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Photonic dephasing dynamics and the role of initial correlations
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Photons are useful quantum systems for investigating the fundamental and practical aspects of dephasing,
decoherence, and other types of open quantum dynamics. However, descriptions of open dynamics of photonic
systems are usually in terms of decoherence functions and in many cases an explicit master-equation-based
description is not available. This is particularly true when considering multipartite photonic open systems having
possibly correlated environments. We obtain generic master equations for the reduced dephasing dynamics of a
two-photon polarization state coupled to respective frequency degrees of freedom when the frequency degrees
of freedom that form the environment are initially correlated. Our results show the explicit dependence of the
operator form of the master equation and the decay rates on these correlations as well as on various types of
frequency distributions. Furthermore, we use the recently developed bath-positive decomposition method to treat
an initially correlated polarization-frequency state of a photon and demonstrate how this allows us to gain new
insight and detailed information on how the contributions of different origins influence the photonic dephasing.
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I. INTRODUCTION

Understanding open-system dynamics and decoherence is
important in several areas of quantum physics [1,2]. During
the last 10 years, there have been significant developments
in both understanding the role of non-Markovian memory-
effects [3–7] and developing improved tools and techniques
to treat open-system dynamics [8]. Here, one of the common
themes is the role that various types of correlations play in
open-system dynamics. In particular, understanding the initial
correlations between composite environments [9–14] and the
role of initial system-environment correlations [15–23] has
led to fundamental insights as well as practical knowledge
regarding open systems.

Photons provide a common and highly controllable sys-
tem where the influence of correlations can be studied both
conceptually and practically [9–14,22]. Here, the polarization
state of the photon is the open system and its frequency is
the environment. Polarization and frequency are coupled via
birefringence, leading to dephasing of a polarization state of
the photon(s). The control of the initial frequency distribution
allows for the engineering of the decoherence and it is also
possible to exploit various correlations for single-photon or
composite two-photon systems [9,22,24].

On the one hand, dephasing dynamics of photons has often
been described using the concept of decoherence functions
and subsequent family of completely positive (CP) dynamical
maps, in the past. On the other hand, master equations are one
of the most common tools for treating open-system dynamics
[1]. However, master equations have not been used exten-
sively when considering multipartite photonic systems and

*sihara@utu.fi

dephasing. We consider first a bipartite two-photon system
where the initial system-environment state is factorized while
there exist initial correlations between the environmental
states. It has been shown earlier that this induces nonlocal
memory effects in open-system dynamics [9,10]. However,
the role of these types of initial correlations and nonlocal
memory effects has not been considered on the level of master
equations before, to the best of our knowledge. We derive
generic master equations which display explicitly the role of
initial correlations both on the dephasing rates and on the
operator form of the master equation. This allows us also to
reveal how even quite straightforward changes in the initial
environmental state drastically change the description of pho-
tonic dephasing and increase the number of jump operators in
the master equation.

Continuing within the framework of correlations and open
systems, we also study another long-standing problem in
this context. This is the role that initial system-environment
correlations play in open-system dynamics. Here, our interest
is to see what kind of insight the recently developed bath-
positive decomposition method [21] allows when studying the
open dynamics of the polarization states. This very general
method is based on decomposing an initial arbitrary system-
environment state to a number of terms where each term can
be treated with its individual CP map. We show that for single-
photon dephasing, this decomposition allows the description,
in an insightful way, of how initial correlations influence the
dynamics beyond the contribution arising from the factorized
part.

The structure of the paper is the following. In the next
section (Sec. II) we describe briefly the basics of pho-
tonic dephasing. In Sec. III we focus on the correlations
within the composite environment, derive various master
equations in this context, and discuss the insight they provide.
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Section IV, in turn, describes the initially correlated
system-environment case for single photons and Sec. V con-
cludes the paper.

II. PRELIMINARIES WITH SINGLE-PHOTON
DEPHASING DYNAMICS

We start with a brief recall of the single-photon dephasing
model [24]. The polarization degree of freedom and frequency
degree of freedom of a photon correspond to the open system
and its environment, respectively. To begin, we consider the
initially factorized joint polarization-frequency state

ρ̂SE(0) = ρ̂S (0) ⊗ |�〉〈�|. (1)

Here, ρ̂S (0) is the density operator of the initial polarization
state and

|�〉 =
∫

dω g(ω)|ω〉 (2)

is the initial frequency state, where g(ω) is the probability
amplitude that the photon has frequency ω. The polarization
Hilbert space is discrete and spanned by the horizontal-
vertical polarization basis {|h〉, |v〉}, while the Hilbert space of
the frequency degree of freedom is spanned by the continuous
frequency basis {|ω〉}.

The system-environment—or polarization-frequency—
interaction is provided by the Hamiltonian (h̄ = 1)

Ĥ = (nh|h〉〈h| + nv|v〉〈v|) ⊗
∫

dω ω |ω〉〈ω|, (3)

where nh (nv) is the refraction index for polarization com-
ponent h (v). For interaction time t , and tracing over the
frequency, the reduced polarization state is

ρ̂S (t ) =
( 〈h|ρS (0)|h〉 κ (t )〈h|ρS (0)|v〉

κ (t )∗〈v|ρS (0)|h〉 〈v|ρS (0)|v〉
)

. (4)

Here, the dephasing dynamics is given by the decoherence
function

κ (t ) =
∫

dω |g(ω)|2e−i�nωt , (5)

where �n ≡ nv − nh. Note that 0 � |κ (t )| � 1 for all times
t � 0 and |κ (0)| = 1.

