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Quantum transfer through a continuum under continuous monitoring

Luting Xu* and Xin-Qi Li†

Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin 300072, China

(Received 2 November 2019; revised manuscript received 3 March 2020; accepted 27 March 2020;
published 23 April 2020)

In this work we extend our previous studies on the quantum transfer of a particle through a finite-bandwidth
continuum under frequent detections by replacing the assumed frequent measurements with a genuine continuous
monitoring with a point-contact detector. We present a quantitative comparison between the two types of
measurement. We also propose possible measurements, based on state-of-the-art experiments, to test the
“scaling” property between the measurement rate and the bandwidth of the reservoir, rooted in the transfer
dynamics under continuous monitoring.
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I. INTRODUCTION

In a series of recent studies [1–6], the “null”-result-
conditioned dynamics of electron transfer through a con-
tinuum or spontaneous emission of photons under contin-
uous monitoring was analyzed. In these studies continuous
monitoring in the reservoir has been considered as a series
of τ -interval instantaneously projective measurements, i.e.,
frequent checks if the electron or photon is in the reservoir or
not, after every time interval τ . For the Markovian case (wide-
band limit), a no effect of measurements on the dynamics was
concluded [1,2]. However, for the non-Markovian reservoir
(with finite bandwidth) [3–6], the dynamics will be drasti-
cally influenced by the time interval τ between successive
measurements, more specifically, being governed by a scaling
parameter x = �τ , where � is the spectral bandwidth of the
reservoir. Actually, this x = �τ -scaling property has some-
how extended the well-known quantum trajectory (QT) theory
[7–10]—which was constructed under continuous monitoring
in Markovian environments—to the case of non-Markovian
environments. The x = �τ -scaling behaviors also establish a
simple connection between the QT theory and the quantum
Zeno effect [11].

We notice that the concept of continuous measurements
has also been employed as a theoretical tool (but real mea-
surements not performed) to analyze the effects of the envi-
ronment, e.g., the environment-induced decoherence and the
appearance of classical feature from a full quantum world
[12–15]. However, rather than taking this as a theoretical tool,
for a real measurement-conditioned evolution, it should be
very hard to implement the frequent projective measurements
(with the short time interval τ ) employed in the theoretical
considerations. For photon detections, the time interval τ

may roughly correspond to the signal response time of the
detector. However, in the setup of electron transfer through a
reservoir, how to implement the frequent projective measure-
ments in the reservoir is rather unclear. In this work, instead
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of the projective measurements introduced in the reservoir,
we consider an alternative and more practical measurement
scheme by introducing a side point-contact (PC) detector,
as schematically shown in Fig. 1(a). The PC detector can
perform continuous and noninvasive measurement to reveal
information about the electron’s location in the dots or in
the reservoir, based on its distinct electrostatic effect on the
tunnel barrier of the PC detector. We note that the idea
to replace the frequent projective measurements by a gen-
uine continuous measurement was also briefly discussed in
Ref. [11] in the context of verifying the anti-Zeno effect,
but no quantitative comparison was carried out there. In this
work we will carry out a quantitative comparison between
the continuous measurement with the PC detector and the
frequent projective measurements. The treatment employed
in this work allows us to account for the non-Markovian
“return effect” from the reservoir in a rather transparent
manner. We also extend our analysis from the null-result
conditioned evolution to nonselective (ensemble averaged)
dynamics, which is proved to hold as well the desirable
scaling property and might be verified by today’s state-of-the-
art experiments.

II. MODEL AND METHOD

Consider an electron in a double-dots system, where the
two dots are coupled in parallel to a continuum reservoir.
Moreover, the electron is monitored with a PC detector, as
shown in Fig. 1(a). Let us as a first step neglect the PC
detector. The total Hamiltonian of the double dots coupled by
the continuum is given by

H = E1|1〉〈1| + E2|2〉〈2| +
∑

r

Er |r〉〈r|

+
∑

r

[(�1r |r〉〈1| + �2r |r〉〈2|) + H.c.]. (1)

Here � jr is the coupling amplitude of the dot j to the
reservoir. The states in the dots |1(2)〉 are localized, and the
reservoir states |r〉 are in a continuum.
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(a)

(b)

FIG. 1. (a) Electron transfer through a continuum between two
quantum dots under continuous monitoring of a PC detector. (b) The
finite bandwidth (non-Markovian) continuum is equivalently de-
scribed by a fictitious well coupled to a fictitious infinite bandwidth
(Markovian) reservoir.

