Alice. For
completeness, let us now discuss the effect of a negative result
of the detection.

V. COMPLEMENTARY AXIOM AND THE TRIAD
OF INTERRELATED CONDITIONS

Just as Axiom 1 puts constraints on the possible evolution
of the measure μ( · |+, 1), i.e., the measure conditioned on
the positive result of the detection measurement in K, the
following condition deals with the measure μ( · |−, 1), i.e.,
conditioned on the negative result.

Axiom 2 (A2). If the signal has not been detected at time s
within K, then outside of J+(K) the evolution of μ( · | −, 1)
proceeds with no modification other than renormalization,

ν(C | −, 1) = ν(C)

1 − μ(K)
, (6)

for any compact C ⊂ St \ j+(K).
This axiom can be intuitively justified as follows: Immedi-

ately after the measurement, the result of which was positive,
we must have μ(K|+, 1) = 1, and thus μ( · |+, 1) is zero
outside of K. Moreover, irrespective of the measurement’s
result, the statistics of the potential measurements outside of
K must remain unchanged so as not to allow for instantaneous
signaling, i.e., μ(K′|1) = μ(K′ | 0) for every K′ ⊂ Ss \ K.

FIG. 3. Diagram illustrating Theorem 3.

Altogether, using subsequently (2), (5), and (1), one gets

μ(K′) = μ(K′|0) = μ(K′|1)

= μ(K′|+, 1)︸ ︷︷ ︸
= 0

P(+|1) + μ(K′|−, 1)P(−|1)

= μ(K′|−, 1)(1 − μ(K)).

We see that μ(K′|−, 1) = μ(K′)/(1 − μ(K)) for any K′ dis-
joint with K. Since the evolution outside of J+(K) should not
be altered, this formula ‘time-evolves’ into (6).

The three conditions A1, A2, and NS, together with the
overarching constraint CE, turn out to enjoy an intimate
logical interplay captured by the following result (see Fig. 3).

Theorem 3. If any two conditions from the set
{NS, A1, A2} hold true, then the third one and CE hold true
as well.

In fact, Theorem 3 exhausts the logical dependencies be-
tween the four conditions considered. More rigorously speak-
ing: Any combination of the true-false values assigned to
the conditions NS, A1, A2, and CE which is not deemed
impossible by Theorem 3 can be realized with suitably defined
measures μ, ν, and ν(·|±, 1). For more details, as well as
for the proof of Theorem 3, the reader is invited to consult
Appendix A.

VI. AN ILLUSTRATION: LOGICAL PARADOXES
FROM QUANTUM WAVE DYNAMICS

Consider two observers, active Alice (A) and passive Bob
(B), in the Minkowski spacetime. They have at their disposal
a quantum wave packet following a unitary evolution driven
by a Hamiltonian Ĥ . Bob has a binary (always-on) detector
covering a region C. Now, consider two situations.

(i) Suppose first that Alice can emit (prepare) a wave
packet ψ0 compactly supported within region K, spacelike
separated with C. She decides (event p) to emit it (mK = 1)
or not to emit it (mK = 0). According to Hegerfeldt’s theorem
[13,14] if the Hamiltonian Ĥ is bounded from below, the
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FIG. 4. Logical paradoxes from superluminal wave-packet
spreading in the Minkowski spacetime.

initial wave packet ψ0 immediately becomes spread over the
entire space. Consequently, A1 is violated. Moreover, CE is
violated, because μ(K) = 1 and ν( j+(K)) < 1. Finally, NS
is also violated because ν(C | 0) = 0 (for the wave packet has
not been emitted in the first place), but ν(C | 1) > 0.