Equation (4) describes a t-parametrized CP map �̂t , such
that ρ̂S (t ) = �̂t [ρ̂S (0)], and its corresponding master equation
takes the form

d

dt
ρ̂S (t ) = −i

ν(t )

2
[σ̂z, ρ̂S (t )] + γ (t )

2
[σ̂zρ̂S (t )σ̂z − ρ̂S (t )].

(6)
Here, σ̂z is the Pauli z operator and the rates ν(t ) and γ (t ) can
be expressed in terms of the decoherence function κ (t ) as

γ (t ) = −Re

[
1

κ (t )

dκ (t )

dt

]
, ν(t ) = −Im

[
1

κ (t )

dκ (t )

dt

]
,

(7)
where, Re[·] and Im[·] indicate the real and imaginary parts,
respectively.

Equation (7) shows that once the decoherence function κ (t )
is obtained from Eq. (5), then we can derive the corresponding
rates in master equation (6). Indeed, the decoherence function
κ (t ) in Eq. (5) is the Fourier transformation of the initial
frequency probability distribution P(ω) = |g(ω)|2, and there-
fore the control of this distribution allows us to study various
types of dephasing maps and to engineer the form and time
dependence of the dephasing rate γ (t ) in master equation (6).

For example, a Gaussian frequency distribution with vari-
ance σ 2 and mean value ω̄, i.e.,

P(ω) = exp[−(ω − ω̄)2/2σ 2]√
2πσ

,

leads to a positive and time-dependent dephasing rate γ (t ) =
�n2σ 2t , which presents a time-dependent Markovian dynam-
ics. On the other hand, a Lorentzian distribution

P(ω) = λ

π [(ω − ω0)2 + λ2]

results in a constant decay rate γ = λ�n, corresponding
to dynamical semigroup and Lindbad-Gorini-Kossakowski-
Sudarshan (LGKS) dynamics [25,26]. We note that the latter
case has also been reported in [27] and [28]. The transition
from a Markovian to a non-Markovian regime, in turn, is ob-
served with further modifications of the frequency distribution
[24].

In the following, we generalize the master equation,
Eq. (6), to the two-photon case. In particular, we are interested
in how the initial correlations between the frequencies of the
two photons influence the various dephasing rates and the
operator form of the corresponding master equation for a
bipartite open system.

III. MASTER EQUATION FOR TWO-PHOTON
DEPHASING DYNAMICS: ROLE OF THE INITIALLY
CORRELATED JOINT FREQUENCY DISTRIBUTION

Consider a pair of photons, labeled a and b, whose total
polarization-frequency initial state is again in a factorized
form,

ρ̂SE(0) = ρ̂S (0) ⊗ |�〉〈�|, (8)

where now

|�〉 =
∫

dωa

∫
dωb g(ωa, ωb)|ωa, ωb〉 (9)

is the initial state of the two-photon frequency degree of
freedom and the corresponding joint probability distribution
is P(ωa, ωb) = |g(ωa, ωb)|2. The initial polarization state is
ρ̂S (0), whose Hilbert space is spanned by the bipartite basis
{|hh〉, |hv〉, |vh〉, |vv〉}.

The polarization of each photon interacts locally with its
own frequency and therefore the system-environment interac-
tion Hamiltonian for the two photons is the sum of the two
local contributions [9]:

Ĥ = Ĥa ⊗ Îb + Îa ⊗ Ĥb. (10)

Here, each local term is given by Eq. (3) and Îa (Îb) is the
identity operator for photon a (photon b).
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We write the initial bipartite polarization state ρ̂S (0) as

ρ̂S (0) =
∑
α,β

∑
α′,β ′

pαβ,α′β ′ |αβ〉〈α′β ′|,
with sums over h and v. After interaction time t , the polariza-
tion state is [9]

ρ̂S (t ) =

⎛
⎜⎝

phh,hh κb(t )phh,hv κa(t )phh,vh κab(t )phh,vv

κ∗
b (t )phv,hh phv,hv �ab(t )phv,vh κa(t )phv,vv

κ∗
a (t )pvh,hh �∗

ab(t )pvh,hv pvh,vh κb(t )pvh,vv

κ∗
ab(t )pvv,hh κ∗

a (t )pvv,hv κb(t )∗ pvv,vh pvv,vv

⎞
⎟⎠. (11)

Here, the local decoherence functions for photon j = a, b are
given by

κ j (t ) =
∫

dωa

∫
dωb |g(ωa, ωb)|2e−i�nω j t , (12)

and the nonlocal ones by

κab(t ) =
∫

dωa

∫
dωb |g(ωa, ωb)|2e−i�n(ωa+ωb)t , (13)

and

�ab(t ) =
∫

dωa

∫
dωb |g(ωa, ωb)|2e−i�n(ωa−ωb)t . (14)

The density matrix evolution given by Eqs. (11)–(14) can also
be described by a t-parametrized CP dynamical map �̂t , such
that

ρ̂S (t ) = �̂t [ρ̂S (0)]. (15)

It is important to note that when the initial joint fre-
quency distribution factorizes, P(ωa, ωb) = Pa(ωa) × Pb(ωb),
then the global decoherence functions are products of the
local ones, i.e., κab(t ) = κa(t )κb(t ) and �ab(t ) = κa(t )κ∗

b (t ).
Subsequently, the map for the bipartite photon system is
the tensor product of the local CP maps �̂t = �̂

(a)
t ⊗ �̂

(b)
t .