In this work, we are interested in a finite bandwidth contin-
uum which allows an inverse motion of the electron from the
continuum back into the dots, i.e., a type of non-Markovian ef-
fect. Following Ref. [16], an elegant fictitious-well model can
be employed to conveniently account for the non-Markovian
effect. One can imagine that the finite-band reservoir can be
replaced by a localized state (in a fictitious well) coupled to a
wide-band continuum of a Markovian reservoir, as schemat-
ically shown in Fig. 1(b). This consideration corresponds to
separating the reservoir basis |r〉 into two components [16]∑

r

|r〉〈r| → |R〉〈R| +
∑

r′
|r′〉〈r′|, (2)

where |R〉 denotes the localized state inside the fictitious well
and |r′〉 the extended states of a fictitious Markovian reservoir
with constant density of states ρ ′. Then the Hamiltonian in the
new basis reads [16]

H = E1|1〉〈1| + E2|2〉〈2| + ER|R〉〈R| +
∑

r′
Er′ |r′〉〈r′|

+
∑
j=1,2

(�̄ j |R〉〈 j| + H.c.) +
∑

r′
(�|r′〉〈R| + H.c.). (3)

In order to make the two descriptions precisely equivalent, the
tunnel coupling amplitudes �̄1,2 of the fictitious well to the
dots, and also to the Markovian reservoir, should be properly
adjusted. As proved in Appendix A, we should choose

�̄ j =
√

� j�

2
. (4)

Here � j = 2π�2
jr (ER)ρ(ER) are the coupling rates of the dot

levels to the original finite-band reservoir with density-of-
states ρ(ER) at the spectral center (ER), and � is the width
of the reservoir spectrum. Also, we should choose

π�2ρ ′ = � (5)

for the coupling strength of the fictitious-well state |R〉 to the
Markovian reservoir (with density of states ρ ′). Under these
choices, the result from the fictitious Hamiltonian is precisely
the same as that from the original one, Eq. (1).

Using the new basis, the time-dependent state of the elec-
tron can be expressed as

|�(t )〉 = b1(t )|1〉 + b2(t )|2〉 + bR(t )|R〉 +
∑

r′
br′ (t )|r′〉.

(6)

Starting with the time-dependent Schrödinger equation in
the new basis, we can first derive the equations for
{b1(t ), b2(t ), bR(t ), br′ (t )}. Eliminating br′ (t ), but keeping
the state of the fictitious well, we obtain equations for
{b1(t ), b2(t ), bR(t )}. For the purpose that we will later in-
troduce decoherence from, e.g., the back-action of the PC
detector; we employ here the description of a density ma-
trix with elements ρi, j (t ) = bi(t )b∗

j (t ). Here i and j denote,
respectively, the basis states {1, 2, R}. We then obtain the
following rate equations for the density matrix:

ρ̇11 = i�̄1(ρ1R − ρR1), (7a)

ρ̇22 = i�̄2(ρ2R − ρR2), (7b)

ρ̇RR = i�̄1(ρR1 − ρ1R) + i�̄2(ρR2 − ρ2R) − 2�ρRR, (7c)

ρ̇12 = i(E2 − E1)ρ12 + i(�̄2ρ1R − �̄1ρR2), (7d)

ρ̇1R = i(ER − E1)ρ1R + i�̄1(ρ11 − ρRR) + i�̄2ρ12 − �ρ1R,

(7e)

ρ̇2R = i(ER − E2)ρ2R + i�̄2(ρ22 − ρRR) + i�̄1ρ21 − �ρ2R.

