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Weak values are the fundamental values for observables in a pre- and postselected system. Weak values
are typically measured by weak measurement, in which weak values appear in the change of not the pre-
and postselected system but the probe system. This indirect characteristic of weak measurement obscures the
meaning of weak values for the pre- and postselected system, in contrast to conventional physical quantities,
which have a clear operational meaning. In this study, we operationally formulate weak values as the sensitivity
of postselection probability amplitude to small transformation in a pre- and postselected system. This formulation
of weak values, which is free from the concept of probe shift assumed in weak measurement, gives a direct
interpretation of strange weak values for the pre- and postselected system. Furthermore, this formulation can
simplify weak-value measurement experiments because the associated measurements appearing in the modulus
change of the postselection probability amplitude do not require external degrees of freedom.
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I. INTRODUCTION

For an observable Â, a quantum system pre- and postse-
lected in |i〉 and |f〉, respectively, has a complex characteristic
value called weak value:

〈Â〉w := 〈f|Â|i〉
〈f|i〉 . (1)

The weak value was originally introduced as a measurement
outcome of weak measurement for a pre- and postselected
system [1]. In weak measurement, an additional degree of
freedom is employed as a probe system besides the pre- and
postselected system to be measured. A preselected system |i〉
weakly interacts with the probe system and is then postse-
lected in |f〉; after postselection, the weak value is obtained as
a position and momentum shifts of the probe system [2]. Weak
measurement has been used to study various fundamental
problems in quantum mechanics [3–10] because it provides
weak values as intermediate information of the pre- and post-
selected systems without disturbing them. In addition, weak
measurement has been applied for precise measurements of
magnitudes of weak system–probe interactions (weak-value
amplification) [11–14], as well as direct measurements of
wave functions and pseudoprobability distributions of the
system’s preselected state [15–22].

Weak values can be beyond the range of the observable’s
eigenvalues, a fact that has been one of the central topics
in weak values and weak measurement [1,3–6,11–14]. Such
“strange weak values” [23] are intriguing when regarded
as an extension of conventional physical quantities, such as
classical physical quantities and quantum expectation values.
However, there is a difference between the weak values ob-
tained by weak measurement and the conventional physical
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quantities in terms of the directness of the measurement pro-
cedure. The conventional physical quantities can be directly
measured from the state changes of the measured system
itself, and probe systems are not necessarily required. In
contrast, in weak measurement, weak values are observed
not in the changes of the pre- and postselected system but in
the shifts of the probe system. This indirect characteristic of
weak measurement makes it difficult to consider weak values
as a naive extension of conventional physical quantities and
obscures what the weak values represent for the pre- and
postselected system. Because weak values inherently belong
to the pre- and postselected system [24], they should be
observed in that system’s changes.

In this study, we operationally formulate weak values
as the sensitivity of the pre- and postselected system to a
small transformation, such as unitary and amplification or
attenuation transformations. The weak value of the derivative
of the small transformation is observed as the response of
the postselection probability amplitude change. This relation
also holds for conventional physical quantities; therefore, this
formulation allows us to interpret weak values as a natural
extension of the conventional physical quantities regardless of
the presence of the probe systems. We apply this formulation
to cases of the quantum box problem [3,4] and the huge weak
value of spin [1] as examples and examine how the strange
weak values can be directly understood as a natural extension
of the conventional physical quantities such as probability and
spin angular momentum.

In addition, the weak values appearing in the modulus
change of the postselection probability amplitude in this for-
mulation can be measured directly using the system with-
out the need for external degrees of freedom. Therefore,
the weak-value measurements based on this formulation are
easier to implement than conventional weak measurements,
which require the preparation and measurement of the probe
system. We discuss the applicability of this simple weak-value
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measurement method and evaluate its performance in terms of
accuracy and precision.

This paper is organized as follows. In Sec. II, we intro-
duce an operational formulation of weak values and explain
how to obtain the real and imaginary parts of weak values
experimentally in this formulation. In Sec. III, we apply this
formulation to the cases of the quantum box problem and the
huge weak value of spin as examples. In Sec. IV, we examine
the performance of this method to show that it can be used to
simplify measurement experiments for various applications of
weak values. Finally, we summarize the findings of our study
in Sec. V.

II. OPERATIONAL FORMULATION OF WEAK VALUES
WITHOUT PROBE SYSTEMS

In this section, we operationally formulate the weak values
as the sensitivity of the postselection probability amplitude
when a small transformation is set between the pre- and
postselection. In Sec. II A, we first introduce a small linear
transformation and provide the general theory of this for-
mulation. In Secs. II B and II C, we describe how to obtain
real and imaginary parts of weak values in this formulation,
respectively. In Sec. II D, we extend this formulation to the
case of the mixed pre- and postselection and that of the
preselection only. In Sec. II E, we mention the previous studies
related to this formulation of weak values.