(ii) Suppose now that Alice cannot prepare localized
states, but she can collapse (event mK = 1) a preexisting
quantum wave packet ψ0 supported over the entire space
Ss. Alice registers a click (mK = 1, r = +) with probability
μ(K) < 1, in which case ν(C |+, 1) = 0, because the particle
is no more. In this situation, Axiom 1 is readily verified.
However, if Alice’s detector fails to click, although it is
on (mK = 1, r = −), Bob has a nonvanishing probability
of detecting it, ν(C |−, 1) > 0. If the dynamics is such that
ν(C | 0) = (1 − μ(K))ν(C |−, 1) = ν(C | 1) (which is exactly
Axiom 2), then there is no superluminal signaling, because
Bob cannot statistically distinguish the situations (mK = 1)
and (mK = 0). However, if the dynamics violates CE, then—
by Proposition 1—NS is also violated. Consequently, Axiom
2 fails as well.

In either case, if Alice can statistically signal to Bob,
she might fall into a logical paradox. Indeed, suppose that
Alice is free-falling and Bob travels away from Alice at a
constant relativistic velocity (see Fig. 4). Alice triggers the
superluminal protocol (event p, mK = 1). If the bit mK is suc-
cessfully communicated to region C spacelike separated with
K, then Bob (automatically) triggers his protocol (event p′,
mK′ = 1). As a consequence, the bit mK′ is in turn statistically
communicated to region C ′ spacelike separated with K′. If the
signaling succeeds, then Alice receives the bit mK′ (event q′).
But because q′ � p, such an event might, for instance, destroy
Alice’s laboratory, thus extorting mK = 0.

Note that this scenario is covariant in the sense that if we
interchange the roles of Alice and Bob, Bob can (statistically)
effectuate a causal loop p′ � q with the passive help of Alice.

The problem(s) with situation (i) are well known and are
usually bypassed by a QFT theorem on the nonexistence of
strictly localized states [28]. On the other hand, situation (ii)
(analyzed in [15] and [26], but without the key role of active
measurements) harmonizes with the view that whereas quan-
tum states are inherently nonlocal, the operations are local
[23,24]. In this context, it is rather surprising to learn [26]

that the unitary evolution under the standard free Hamiltonian
Ĥ = p̂2/2m does violate the CE condition. The fact that the
relativistic Hamiltonian

√
p̂2 + m2 also implies the violation

of CE [26] (cf. also [15]) is even more abstruse. In view of
the generality of Hegerfeldt’s result, one might expect that
the violation of CE by quantum wave dynamics is generic.
The notable exceptions are, e.g., Dirac and photon wave
function (Maxwell) equations, which guarantee CE for any
(even compactly supported) initial state [26]. Does this mean
that all other quantum wave dynamics, including the standard
Schrödinger equation, should be discarded as entailing logical
paradoxes?

The appeasement comes from the consideration of the
characteristic scales of causality violation. Indeed, the ex-
plicit account of the spacetime aspect naturally establishes the
time scale t − s of the signaling time lapse, the size vol K
of signaling devices, and the “capacity of the superluminal
channel” max{0, ν(C|0) − ν(C|1)}.

For example (see [18]), one can safely use the relativistic
Hamiltonian

√
p̂2 + m2 for modeling the dynamics of a single

quantum particle. Indeed, the causality violation effects in this
model are transient and restricted to a region of the size of
the particle’s Compton wavelength—a regime in which the
quantum nature of the vacuum can no longer be neglected. On
the other hand, the superluminal spreading of a Gaussian wave
packet driven by the nonrelativistic Hamiltonian p̂2/(2m) in-
duces immediate and persistent causality violation effects for

K = [−�, �]3, with � > cmλ2

t h̄2 (mλ2 +
√

m2λ4 + t2h̄2), where
λ is the width of the initial wave packet. Nevertheless, we
observe that the minimal scale of causality violation in this
model increases with m and λ, even in the limit of an infinite
time lapse. Consequently, for instance, at the scales charac-
teristic for a Bose–Einstein condensate (m ∼ 10−26 kg, λ ∼
1 μm), the superluminal spreading would manifest itself only
for � � 30 km.

VII. DISCUSSION

We have shown that the embedding of information process-
ing protocols within a spacetime unravels the “dynamical no-
signaling principle,” which is complementary to the one ex-
ploiting correlations. When a minimalistic assumption about
the measurement scheme is adopted, the principle coerces
a strong constraint on the dynamics of detection statistics.
Although the latter embodies the concept of transport along
causal curves taken from classical physics, it applies to any
model within quantum theory or even beyond.