(7f)

Based on theses equations, if we further eliminate the
degree of freedom of the fictitious well, we obtain then
the usual non-Markovian master equations, with the non-
Markovian nature reflected by a time-nonlocal memory form.
However, keeping in these equations the information of |R〉,
the consequence is remarkable. First, the non-Markovianity is
manifested in this treatment, quite physically, as a return-back
effect from the fictitious well. This is something like the
back-flow of information which has been frequently discussed
among the non-Markovian community. We know that if the
dots are connected directly with a wide-band Markovian
reservoir [1–3], the particle will never return back once it has
been confirmed (by measurement) in the reservoir. However,
in the non-Markovian case, the particle can return back into
the dots, even if the particle has been confirmed in the well
but not in the wide-band reservoir. This type of treatment
clearly splits the “origin” of the return-back effect from the
non-Markvian environment.

The second advantage of the fictitious-well treatment is
allowing us very easily to include the measurement back-
action into the dynamics. From Fig. 1 we understand that
the measurement effect of the PC detector is to generate
dephasing between the dots and the fictitious-well states. So
we only need to insert dephasing terms into Eqs. 7(d)–7(f) for
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the off-diagonal elements of the density matrix

ρ̇12 = i(E2 − E1)ρ12 + i(�̄2ρ1R − �̄1ρR2)

−
(√

�d1 − √
�d2

)2

2
ρ12, (8a)

ρ̇1R = i(ER − E1)ρ1R + i�̄1(ρ11 − ρRR) + i�̄2ρ12

−
(

�d1

2
+ �

)
ρ1R, (8b)

ρ̇2R = i(ER − E2)ρ2R + i�̄2(ρ22 − ρRR) + i�̄1ρ21

−
(

�d2

2
+ �

)
ρ2R. (8c)

Here for the sake of generality, we have considered the PC
detector unequally coupled to the two dots, thus �d1 �= �d2.
This will take place if the detector is not set precisely at the
symmetric location with respect to the dots.

III. RESULTS AND DISCUSSIONS

In Ref. [3] the transfer dynamics of an electron through
a finite-bandwidth non-Markovian reservoir was analyzed,
conditioned on null result of measurement in the reservoir.
There a perfect scaling behavior of the transfer dynamics
with the variable x = �τ was found; see also Ref. [6] for
arbitrary spectra. Now, let us consider to replace the frequent
discrete measurements in the reservoir (we may imagine by
an “external” observer) by the continuous monitoring using
the more realistic PC detector as shown in Fig. 1(a). We would
like to revisit this same problem and ask: Can the x = �τ -type
scaling behavior still survive? A key problem arising here is
that, for the transfer dynamics under continuous monitoring
with the PC detector, it is almost impossible to realize the
null-result conditioned transfer dynamics, since the null result
of measurement excludes the appearance of the electron in the
reservoir. Therefore, the nonselective transfer dynamics under
the continuous monitoring is more natural, which corresponds
to the statistical mixture of the null result and registered result
in the reservoir. Note also that the non-Markovian return effect
is to be included in all the numerical simulations in this work,
either automatically for the continuous measurement with
the PC detector, or applying the iterative algorithm outlined
in Appendix B for the frequent projective measurements. In
Appendix C, the return effect is explicitly displayed, together
with quantitative discussions.

For the double-dot setup shown in Fig. 1, under the sym-
metric condition of E1 = E2 = ER and �1 = �2 = �, one
can obtain analytic result for the survival probability of the
electron in its initially occupied dot (i.e., in state |1〉)

P1(t ) = 1
4 (e−α�t + 1)2, (9)

where

α = 2y

1 + 2y
with y = �/�d . (10)

This result was obtained based on Ref. [16], by applying a
basis transformation. Importantly, we see that the result has an
exact scaling behavior with scaling variable y = �/�d , which

FIG. 2. Probability of the electron remained in the initial quan-
tum dot under continuous monitoring with a PC detector. The demon-
strating scaling property is characterized by the scaling variable y =
�/�d , with � the bandwidth of the continuum and �d the (average)
measurement rate. Setup parameters: (a) E1 = E2 = 0 and �d1 =
�d2 = �d ; (b) E1,2 = ±0.05� and �d1 = �d2 = �d ; (c) E1 = E2 =
0 and �d1,2 = �d (1 ± 0.2

√
�/�d ); (d) E1,2 = ±0.05� and �d1,2 =

�d (1 ± 0.2
√

�/�d ).

resembles x = �τ associated with the frequent measurements
in previous studies [1–6].