However, when the initial frequency distribution does not
factorize, P(ωa, ωb) 	= Pa(ωa) × Pb(ωb), and contains corre-
lations, then the map for the bipartite system is no longer the
product of the local maps, �̂t 	= �̂

(a)
t ⊗ �̂

(b)
t [9]. Now, we are

interested in how to derive the generator of the corresponding
nonlocal bipartite dynamical map and what the modifications
in the corresponding dephasing master equations are when the
amount of initial frequency correlations changes.

We begin our derivation by writing the dynamical map
formally as

�̂t = exp

[ ∫ t

0
dτ L̂τ

]
, (16)

where L̂t is the generator of the dynamics. Finding an expres-
sion for the generator then provides us the master equation we
want to construct as

d

dt
ρ̂S (t ) = L̂t [ρ̂S (t )]. (17)

Provided that the map in Eq. (16) is invertible and its deriva-
tive is well defined, one can obtain the generator as

L̂t = d

dt
�̂t ◦ �̂−1

t . (18)

To find the generator in Eq. (18) we need a suitable repre-
sentation for the dynamical map �̂t . With this in mind, we

expand the two-photon density matrix ρ̂S (t ) in terms of a
complete and orthonormal operator basis {F̂α}. Specifically,
we choose here 15 generators of SU(4), whose exact ex-
pressions can be found in [29], plus F̂1 = Î/

√
4, such that

Tr[F̂ †
i F̂j] = δi j . It is noteworthy that one can alternatively use

the basis constructed by the tensor product of Pauli matrices
plus the identity. Fixing the basis for the representation, the
two-photon polarization state at time t is

ρ̂S (t ) =
16∑

α=1

rα (t )F̂α, rα (t ) = Tr[F̂αρ̂S (t )], (19)

where coefficients {rα} form the generalized Bloch vector
corresponding to the state ρ̂S (t ) as

�r(t ) = (1/2, r2(t ), . . . , r16(t ))T. (20)

By using Eq. (19) for both ρ̂S (t ) and ρ̂S (0), we can write
Eq. (15) as

rα (t ) =
∑

β

[�̂t ]αβrβ (0), (21)

where [�̂t ] is the transformation matrix corresponding to the
map �̂t represented in the basis {F̂α}. Elements of this matrix
depend on the decoherence functions given in Eqs. (12)–(14)
and each column can be systematically calculated by using a
proper pair of initial and evolved states [cf. Eq. (11)]. One can
proceed to find the matrix representation of the generator by
calculating the derivative and inverse of [�̂t ] and using them
in Eq. (18), such that

[L̂t ] = d

dt
[�̂t ][�̂t ]

−1, (22)

where we have replaced operator multiplication with matrix
multiplication.

Let us now consider the generator in a Lindblad operator
form,

L̂t [ρ̂S (t )] = −i[Ĥ (t ), ρ̂S (t )] +
16∑

α=2

16∑
β=2

Rαβ (t )

×
(

F̂αρ̂S (t )F̂ †
β − 1

2
{F̂ †

β F̂α, ρ̂S (t )}
)

,

where

Ĥ (t ) = −1

2i

16∑
α=2

[Rα1(t )F̂α − R1α (t )∗F̂ †
α ] (23)

captures the environment-induced coherent dynamics and
Rαβ (t ) with α, β = 2, 3, . . . , 16 are elements of a 15 × 15
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matrix providing the decay rates. Each element in the matrix
representation of the generator then reads

[L̂t ]αβ = Tr[F̂ †
α L̂t [F̂β]]. (24)

Here we use Eq. (23) on the right-hand side. Finally, by
elementwise comparison of Eq. (24) with Eq. (22) we find
the decay rates of the Lindblad master equation, Eq. (23), in
terms of the decoherence functions in Eqs. (12)–(14). Before
proceeding further, let us note that the generator of a CP-
divisible map always has a Linblad form [2,25,26,29]. A map
�̂t is CP divisible if it can be decomposed as �̂t = �̂t,s�̂s,
where the intermediate map �̂t,s is also a legitimate CP map
for all t � s � 0 [30]. In this paper, however, we do not
restrict ourselves to CP-divisible maps, and as we show later
we also take non-Markovian dynamics into account.

After finding the general expression for the decay rate
matrix, it turns out that it is quite sparse and can be reduced
to a 3 × 3 matrix, which we denote R(t ). The corresponding
subspace is spanned by only three generators of SU(4), which
are linearly dependent on the operators Î2 ⊗ σ̂z, σ̂z ⊗ Î2, and
σ̂z ⊗ σ̂z. This is indeed intuitive because population elements
of the density matrix are invariant upon a dephasing channel,
so those terms that couple the levels must be absent. The
explicit expression for the matrix R(t ), corresponding to a
general frequency distribution, is provided in the Appendix.
Considering this general result, we diagonalize it to rewrite
the second term on the right-hand side of Eq. (23) in the form

D̂[ρ̂S (t )] =
3∑

α=1

γα (t )

[
Ĵαρ̂S (t )Ĵ†

α − 1

2
{Ĵ†

α Ĵα, ρ̂S (t )}
]
, (25)

where⎛
⎝

γ1(t ) 0 0

0 γ2(t ) 0

0 0 γ3(t )

⎞
⎠ = UR(t )U †, Ĵα =

∑
j

Uα j F̂j,

(26)
and U is the orthogonal transformation which diagonalizes the
matrix R(t ). It is worth stressing that if the dynamical map in
hand is CP divisible, then all decay rates will be nonnegative,
i.e., γi(t ) � 0 for all interaction times t � 0.