When applied to quantum wave dynamics the unveiled
principle leads to an arresting consequence: The Schrödinger
equation facilitates operational superluminal signaling via
local detection. Our finding reinforces and extends the earlier
claims around Hegerfeldt’s theorem (cf., for instance, [29])
with the help of an explicit communication protocol involving
a logical paradox. On the other hand, the adopted formalism
justifies the critique of the applicability of Hegerfeldt’s theo-
rem raised from a QFT standpoint [19]. It does so by drawing
attention to the characteristic scales of causality violation.

In conclusion, we put forward a way to assess the credi-
bility of physical theories: One needs to be able to compute
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the local detection statistics in an (effective) spacetime, but
no details on the dynamics are prerequisite. On the theoretical
side, it presents a challenge to understanding the characteristic
physical scales of information-theoretic-inspired postquantum
theories, such as [5–9,11,12]. On the practical side, it offers
a powerful method for exploring the limitations of compet-
ing models of quantum wave dynamics, possibly nonunitary
and/or nonlinear.
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APPENDIX A: PROOFS

1. Proof of Proposition 1

Any Borel probability measure η living in a Polish space
M (that is a separable completely metrizable topological
space) is tight, by which we mean that

η(B) := sup{η(C)| C ⊂ B, C – compact}
for any measurable B ⊂ M (for details, see [30, chap. 12]).
The tightness property entails the following lemma, which is
instrumental in proving Proposition 1.

Lemma 4. Suppose that two measures η1 and η2 in M
satisfy

η1(B) < η2(B)

for some measurable set B ⊂ M. Then there exists a compact
subset C ⊂ B for which the above inequality is still valid, i.e.,

η1(C) < η2(C).

Observe that C must be nonempty.
Proof. Suppose, on the contrary, that η1(C) � η2(C) for

all compact subsets C ⊂ B. Then, of course, the same
concerns the suprema: sup{η1(C)| C ⊂ B, C – compact} �
sup{η2(C)| C ⊂ B, C – compact}. But on the strength of the
tightness property, this yields η1(B) � η2(B). �

Moving now to the proof of Proposition 1, suppose that the
CE condition, (3), is violated, i.e., that there exist time instants
s and t with s � t and a compact set K ⊂ supp μs such that

μs(K) > μt ( j+(K))

or, switching to the more convenient notation μ := μs and
ν := μt , that

μ(K) > ν( j+(K)). (A1)

Our aim is to find a compact C ⊂ St \ j+(K) violating the NS
condition, (5). To this end, observe first that

ν( j+(K)|1) =
∑

r∈{+,−,∅}
ν( j+(K)|r, 1)P(r|1)

= 1 · μ(K) + ν( j+(K)|−, 1)(1 − μ(K)) � μ(K)

> ν( j+(K)) = ν( j+(K)|0),

where we have employed the law of total probability, consis-
tency conditions (1), Axiom 1, (A1), and, finally, consistency
condition (2). Passing to the complement, we thus have

ν(St \ j+(K)|1) < ν(St \ j+(K)|0).

By Lemma 4, there exists a compact subset C ⊂ St \ j+(K)
for which the above inequality remains valid, i.e.,

ν(C|1) < ν(C|0). (A2)

2. Proof of Theorem 2

The proof is somewhat technical and relies on certain
notions from Lorentzian causality theory, which we briefly
recall for the reader’s convenience. Namely, for any event p ∈
M the following sets are considered: J+(p), J−(p), I+(p),
and I−(p), called the causal future, the causal past, the chrono-
logical future, and the chronological past of p, respectively.
Although the precise definition of these sets is not important
here, the crucial property for the following proof is that the
sets I±(p) are always open (topologically) and contained in
J±(p). Moreover, we need to assume that the causal future of
any compact set is topologically closed. This is true, in partic-
ular, if M is a globally hyperbolic manifold. For an excellent
exposition of causality theory, the reader is referred to [31].