In the following numerical results, we set y = �/�d as the
scaling variable. First, in Fig. 2(a) we display the results for
an ideal symmetric configuration, E1 = E2 = ER and �d1 =
�d2 = �d . We plot the numerical results of P1(t ) for a couple
of values of the scaling parameter, say, y = 1, 0.1, and 0.01
associated with a finite bandwidth � = 5�. We compare the
results (labeled with symbols) with the analytical solution of
Eqs. (9) and (10) (solid lines). This comparison is necessary
by noting that the analytic result was obtained under the
limiting procedure � → ∞ and �d → ∞ for each given
y. Indeed, as shown in Fig. 2(a), perfect scaling behavior
survives in the nonselective dynamics under the continuous
monitoring of the PC detector. This is an important addition
to the previous studies [1–6], where both the artificial frequent
measurements in the reservoir and the restrictive null-result-
conditioned dynamics were challengingly assumed.

Next, let us consider the effect of slight deviation from the
ideal case. In a real setup, the dot levels might be misaligned,
and the PC detector may couple to the dots asymmetrically,
i.e., E1 �= E2 and/or �d1 �= �d2. Notice that we are interested
in the scaling property between � and �d . We understand that
the difference of �d1 and �d2 is, in general, not free from �d

when we rescale �d with the change of �. From Eq. (8a),
we know that it is the difference of

√
�d1 and

√
�d2 that

determines the deviation effect (dynamics). Let us denote this
difference as

√
�d1 − √

�d2 = δ
√

�, with δ a small parame-
ter, and assume �d1,2 = �d ± d . Under the condition d 
 �d ,
we obtain d = δ

√
��d . Therefore, in the plot of Figs. 2(c) and

2(d), we apply this consideration to characterize the difference
of �d1 and �d2, i.e., �d1,2 = �d (1 ± δ

√
�/�d ).

The perfect coincidence between the dots and the lines
in Figs. 2(b)–2(d) demonstrates indeed an overall scaling
behavior. Nevertheless, in practice, the difference of �d1 and
�d2 may not satisfy the above requirement (i.e., ∝ √

�d ), for
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instance, when we attempt to change the measurement rate
via altering the bias voltage (Vd ) across the PC detector. This
indicates that in experiments one should reduce or eliminate
the asymmetry leading to �d1 �= �d2. For the results shown
in Fig. 2, a common feature is that with the increase of
the measurement strength (more precisely, for smaller y),
the decay of the initial occupation becomes slower. This is
nothing other than the well-known Zeno effect.

More specifically, in Fig. 2(b) we show the result for mis-
aligned dot levels. Unlike the case E1 = E2 shown in Fig. 2(a),
here the electron will gradually immerse into the reservoir.
The basic reason is as follows. For aligned levels (E1 = E2),
one can prove that, by a simple basis transformation of the dot
states, |1̃(2̃)〉 = (|1〉 ∓ |2〉)/

√
2, the superposed bound state

|1̃〉 is isolated from the reservoir, behaving like the “dark
state” in quantum optics. However, the decay dynamics under
different y in Fig. 2(b) goes a little bit beyond our simple
intuition, e.g., a crossing of the blue and red curves for y = 1.0
and 0.1 takes place.

In Figs. 2(c) and 2(d) we show the results for �d1 �= �d2,
respectively, for aligned and misaligned dot levels. Here an-
other physics is involved. Owing to the decoherence between
|1〉 and |2〉 caused by the asymmetric measurement cou-
pling (�d1 �= �d2), the quantum-coherence-supported state
|1̃〉, which is isolated from the reservoir, cannot be ideally
formed. Thus the electron will gradually leak into the reser-
voir even for aligned dot levels, as shown in Fig. 2(c).

A. Connection with frequent measurements

Now we make a quantitative comparison between the con-
tinuous measurement with the PC detector and the frequent
projective measurements in the reservoir. Actually, for the
frequent measurements, one can obtain the same result of
P1(t ) as Eq. (9), but with α replaced by α′, given by [16]

α′ = 1 − (1 − e−x )/x. (11)

Here the scaling variable appears as x = �τ , with τ the time
interval between the frequent measurements in the reservoir.