The above general results hold for arbitrary initial fre-
quency distributions. In the following, we discuss explicitly
initially correlated joint frequency distributions for the bivari-
ate single- and double-peak Gaussian cases. These choices are
motivated by their use in recent theoretical and experimental
works (see, e.g., [9,14,24]) and their ability to account for the
explicit influence of frequency correlations in the dephasing
dynamics.

A. Single-peak bivariate Gaussian distribution

Consider the joint bivariate Gaussian frequency distri-
bution Pab(ωa, ωb) and its covariance matrix C, such that
Ci j = 〈ωiω j〉 − 〈ωi〉〈ω j〉 for i, j = a, b [9]. The correlation
coefficient is now given by K = Cab/

√
CaaCbb, such that −1 �

K � 1. A fully anticorrelated initial frequency distribution has
K = −1, which dictates that for any pair of ωa and ωb we have
ωa + ωb ≡ ω0, with some constant frequency ω0. The means
of the local single-photon frequency distributions are given
by (ω̄a, ω̄b)T and we denote the difference between the local

FIG. 1. Decay rates as a function of the normalized interaction
time in the case of a single-peak Gaussian frequency distribution.
Long-dashed green line, K = −1; solid black line, K = 0; and short-
dashed red line, K = 1. Here we set �ω/σ = 2.

means ω̄a − ω̄b = �ω and their sum ω̄a + ω̄b = ω0. Using
Eqs. (12)–(14) and denoting the variance of the distribution
σ 2, the decoherence functions become

κa(t ) = exp

[−σ 2�n2t2 − i�nt (ω0 + �ω)

2

]
, (27)

κb(t ) = exp

[−σ 2�n2t2 − i�nt (ω0 − �ω)

2

]
, (28)

κab(t ) = exp[−σ 2�n2t2(1 + K ) − i�ntω0], (29)

�ab(t ) = exp[−σ 2�n2t2(1 − K ) − i�nt�ω]. (30)

It is straightforward to check that the corresponding transfor-
mation matrix [�̂t ] for the generalized Bloch vector is always
invertible when the time t is finite. After inserting the above
expressions for the decay rate matrix R(t ) (see the Appendix),
followed by diagonalization, we obtain the rates appearing in
the master equation, (25), as

γ1(t ) = 2(1 − K )σ 2�n2t, (31)

γ2(t ) = 2(1 + K )σ 2�n2t, (32)

γ3(t ) = 0 (33)

and the corresponding jump operators

Ĵ1 = 1

2
√

2
(Î2 ⊗ σ̂z + σ̂z ⊗ Î2), (34)

Ĵ2 = 1

2
√

2
(Î2 ⊗ σ̂z − σ̂z ⊗ Î2), (35)

Ĵ3 = 1

2
σ̂z ⊗ σ̂z. (36)

Dephasing rates γ1 and γ2 are linear functions of time
and their slopes depend on the correlation coefficient K .
Figure 1 displays the rates for K = −1, 0, 1. Since all the
rates are nonnegative and the first two are time dependent,
this leads to CP-divisible dynamics, which, however, does not
fulfill the LGKS semigroup property. It is also interesting to
note here the absence of the jump operator σ̂z ⊗ σ̂z since the
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corresponding rate γ3 is always equal to 0. Moreover, the role
of the environmental correlation coefficient K of the initial
joint frequency distribution is now explicit in expressions
(31)–(33). When K = 1 (K = −1) the rate γ1 = 0 (γ2 = 0)
and we are left with only one dephasing channel, given by Ĵ2

(Ĵ1). When there are no initial correlations between the two
environments, K = 0, then γ1(t ) = γ2(t ). Subsequently, the
corresponding generator and master equation contain equally
weighted contributions of the two local jump operators Ĵ1 and
Ĵ2. Changing the value of the initial correlations K allows
us then to tune the dynamics between the above-mentioned
extreme cases.

It is also worth discussing similarities and differences
between our photonic model and the two-qubit model in-
teracting with a common environment [31–34]. In the latter
model two qubits are spatially separated by a distance D,
while they both interact with the same physical and common
bosonic environment. It is interesting that the master equation
describing this model has the exact same operator form and
jump operators [34] obtained in Eqs. (34) to (36). In addition,
the decay rates derived in [34] exhibit a similar dependence
on the distance D, as our decay rates here depend on the
correlation coefficient K . Moreover, when D → ∞, the dy-
namical map will be factorized to �̂t = �̂

(a)
t ⊗ �̂

(b)
t , with the

superscripts corresponding to each qubit. The same behavior
is also captured here when K → 0. However, it is worth
keeping in mind that in our case the two environments are
distinct physical entities and the tuning of the generator—or
form of the master equation—is obtained by changing the
initial bipartite environmental state. Furthermore, we can tune
the generator continuously between the fully correlated and
the anticorrelated cases.

B. Double-peak bivariate Gaussian distribution

We consider a double-peak frequency distribution as the
sum of two single-peak bivariate Gaussian distributions, al-
ready used in [14], such that

P(ωa, ωb) = [P1(ωa, ωb) + P2(ωa, ωb)]/2. (37)

We assume that both single-peak terms have the same corre-
lation coefficient K and standard deviation σ , but their means
are located at (ω0/2 − �ω/2, ω0/2 + �ω/2)T and (ω0/2 +
�ω/2, ω0/2 − �ω/2)T, respectively. Please note that the cor-
relation coefficient K of each single-peak distribution P1 (P2)
does not equal the actual correlation coefficient of the bivari-
ate distribution P, obtained by its covariance matrix. In more
detail, whenever we have nonzero K for each single peak, we
have a nonzero correlation in P. But note that if K = 0, then
we still have a correlation in P as long as we have nonzero
peak separation, �ω 	= 0.