Moving to the actual proof, let C ⊂ St \ j+(K) be the
(nonempty) set satisfying (A2) and, thus, violating the NS
condition, (5). In the first three steps of the proof we construct
a compact subset C ′ ⊂ C still violating NS, together with q ∈
M \ J+(K) such that C ′ ⊂ J−(p). Then, in the last step, we
show how to find p1, . . . , pk ∈ M \ J−(q) (for some k ∈ N)
such that K ⊂ ⋃k

i=1 J+(pi ).

a. Step 1

Consider the family {I−(q)}q∈M\J+(K) of open subsets of
M. We claim that it covers C, i.e., that

∀p ∈ C ∃q ∈ M \ J+(K), p ∈ I−(q).

Indeed, assuming the contrary, we would have that

∃p ∈ C ∀q ∈ M \ J+(K), p 
∈ I−(q),

which in fact can be equivalently written as

∃p ∈ C, I+(p) ⊂ J+(K).

But since p lies in the closure of I+(p) and set J+(K) is closed
[31], we obtain that C ∩ J+(K) 
= ∅, in contradiction to the
inclusion C ⊂ St \ j+(K) = St \ J+(K).

b. Step 2

Since C is compact, there exists a finite subcover
{I−(qi )}i∈F , where F is a finite set of indices. However, for
a technical reason to become clear soon, we need a pairwise
disjoint refinement of this subcover. To this end, one might
construct the family U := {US}, where the index S runs over
all nonempty subsets of F , by defining

US :=
⋂

i∈S

I−(qi ) \
⋃

j∈F\S

I−(q j )

= {
p ∈ M | ∀i ∈ {1, . . . , l}, p ∈ I−(qi ) ⇔ i ∈ S

}
.
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Observe that every US is measurable. Clearly, U thus defined
is a pairwise disjoint family of sets which covers C. That it is
also a refinement of the cover {I−(qi )}i∈F stems from the fact
that every S is nonempty, and hence every US is contained in
at least one of the I−(qi )’s. We now claim that

∃ ∅ 
= S∗ ⊂ F, ν(C ∩ US∗ |1) < ν(C ∩ US∗ |0).

Indeed, assuming that ν(C ∩ US|1) � ν(C ∩ US|0) for all
nonempty S ⊂ F , one would get

ν(C|1) =
∑

∅
=S⊂F

ν(C ∩ US|1) �
∑

∅
=S⊂F

ν(C ∩ US|0) = ν(C|0),

in contradiction to inequality (A2). It is at this step that we
need the cover to be pairwise disjoint; otherwise, we would
not be able to use the measures’ additivity property.

c. Step 3

Invoking the above lemma, we obtain the existence of a
compact C ′ ⊂ C ∩ US∗ such that

ν(C ′|1) < ν(C ′|0).

Moreover, picking any i ∈ S∗, we get C ′ ⊂ US∗ ⊂ I−(qi ) with
qi ∈ M \ J+(K), because only such events were involved in
the construction of the original open cover in Step 2. Of
course, we now set q =: qi. Since I−(q) is contained in J−(q),
the first part of the proof is complete.

d. Step 4

Consider now the family {I+(p)}p∈M\J−(q). We claim that
it is an open cover of K. Indeed, assuming the contrary and
proceeding analogously as in Step 1, one would obtain that
K ∩ J−(q) 
= ∅, in contradiction with how q was defined. By
the compactness of K, one can now take the finite subcover
{I+(p1), . . . , I+(pk )}. Observe that the spacetime points pi

satisfy pi 
� q, for i = 1, . . . , k, as desired. Moreover, we have
that K ⊂ ⋃k

i=1 I+(pi ) ⊂ ⋃k
i=1 J+(pi ), which completes the

entire proof. �

3. Proof of Theorem 3

In what follows, C is always understood as being bound
by the quantifier “for any compact C ⊂ St \ j+(K).” On the
strength of consistency condition (2), the NS condition, (5),
can be written as

ν(C | 1) = ν(C). (A3)

What is more, Axiom 1 can be reexpressed as

ν(C | +, 1) = 0. (A4)

Finally, with the help of one of the consistency conditions (1),
we also rewrite Axiom 2 as

ν(C | −, 1)P(−|1) = ν(C). (A5)

Invoking the law of total probability ν(C | 1) =
ν(C | +, 1)P(+|1) + ν(C | −, 1)P(−|1), one can now easily
observe that any two equalities from (A3)–(A5) imply the
third one, which completes the first part of the proof.