This result, together with Eqs. (9) and (10), reveals an
interesting connection between the two schemes of measure-
ments. Roughly speaking, as naively thought, �−1

d in the case
of PC detector should correspond to the time interval τ in the
frequent measurements. Indeed, if we identify y = �/�d =
x, then α coincides with α′ for both x → 0 and x → ∞.
However, this identification does not hold for nonlimiting
regime. A detailed comparison with α′(x) shows that sat-
isfactory agreement for x > 5 can be achieved by inserting
�−1

d = τ/2 into α(y), while for small x (e.g., x < 2) the
identification �−1

d = τ/4 is better. This latter identification
can be analytically proved by expanding α(y) and α′(x) to the
first order of the scaling parameters [16].

B. Proposal for experimental demonstration

The transfer dynamics under continuous monitoring with
the PC detector, especially the y = �/�d scaling property, can
be demonstrated by state-of-the-art experiments. By virtue of
the high-quality fabrication and on-chip integration of quan-
tum dots and quantum-point contacts, we may propose the
examination as schematically shown in Fig. 3(a). In addition

 

  

  

  

 

(a) (b)

I(t )I(t)

Γ /Λ

)

)
0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120

FIG. 3. Proposal for experimental demonstration. (a) Schematic
illustration of the proposed setup: in addition to the continuous
monitoring with the left PC detector as shown in Fig. 1, another
PC detector (the upper one) is arranged to perform a fast projective
measurement for the occupation of the upper quantum dot, by turning
on it at a given time moment (e.g., at t0). (b) Simulated results for the
functional dependence of the upper and lower quantum dots occupa-
tion probabilities P1,2(t0 )|t0=20�−1 on the “inverse” scaling parameter
�d/�. Notice that �d is proportional to the bias voltage Vd across
the continuous monitoring PC detector. This plot should make the
predicted dependence more closely related to the measurement data
in experiments. The results for the frequent measurements are plotted
by the solid and dashed lines for, respectively, aligned dot levels
(E1 = E2) and misaligned levels (E1,2 = ±0.05�), while the results
for the continuous measurement with the PC detector are shown
by the symbols (solid circles and stars). In this perfect coincidence
comparison, we have identified the time interval by using τ = 4�−1

d .
All results are obtained under the choice of � = 5�.

to the continuous monitoring with the left PC detector as
shown in Fig. 1, another PC detector (the upper one) is
arranged here to perform a fast projective measurement for the
occupation probability of the electron in the upper quantum
dot, by turning on it at a given moment, e.g., at t0.

Under continuous monitoring, the transfer dynamics is
fully characterized by the occupation probabilities P1,2(t ) of
the quantum dots. For instance, in the special case of E1 = E2,
P1(t ) is analytically given by Eqs. (9) and (10), which clearly
displays the functional dependence on the scaling variable y =
�/�d . To make the dependence more experimentally relevant,
we may plot against the bias voltage (Vd ) of the PC detector,
since the measurement rate �d is related to Vd simply via
�d = Vd (

√
T − √

T ′)2
/2π . Here T and T ′ are the respective

tunneling amplitudes of electron through the point contact,
conditioned on the double dots occupied or not. Therefore,
a Vd dependence (in experiment) is equivalent to the �d

dependence or the “inverse” scaling variable dependence by
noting that y−1 = �d/�.

In Fig. 3(b), for the special case E1 = E2, we plot
P1,2(t0)|t0=20�−1 against �d/�, by the black and red dots.
Also, we plot the result for the frequent measurement by
the solid black and red lines, after making the identification
τ = 4�−1

d . The perfect coincidence between the dots and lines
shown here supports as well our above discussion and conclu-
sion on the connection between the frequent and continuous
measurements. In Fig. 3(b) we also plot the results obtained
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numerically for the misaligned levels (E1,2 = ±0.05�), under
both the continuous and frequent measurements.