The decoherence functions calculated from Eqs. (12)–(14)
become

κa(t ) = exp

[−σ 2�n2t2 − it�nω0

2

]
cos

(
t�n�ω

2

)
, (38)

κb(t ) = κa(t ), (39)

κab(t ) = exp[−σ 2�n2t2(1 + K ) − it�nω0], (40)

FIG. 2. Decay rates as a function of the normalized interaction
time in the case of a double-peak Gaussian frequency distribution.
Long-dashed green line, K = −1; solid black line, K = 0; and short-
dashed red line, K = 1. Here we set �ω/σ = 2.

�ab(t ) = exp[−σ 2�n2t2(1 − K )] cos(t�n�ω). (41)

By using the general results obtained earlier, in a similar
manner compared to the single-peak case, we obtain the
dephasing rates

γ1(t ) = 2(1 − K )σ 2�n2t + tan(t�n�ω)�n�ω, (42)

γ2(t ) = 2(1 + K )σ 2�n2t, (43)

γ3(t ) = 1

2
tan

(
t�n�ω

2

)[
1 − sec(t�n�ω)]�n�ω. (44)

The corresponding jump operators {Ĵ1, Ĵ2, Ĵ3} are the same as
in the single-peak case; see Eqs. (34)–(36). In the limit �ω →
0 corresponding to the single-peak case, the rates, (42)–(44),
reduce to those given by Eqs. (31)–(33).

Figure 2 displays the rates for K = −1, 0, and 1. The
dephasing rate γ2 remains the same as in the single-peak
case. However, the rate γ1—corresponding to Ĵ1 including
the sum of the local jump operators—changes. The rate now
includes an extra term, coming from the peak separation �ω,
and an oscillatory part displaying negative values of the rate
as a function of the time. This also leads to non-Markovian
dephasing dynamics which is not CP divisible. It is even more
striking that introducing the double-peak frequency structure
now opens an additional dephasing channel since the rate
γ3 is nonzero. Here, the corresponding jump operator Ĵ3 =
1
2 σ̂z ⊗ σ̂z displays a joint bipartite structure, in contrast to
local features of Ĵ1 and Ĵ2. This is an interesting observation
since the system-environment interaction Hamiltonian is the
same as before, having only local interactions [see Eq. (10)],
while the only change introduced is going from a single- to
a double-peak structure of the initial bipartite environmental
state. It is also noteworthy that even though γ3 is independent
of K , its functional form is nontrivial since it contains the peak
separation �ω and trigonometric functions.

There is a somewhat subtle mathematical point related to
the behavior of rates γ1 [Eq. (42)] and γ3 [Eq. (44)] which
needs attention. Indeed, γ1(t ) and γ3(t ) diverge at isolated
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points in time. Subsequently, the corresponding dynamical
maps are noninvertible at these points. According to Eq. (21),
the generalized Bloch vector of the two-photon polarization
state at time t reads

�r(t ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

�0 cos(t��/2)[cos(t�0/2)r2 − sin(t�0/2)r3]

�0 cos(t��/2)[cos(t�0/2)r3 + sin(t�0/2)r2]

r4

�0 cos(t��/2)[cos(t�0/2)r5 − sin(t�0/2)r6]

�0 cos(t��/2)[cos(t�0/2)r6 + sin(t�0/2)r5]

�− cos(t��)r7

�− cos(t��)r8

r9

�+[cos(t�0)r10 − sin(t�0)r11]

�+[cos(t�0)r11 + sin(t�0)r10]

�0 cos(t��/2)[cos(t�0/2)r12 − sin(t�0/2)r13]

�0 cos(t��/2)[cos(t�0/2)r13 + sin(t�0/2)r12]

�0 cos(t��/2)[cos(t�0/2)r14 − sin(t�0/2)r15]

�0 cos(t��/2)[cos(t�0/2)r15 + sin(t�0/2)r14]

r16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(45)

where we have defined �0 = exp[−σ 2�n2t2/2], �± =
exp[−σ 2�n2t2(1 ± K )], �� = �n�ω, �0 = �nω0, and
�r(0) = (1/2, r2, r3, . . . , r16)T is the initial Bloch vector. One
can check that all of the different initial vectors (states) that
share the same values of r4, r7, r8, r9, r10, r11, and r16 are
mapped to the same vector (state) at t = π/��. This many-
to-one nature of the map—at these isolated times—makes
it noninvertible. Although all the trajectories corresponding
to the aforementioned initial vectors end up together at the
isolated points, it is evident that they continue their different
paths immediately after this. This can be seen in the following
way. Consider the generator of the master equation in matrix
form and its action on the generalized Bloch vector. We see
that while some rates diverge at certain points in time, it is
precisely at these points that the generalized Bloch vector
components—with which the rates get multiplied—all go to
0. In more detail, we have

d

dt
rα (t ) =

∑
β

[L̂t ]αβ rβ (t ), (46)

therefore, the product of the divergent rate with the zero-value
component leads to a finite rate of change of the Bloch vector
which allows us to continue propagation of each state forward
in time. Accordingly, following the trajectories immediately
before they unite at a single point lets us identify each of
them immediately after this, when they separate again. We
see therefore that in spite of the divergences in the rates, the
master equation we have obtained describes the dephasing
evolution of the two-photon polarization state in a meaningful
way. It is also noteworthy that the divergent decoherence
rates in master equations have appeared in earlier literature
many times, e.g., in the prominent resonant Jaynes-Cummings
model [1].