TABLE I. Combinations of truth values assigned to conditions
NS, A1, A2, and CE not precluded by Theorem 3, together with
sample values of parameters A, B, and C realizing them.

Sample
NS A1 A2 CE (A, B,C)

T T T T (1,1,1)
F F T T (1,0,1)
F T F T (1,1,0)
T F F T ( 2

3 , 1
3 , 0)

F F F T (1,0,0)
F T F F (0, 1, 0), (0, 1, 1)
T F F F (0,0,0)
F F F F (0,0,1)

It now suffices to show, e.g., that Axiom 2 implies CE.
Indeed, plugging C := St \ j+(K) into (6) we obtain that

ν(St \ j+(K))

1 − μ(K)
= ν(St \ j+(K) | −, 1) � 1

and hence

1 − ν( j+(K)) � 1 − μ(K),

which is equivalent to inequality (3). This completes the proof
of Theorem 3. �

Finally, let us demonstrate that Theorem 3 completely
describes the logical relations between the four considered
conditions. Namely, we find concrete realizations of all the
logical situations not excluded by Theorem 3.

To this end, let us fix p, q ∈ Ss and p′, q′ ∈ St such that
p � p′, q � p′, q � q′, and p 
� q′. Let us consider the family
of discrete (one- or two-point) measures

μ := 1

2
δp + 1

2
δq,

ν := Aδp′ + (1 − A)δq′ ,

ν( · | +, 1) := Bδp′ + (1 − B)δq′ ,

ν( · | −, 1) := Cδp′ + (1 − C)δq′ ,

where A, B,C ∈ [0, 1] are parameters. Without much effort
one can convince oneself that, for such defined measures, the
four conditions considered here amount to

NS: 2A = B + C, A1: B = 1,

CE: 2A � 1, A2: 2A = 1 + C.

Now, it is not difficult to find sample values of the parameter
triple (A, B,C) providing a realization of each combination
of truth values assigned to the four conditions that is not
excluded by Theorem 3. Table I sums this up, with T and F
denoting “true” and “false,” respectively.

APPENDIX B: EXAMPLE OF A MULTISENDER
SIGNALING SCENARIO

As explained in the text, the shape of set K, for which the
CE condition is violated, might require a coordinated mea-
surement of multiple senders. Figure 5 illustrates an example
where such a situation arises.
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q

K
C

J+(K)

J−(C)

p1

p2 p3

FIG. 5. A signaling scenario in (2 + 1)–dimensional spacetime
with set K being an annulus. To execute a superluminal communi-
cation protocol, k = 15 sending events are needed. For the sake of
readability, only the first three events are captioned.

The spacetime configuration is such that there exists no
single event p such that K ⊂ J+(p) and C 
⊂ J+(p). Conse-

quently, although there is an information flow from K to the
spacelike-separated region C, the communication from any
p with K ⊂ J+(p) to any q such that C ⊂ J−(q) is actually
subluminal.

Nevertheless, there exist events {pi}k
i=1, such that

(i) pi � p j for all i 
= j;
(ii) pi � q for all i; and
(iii) Ki := K ∩ J+(pi ) are such that K = ⋃n

i=1 Ki.
In this case an orchestrated action of k senders is re-

quired to trigger a superluminal signal towards the spacelike-
separated detector in C and hence to the receiver located at
q. Namely, we can assume that k − 1 “Alices” are passive
and have always-on detectors, and it is the decision of the
remaining (active) sender whether or not to perform the
measurement, which fixes the value of the communicated bit,
in full analogy with the k = 2 case discussed in the text.
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