We may further discuss the feasibility of possible exper-
imental investigations. Actually, sensitive detectors capable
of fast, high-fidelity, single-shot measurements of quantum
states are essential to solid-state quantum computation, in par-
ticular to the readout of semiconductor-based charge and/or
spin qubits. In practice, the quantum-point-contact charge
detector has been demonstrated and employed in a large num-
ber of experiments, e.g., in Refs. [17–21]. Usually, the read-
out time is longer than 100 μs, which is limited by the
measurement bandwidth of the sensor current (e.g., a high-
frequency cutoff of typically less than 100 kHz). However,
in recent years, great efforts have been made to improve
the readout speed by employing the idea of radio-frequency
(RF) reflectometry measurements. That is, integration of the
point-contact sensor into a RF microwave resonator circuit
and the reflectometry signal is highly sensitive to charge con-
figurations. The latest progress of this technique has realized
the total line width of ∼2 MHz, which sets the maximum
measurement bandwidth and reaches the time resolution about
1 μs [22–24].

For our purpose to demonstrate the proposal schematically
shown in Fig. 3, we would like to say that the requirement can
be lower than the semiconductor-based qubit measurements.
In our system, the narrow-bandwidth continuum can be real-
ized by coupling a single-level quantum dot to a wide-band
Markovian reservoir, just as shown in Fig. 1 by the fictitious-
well model. The coupling strength between this quantum dot
and the wide-band reservoir is tunable, which determines the
bandwidth (�) of the non-Markovian reservoir; see Eq. (5).
Then, even for the normal readout rate of PC detector, e.g.,
�−1

d = 10 ∼ 100 μs, one can accordingly tune the coupling to
make the bandwidth � of the same magnitude of �d , which is
required to make the continuous monitoring effect prominent.
By virtue of this tunability of the coupling strength (thus
of �), one can even more directly demonstrate the scaling
behavior as shown in Fig. 2, rather than the less direct way
as by Fig. 3(b). Moreover, concerning the strong projective
measurement with the second PC detector (the upper one in
Fig. 3(a)), we can say that the readout is also not difficult. One
can design weak coupling of the double dots to the reservoir,
i.e., a small � such as �−1 on a timescale of a millisecond.
This implies a slow leaky and transfer process, compared with
the projective measurement with the second PC detector.

IV. CONCLUDING REMARKS

The conceptual picture of frequent projective measure-
ments performed in the reservoir was typically employed in
the studies of Zeno effect and quantum trajectories. However,
how the frequent measurements in the reservoir are replaced
by continuous measurement performed with an external re-
alistic detector or sensor is a very interesting problem, as
briefly discussed in Ref. [11]. In this work, taking the specific
setup of electron transfer through a continuum between two
quantum dots as an example, we have presented a study
which is relevant to this issue. The continuous monitoring is
implemented with a point-contact detector. It was found that
the continuous measurement rate (�d ) is indeed related to the

time interval (τ ) of the frequent measurements qualitatively
as �d � τ−1, yet which is quantitatively valid only in limit-
ing regimes and needs modification by multiplying a proper
proportional coefficient (e.g., 4 or 2) in nonlimiting regimes.

We have considered the continuum with a finite band-
width (�) and employed a fictitious-well model to account
for the non-Markovian “return effect” in a transparent man-
ner. We also extended our analysis from the null-result-
conditioned evolution to nonselective (ensemble-averaged)
dynamics which is proved to hold as well the desirable y =
�/�d -scaling property and is expected to be verified by state-
of-the-art experiments.

ACKNOWLEDGMENTS

We thank Shmuel Gurvitz for stimulating discussions and
especially for introducing the fictitious-well model to us.
We also thank Gang Cao and Guo-Ping Guo for valuable
communications on the experimental issues of PC-detector
measurements. This work was supported by the National
Key Research and Development Program of China (No.
2017YFA0303304) and the NNSF of China (Nos. 11675016,
11974011, and 11904261).