IV. SINGLE-PHOTON DEPHASING WITH INITIAL
POLARIZATION-FREQUENCY CORRELATIONS

We have described above how initial correlations between
the composite environmental states influence the generator of
the dynamical map and the corresponding master equation for
photonic dephasing. In this section we continue with initial
correlations but take a different perspective by considering a
nonfactorized initial system-environmental state for a single
qubit. This is motivated by the recent observation that initial
system-environment correlations can be exploited for arbi-
trary control of single-qubit dephasing [22]. We revisit this
problem and obtain insight by exploiting the very recently
developed general method of bath-positive decomposition
(B+ decomposition) [21]. In general, the presence of initial
system-environment correlations implies that the open-system
evolution is not described by a CP dynamical map [15–20].
However, the B+ decomposition method allows us to treat
this case with a set of CP maps, where each term of the
decomposition is evolved over time with its individual CP map
[21].

A. Preliminaries on B+ decomposition for an initially
correlated system-environment state

Following [21] we begin by considering an arbitrary
system-environment state—in the corresponding Hilbert
space H = HS ⊗ HE —and write it as

ρ̂SE(0) =
∑

α

wαQ̂α ⊗ ρ̂α. (47)

Here, {Q̂α} forms a basis (possibly overcomplete) for op-
erators on HS , and {ρ̂α} are valid environmental density
operators on HE . Note that Q̂α need not be positive or trace
orthogonal, so they may not constitute proper density matri-
ces in the system Hilbert space. However, when the initial
state is factorized, this summation reduces to a single term,
ρ̂SE(0) = ρ̂S (0) ⊗ ρ̂E (0), corresponding to reduced states of
the open system and environment, respectively. In general,
the number of terms in this summation is restricted by 1 �
N � d2, where d is the dimension of the system Hilbert space
[21]. All the information about the initial state of the open
system is incorporated in the weights wα , such that ρ̂S (0) =
TrE [ρ̂SE(0)] = ∑

wαQ̂α . Although Q̂α may not be legitimate
density operators for the open system, those expressed by ρ̂α

are valid density operators for the environment. This means
that the factorized form of the terms in (47) allows us to write
the dynamics of the open-system state as the weighted sum of
legitimate CP maps acting on Q̂α . In more detail, if the total
system-environment evolves due to a unitary operator Û (t ),
one has

ρ̂S (t ) =
∑

α

wαTrE [Û (t )(Q̂α ⊗ ρ̂α )Û (t )†]

=
∑

α

wα�̂
(α)
t [Q̂α], (48)

where

�̂
(α)
t [·] := TrE [Û (t )(· ⊗ ρ̂α )Û (t )†]. (49)
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Since all maps of the form given in Eq. (49) are CP, all
previous tools for studying CP maps are applicable here. In
particular, one can investigate the properties of each CP map
�

(α)
t and see how they are connected to the presence of initial

correlations.
For example, consider single-qubit dynamics in the pres-

ence of initial system-environment correlations [21]. Using
completeness of the Pauli sigma basis {I2, σ̂x, σ̂y, σ̂z}, we have

ρ̂SE(0) =
∑

α=0,x,y,z

wαQ̂α ⊗ ρ̂α, (50)

in which

Q̂0 = 1

2
(Î2 − σ̂x − σ̂y − σ̂z ), (51)

Q̂α = 1

2
σ̂α for α = x, y, z (52)

and

ρ̂0 = TrS[ρ̂SE(0)] = ρ̂E (0), (53)

ρ̂α = TrS[((Î2 + σ̂α ) ⊗ ÎE )ρ̂SE(0)]

wα

, (54)

with w0 = 1 and wα = Tr[((Î2 + σ̂α ) ⊗ ÎE )ρ̂SE(0)] for α =
x, y, z. We exploit these generic expressions below.

B. Initial polarization-frequency correlation
and B+ decomposition for single photons

We consider initial polarization-frequency correlations by
following the recent results and experimental work on gener-
ating, in principle, arbitrary single-photon dephasing dynam-
ics [22]. The generic initial polarization-frequency state can
be written as

|ψ (0)〉SE = Cv|v〉 ⊗
∫

dωg(ω)|ω〉

+ Ch|h〉 ⊗
∫

dωg(ω)eiθ (ω)|ω〉, (55)

where |Ch|2 + |Cv|2 = 1 and
∫

dω|g(ω)|2 = 1. Above, the
crucial ingredient is the frequency-dependent initial phase
θ (ω) for the component including the polarization h. If
θ (ω) is a constant function, then there are no initial system-
environment correlations. However, controlling the noncon-
stant functional form of θ (ω) allows control of the initial
correlations and their amount.

When the initial state evolves according to the interaction
Hamiltonian, Eq. (3), the reduced polarization state at time
t is

ρ̂(t ) =
( |Ch|2 κ (t )ChC∗

v

κ (t )∗C∗
hCv |Cv|2

)
, (56)

where the decoherence function is

κ (t ) =
∫

dω|g(ω)|2eiθ (ω)e−i�nωt . (57)

Note that in addition to the frequency probability distribution
|g(ω)|2, one can now use also θ (ω), and subsequent initial
correlations, to control the dephasing dynamics.

The dynamics given by Eqs. (56) and (57) can be equiv-
alently formulated by using the B+ decomposition. Consid-
ering the initial total state in Eq. (55) and applying the B+
decomposition along Eq. (50) and Eqs. (53) and (54), we
obtain the environmental terms

ρ̂0 =
∫

dω

∫
dω′ g(ω)g(ω′)∗ (|Ch|2ei[θ (ω)−θ (ω′ )]

+ |Cv|2)|ω〉〈ω′|, (58)

ρ̂x = 1

wx

∫
dω

∫
dω′ g(ω)g(ω′)∗ (|Ch|2ei[θ (ω)−θ (ω′ )]

+|Cv|2 + ChC∗
v eiθ (ω′ ) + CvC

∗
h e−iθ (ω) )|ω〉〈ω′|, (59)

ρ̂y = 1

wy

∫
dω

∫
dω′ g(ω)g(ω′)∗(|Ch|2ei[θ (ω)−θ (ω′ )]

+|Cv|2 + iChC
∗
v eiθ (ω′ ) − iCvC

∗
h e−iθ (ω) )|ω〉〈ω′|, (60)

ρ̂z =
∫

dω

∫
dω′ g(ω)g(ω′)∗ |ω〉〈ω′|, (61)

with weights

wx = 1 + 2
∫

dω|g(ω)|2Re[CvC
∗
h e−iθ (ω)], (62)

wy = 1 + 2
∫

dω|g(ω)|2Im[CvC
∗
h e−iθ (ω)], (63)

wz = 2|Ch|2. (64)

Each specific term of the B+ decomposition is related to a
frequency state (ρ̂α) above and acts on its own input system
operator Q̂α [see Eqs. (51) and (52)]. In the current case,
we can combine the contributions of ρ̂0 and ρ̂z to simplify
the decomposition into only three terms. Subsequently, the
polarization density matrix at time t is given by

ρ̂(t ) = 1

2

(
wz κ0(t )(i − 1)

κ0(t )∗(−i − 1) 2 − wz

)

+1

2
wx

(
0 κx(t )

κx(t )∗ 0

)

+1

2
wy

(
0 −iκy(t )

iκy(t )∗ 0

)
, (65)

where the three different decoherence functions are given by

κ0(t ) =
∫

dω|g(ω)|2e−i�nωt , (66)

κx(t ) =
∫

dω|g(ω)|2(1 + 2Re[CvC∗
h e−iθ (ω)])e−i�nωt

wx
, (67)

κy(t ) =
∫

dω|g(ω)|2(1 + 2Im[CvC∗
h e−iθ (ω)])e−i�nωt

wy
. (68)

It is interesting to note here that the decoherence function
κ0 is independent of θ (ω) and actually corresponds directly
to the case where there are no initial polarization-frequency
correlations. The other two functions, κx and κy, depend also
on θ (ω) and describe in detail how the initial correlations
change the dephasing dynamics.

It is also interesting to compare Eq. (65) with the B+
decomposition for generic dephasing dynamics of a qubit
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coupled to a bosonic bath, when qubit and bath are initially
correlated [21]. The total Hamiltonian of the qubit and the
bosonic bath reads

Ĥ = ωq σ̂z +
∑

i

ωib̂
†
i b̂i + σ̂z ⊗

∑
i

gi(b̂
†
i + b̂i ), (69)

where ωq is the qubit’s energy level separation (in the |0〉,
|1〉 basis), b̂†i and b̂i are the bath mode creation and annihi-
lation operators, respectively, and gi is the coupling strength.
Employing the B+ decomposition, the dynamics of the off-
diagonal element of the qubit’s density matrix in the interac-
tion picture reads [21]

〈0|ρS (t )|1〉 =
∑

α

wα〈0|Q̂α|1〉χρ̂α
(�ξt ), (70)

where χρ̂α
(�ξt ) = TrB[ρ̂αD̂(�ξt )] is the Wigner characteristic

function of the bath state ρ̂α and �ξt = (ξ1(t ), ξ2(t ), ) with

ξ j (t ) = 2g j

(
1 − eiω j t

ω j

)
.

D̂(�ξt ) = exp(
∑

i ξib̂
†
i + ξ ∗b̂i ) is the Glauber displacement op-

erator. Comparison between Eqs. (65) and (70) reveals that the
decoherence functions in our photonic model—corresponding
to integral transformations of the frequency probability distri-
bution and frequency-dependent phase θ (ω)—play the exact
same role as the characteristic functions in the dephasing
dynamics of a qubit coupled to a bosonic bath.

Let us go back to the photonic model and see in detail,
for some examples, what is the relation between the original
decoherence function, (57), and those appearing in the B+
decomposition in Eqs. (66)–(68). In particular, we consider
cases similar to those used in [22] to demonstrate arbitrary
control of dephasing dynamics. These include a nonpositive
(NP) map and Markovian, non-Markovian, and coherence
trapping dynamics. In all of the cases below, the frequency
distributions used and the values for θ (ω) are similar to those
considered in Ref. [22], respectively.

Figure 3 shows the magnitude of various decoher-
ence functions for the case of an NP map, i.e., κ (t ) >

κ (0). It is easy to check that the off-diagonal term of
the density matrix is obtained from ρhv (t ) = [κ0(t )(i −
1) + wxκx(t ) − iwyκy(t )]/2 and, equivalently, from ρhv (t ) =
κ (t )ChC∗

v . Thereby, it is evident that if κ0(t ) = κx(t ) =
κy(t ) = 0, for some t > 0, then κ (t ) = 0. However, the re-
verse statement does not always hold. Instead, one can show
that whenever wx = wy = 1, then having identical decoher-
ence functions, κ0(t ) = κx(t ) = κy(t ), is sufficient to have
zero coherence, i.e., κ (t ) = 0. This is an interesting result
making a link between properties of the CP maps obtained
in B+ decomposition and the original NP map. In fact, the
case discussed in Fig. 3 demonstrates this situation. This is
even more evident when considering the real and imaginary
parts of the decoherence functions explicitly (see Fig. 4). One
can see that the three decoherence functions κ0, κx, and κy are
identical when the interaction time is short. Therefore, since
we also have wx = wy = 1, the decoherence function κ (t ) has
zero value in this regime.