APPENDIX A: FICTITIOUS-WELL MODEL

In this Appendix we review the derivation of the fictitious-
well model, proposed originally in Ref. [16] for a single
dot coupled to a continuum. This model provides also an
efficient description for the setup of double dots as shown in
Fig. 1(a). In the “natural” basis, the system (not including the
PC detector) is described by the Hamiltonian of Eq. (1). The
electron’s motion is described by the wave function

|�(t )〉 = b1(t )|1〉 + b2(t )|2〉 +
∑

r

br (t )|r〉. (A1)

Substituting this wave function into the time-dependent
Schrödinger equation i∂t |�(t )〉 = H |�(t )〉, we obtain a set
of differential equations for b1,2(t ) and br (t ). Applying the
Laplace transformation and eliminating br , we obtain

(ω − E1)b̃1(ω) −
∑

r

�1r
�1r b̃1(ω) + �2r b̃2(ω)

ω − Er
= ib1(0),

(ω − E2)b̃2(ω) −
∑

r

�2r
�1r b̃1(ω) + �2r b̃2(ω)

ω − Er
= ib2(0),

(A2a)

where b̃ j (ω) = ∫ ∞
0 b j (t )(t )eiωt dt , with j = 1, 2 and ω →

ω + i0+. In this result, b1,2(0) are the initial amplitudes of the
electron in the double dots.

Let us assume a Lorentzian spectral density function for
the finite bandwidth reservoir

� jr� j′rρ(Er ) = �2
√

� j� j′

2π [(Er − ER)2 + �2]
, (A3)

where � is the bandwidth of the spectrum, and � j =
2π�2

j (ER)ρ(ER) characterize the coupling strengths for
j, j′ = {1, 2}. Here we drop the label “r” from � jr , indicat-
ing an overall coupling strength. The level ER corresponds
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to the Lorentzian center, and the density-of-states ρ(Er ) is
introduced to replace

∑
r → ∫

ρ(Er ) dEr . Then we carry out
the integration and obtain

∫
� jr� j′r

ω − Er
ρ(Er ) dEr = �

√
� j� j′

2(ω − ER + i�)
. (A4)

Now let us introduce an auxiliary amplitude

b̃R(ω) = �̄1b̃1(ω) + �̄2b̃2(ω)

ω − ER + i�
, (A5)

where, in particular, we set

�̄1,2 =
√

�1,2�

2
. (A6)

Under this construction, one can prove that the following
equations precisely recover the original result of Eqs. (A2):

(ω − Ej )b̃ j (ω) − �̄ j b̃R(ω) = ib j (0), (A7a)

(ω − ER + i�)b̃R(ω) −
∑
j=1,2

�̄ j b̃ j (ω) = 0. (A7b)

Physically, this set of equations corresponds to the
fictitious-well model depicted by Fig. 1(b), where the non-
Markovian component (i.e., the fictitious well) is extracted out
from the extended continuum |r〉 of the reservoir.

APPENDIX B: FREQUENT MEASUREMENTS
IN THE RESERVOIR

For a finite-bandwidth reservoir, one of the non-Markovian
consequences is a return effect of the particle from the reser-
voir to the system (here the double dots). For the continuous
monitoring by the PC detector, the nonselective dynamics
shown in the main text has automatically contained the return
effect. In this Appendix, we present the explicit treatment
for the return effect in the nonselective dynamics associated
with frequent measurements in the reservoir. This nontrivial
procedure has been involved in carrying out the results in
Fig. 3(b).

The main idea is developing an iterative approach to
the “evolution-plus-measurement” dynamics. For each time
interval τ (note that t = nτ ), the particle is subject first to
a free evolution described by Eq. (7), then to a projective
measurement with a result either in the double dots or in the
fictitious well. Note that the possible result in the effective
wide-band reservoir ({|r′〉}) has been ruled out in Eq. (7).

The free evolution is described by Eq. (7), where the
truncated or projected state (density matrix) is defined by
eliminating the components in the wide-band reservoir ({|r′〉})
from the wave function of Eq. (6). That is, the truncated
state is described by the 3 × 3 density matrix ρ(t ) with
elements ρi j (t ) = bi(t )b∗

j (t ), while the index i( j) = 1, 2, and
R corresponds to the electron in the dots and the fictitious well,
respectively. Formally, we describe the evolution as

ρ(t + τ ) = U (τ )ρM (t )U†(τ ), (B1)

where ρM (t ) is the statistical mixture by averaging the mea-
surement on the state ρ(t ). This will be clear after we deter-
mine the result of ρM (t + τ ).

Now, based on ρ(t + τ ), let us introduce a measurement on
it. If the electron is found in the dots (i.e., not in the well), the
measurement Kraus operator can be expressed (in the basis
{|1〉, |2〉, |R〉}) as M0 = diag{1, 1, 0}, and the resultant state
reads

ρ0(t + τ ) = M0ρ(t + τ )M†
0/|| • ||, (B2)

where || • || denotes the normalization factor. Note that the
probability of finding the result is right this normalization
factor, say, P0 = Tr[E0ρ(t + τ )], where the POVM opera-
tor is given by E0 = M†

0M0. Similarly, if the electron is
found in the well, the measurement Kraus operator is MR =
diag{0, 0, 1} and the resultant state reads

ρR(t + τ ) = MRρ(t + τ )M†
R/|| • ||. (B3)

Also, here || • || denotes the normalization factor and the
probability of finding the electron in the well is given by PR =
Tr[ERρ(t + τ )], with ER = M†

RMR. Finally, the nonselective
dynamics is given by the statistical mixture of the above two
results:

ρM (t + τ ) = P0 ρ0(t + τ ) + PR ρR(t + τ )

= M0ρ(t + τ )M†
0 + MRρ(t + τ )M†

R. (B4)

We then obtain the iteration rule for, respectively, the
measurement-result-conditioned states and their statistical
mixture as follows:

ρ0(n) = U0(τ )[ρ0(n − 1) + ρR(n − 1)]U†
0 (τ ), (B5a)

ρR(n) = UR(τ )[ρ0(n − 1) + ρR(n − 1)]U†
R (τ ), (B5b)

ρM (n) = U0(τ )ρM (n − 1)U†
0 (τ )

+UR(τ )ρM (n − 1)U†
R (τ ). (B5c)

Here we have introduced the joint operator U0,R(τ ) =
M0,RU (τ ), and the abbreviation n and n − 1 to denote the

FIG. 4. Return effect from finite-bandwidth reservoirs. (a) For
a couple of bandwidths and assuming the electron initially in the
fictitious well, the probability of appearing in the upper dot (P1) as a
function of time (τ ). (b) Assuming the electron initially in the upper
dot, the probabilities of remaining in this same dot (P1) and appearing
in the fictitious well (PR).
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states at the moments t = nτ and (n − 1)τ . Using this method,
one can straightforwardly carry out the numerical results for
generic configurations of the setup.

APPENDIX C: ILLUSTRATION OF RETURN EFFECT

In this Appendix, in addition to the iterative algorithm out-
lined in Appendix B, we more explicitly show the return ef-
fect. From a simple intuition, a narrower bandwidth reservoir
will result in a stronger non-Markovian effect, thus a stronger
“return effect” or the so-called “back-flow-of-information”
effect. Another simple point is that, for a given bandwidth �,
longer time τ will result in a stronger return effect. Indeed,
this expected behavior is demonstrated in Fig. 4(a) by the
first stage of time evolution (before reaching the maximum
probability). Note that the decay after the maximum peak in
the next stage is due to the electron gradually leaking into the
attached wide-band reservoir. In Fig. 4(b), we further check

an example that the electron is initially in the dots, e.g., in the
upper dot.

More quantitatively, let us consider the most relevant pa-
rameters � = 5� and y = 1 in Fig. 2, which correspond to
the narrowest bandwidth and the longest time (τ = 0.2�−1)
shown there. For them, from Fig. 4(a), we identify P1 �
0.037, which indicates a probability percentage of 7.4% re-
turning back to the double dots, once the electron is regis-
tered in the fictitious well. Similarly, for the results shown
in Fig. 3(b) where the bandwidth is fixed as � = 5�, an-
other most relevant parameter is τ � 0.43�−1, which roughly
corresponds to the lateral coordinate �d/� � 1.86. This pa-
rameter (the value of τ ) is actually determined by the peak
position of the curve associated with � = 5� in Fig. 4,
while the height of the peak is P1 � 0.058. Therefore, this
indicates an even larger percentage (11.6%) of a returning-
back probability for the electron registered in the fictitious
well.
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