The non-Markovian, Markovian, and coherence trapping
cases are plotted, respectively, in Figs. 5–7. Looking at

FIG. 3. Nonpositive map decoherence functions. Magnitudes of
the original decoherence function (κ) and B+ decomposition deco-
herence functions (κ0, κx, κy) as a function of time. We set Ch =
Cv = 1/

√
2.

Fig. 5, one finds that |κ (t )| first decays to 0 and then revives
again. This situation displays non-Markovian features, where
coherence can revive after a period of disappearance. The
Markovian case, however, illustrates a monotonically decay-
ing |κ (t )| (see Fig. 6). Finally, in the coherence trapping case
we observe that |κ (t )| decays at first but mostly maintains
its value later (Fig. 7). The magnitudes of the other three
decoherence functions, used in the B+ decomposition, are
also plotted in the corresponding figures. We observe that
these decoherence functions behave similarly, in contrast to
the case of an NP map. Again, whenever κ0, κx, and κy are all
0, one has κ (t ) = 0. However, since wx and wy are not equal,

Re

Im

Re

Im

Re

Im

FIG. 4. Nonpositive map decoherence functions. Real and imag-
inary parts of the B+ decomposition decoherence functions
(κ0, κx, κy) as a function of time. We set Ch = Cv = 1/

√
2.
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FIG. 5. Non-Markovian dynamics. Magnitudes of the original
decoherence function (κ) and B+ decomposition decoherence func-
tions (κ0, κx, κy) as a function of time. We set Ch = Cv = 1/

√
2.

we get a nonzero κ , even though κ0, κx, and κy seem to be
identical in some regions.

V. DISCUSSION

We have studied the influence of initial correlations on
open-system dynamics from two perspectives corresponding
to master equation descriptions and the recently introduced
B+ decomposition method. By using a common two-photon
dephasing scenario with local polarization-frequency inter-

FIG. 6. Markovian dynamics. Magnitudes of the original deco-
herence function (κ) and B+ decomposition decoherence functions
(κ0, κx, κy) as a function of time. We set Ch = Cv = 1/

√
2.

FIG. 7. Coherence trapping dynamics. Magnitudes of the orig-
inal decoherence function (κ) and B+ decomposition decoherence
functions (κ0, κx, κy) as a function of time. We set Ch = Cv =
1/

√
2.

action, our results show explicitly how initial correlations—
between the composite environments (frequencies)—
influence the decoherence rates and operator form of the mas-
ter equation for the polarization state. When the environment
has a single-peak Gaussian structure, the master equation con-
tains two sets of jump operators, corresponding to the sum and
difference between the local interactions, and whose weights
can be controlled by changing the amount of initial environ-
mental correlations. Here, the dephasing rates are nonnegative
and depend linearly on time for the considered case. With a
double-peak bivariate structure, the situation changes drasti-
cally. This opens an additional dephasing path with a nonlocal
form for the corresponding operator, and the associated rate
also has divergences. Moreover, the rates for the other two
dephasing operators have distinctive functional forms.

The B+ decomposition method, in turn, allows the study
of such cases where the system and environment are initially
correlated, preventing the use of conventional CP maps. We
have used this decomposition to study dephasing, when the
polarization and frequency of a single photon are initially
correlated. The results display in detail how the initial cor-
relations change the dephasing contribution arising solely
on the initial factorized state. Indeed, instead of having one
decoherence function associated with dephasing, we now have
three different decoherence functions corresponding to the
elements of the B+ decomposition. Here, one of the functions
arises due to the initially factorized part and two additional
decoherence functions include also contributions from initial
polarization-frequency correlations. In general, our results
shed light on and help us to understand how different types
of correlations influence the dephasing dynamics within the
commonly used photonic framework.
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APPENDIX

General expressions for the elements of the nonzero subspace of the decay rate matrix, denoted R(t ), are

R11(t ) = −Re[kb(t )], (A1)

R12(t ) = 1√
3

(iIm[kb(t )] − iIm[ka(t )] + iIm[�ab(t )] + Re[�ab(t )] − Re[ka(t )]), (A2)

R13(t ) = 1

2
√

6
(4iIm[ka(t )] + 2iIm[kb(t )] − 3iIm[kab(t )] − iIm[�ab(t )]+4Re[ka(t )] − 3Re[kab(t )] − Re[�ab(t )]), (A3)

R21(t ) = R12(t )∗, (A4)

R22(t ) = 1
3 (−2Re[ka(t )] + Re[kb(t )] − 2Re[�ab(t )]), (A5)

R23(t ) = 1

6
√

2
(−3iIm[kab(t )] + 6iIm[kb(t )] + 3iIm[�ab(t )] − 4Re[ka(t )] − 3Re[kab(t )] + 8Re[kb(t )] − Re[�ab(t )]), (A6)

R31(t ) = R13(t )∗, (A7)

R32(t ) = R23(t )∗, (A8)

R33(t ) = 1
6 (−2Re[ka(t )] − 3Re[kab(t )] − 2Re[kb(t )] + Re[�ab(t )]), (A9)

where we have defined ki(t ) = 1
κi (t )

d
dt κi(t ), �ab(t ) = 1

�ab(t )
d
dt �ab(t ), and kab(t ) = 1

κab(t )
d
dt κab(t ).
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