A. General theory

To derive an operational formulation of the weak value
of a normal operator Ĉ for a pre- and postselected system,
we first introduce the following small linear transformation
N̂ (θ ). N̂ (θ ) is a normal operator parametrized by a small real
parameter θ , which maps a pure state onto another pure state.
We assume that N̂ (θ ) satisfies N̂ (0) = 1̂ and can be expanded
for θ as [25]

N̂ (θ ) = 1̂ + θĈ + O(θ2). (2)

Ĉ is the derivative of N̂ (θ ) at θ = 0, and we call Ĉ the
generator of N̂ (θ ). While the exponential form exp(θĈ) is an
example of N̂ (θ ), we do not limit N̂ (θ ) to the exponential form
here.

We next consider the pre- and postselected systems
{|i〉, |f〉} shown in Figs. 1(a) and 1(b). In the system of
Fig. 1(b), a small linear transformation N̂ (θ ) is set between
the pre- and postselection. After the postselection, the out-
put states have postselection probability amplitudes 〈f|i〉 and
〈f|N̂ (θ )|i〉. We evaluate the sensitivity of 〈f|N̂ (θ )|i〉 to θ by
the ratio of 〈f|N̂ (θ )|i〉 to 〈f|i〉.

This ratio can be expanded for θ as

〈f|N̂ (θ )|i〉
〈f|i〉 = 1 + 〈Ĉ〉wθ + O(θ2). (3)

This equation indicates that the derivative of this ratio for θ at
θ = 0 corresponds to the weak value of Ĉ:

d

dθ

〈f|N̂ (θ )|i〉
〈f|i〉

∣∣∣∣
θ=0

= 〈Ĉ〉w. (4)

FIG. 1. Schematic overview of the proposed operational formu-
lation of weak values. (a) Pre- and postselected system {|i〉, |f〉}.
The postselected state has a postselection probability amplitude 〈f|i〉.
(b) The pre- and postselected system that includes a small transfor-
mation N̂ (θ ). For its postselection probability amplitude 〈f|N̂ (θ )|i〉,
its modulus is magnified 1 + Re〈Ĉ〉wθ times, and its argument is
shifted by Im〈Ĉ〉wθ compared with 〈f|i〉. (c) Relation between 〈f|i〉
and 〈f|N̂ (θ )|i〉 on the complex plane. The real and imaginary parts
of 〈Ĉ〉w appear in the differences of the modulus and the argument
between them, respectively. The higher-order term O(θ2) is not
displayed here. (d) Relation between |〈f|N̂ (θ )|i〉/〈f|i〉| and Re〈Ĉ〉w.
Re〈Ĉ〉w is represented as the slope of |〈f|N̂ (θ )|i〉/〈f|i〉| at θ = 0.
(e) Relation between arg[〈f|N̂ (θ )|i〉/〈f|i〉] and Im〈Ĉ〉w. Im〈Ĉ〉w is
represented as the slope of arg[〈f|N̂ (θ )|i〉/〈f|i〉] at θ = 0.

In other words, for the pre- and postselected system {|i〉, |f〉},
〈Ĉ〉w is formulated as the sensitivity (i.e., rate of change) of
the postselection probability amplitude to the small transfor-
mation whose generator is Ĉ.

Moreover, Eqs. (3) and (4) can be rewritten as [26]

〈f|N̂ (θ )|i〉
〈f|i〉 = (1 + Re〈Ĉ〉wθ ) exp[i Im〈Ĉ〉wθ ] + O(θ2), (5)

d

dθ

∣∣∣∣ 〈f|N̂ (θ )|i〉
〈f|i〉

∣∣∣∣
∣∣∣∣
θ=0

= Re〈Ĉ〉w, (6)

d

dθ
arg

〈f|N̂ (θ )|i〉
〈f|i〉

∣∣∣∣
θ=0

= Im〈Ĉ〉w. (7)
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TABLE I. Relations between each type of small transformation
and the variation of the modulus and argument of 〈f|N̂ (θ )|i〉.

Variation of 〈f|N̂ (θ )|i〉:
Small transformation Modulus Argument

Unitary:
Û (θ ) = 1̂ + iθ Â + O(θ2) −|〈f|i〉|Im〈Â〉wθ Re〈Â〉wθ

Amplification or attenuation:
T̂ (θ ) = 1̂ + θ B̂ + O(θ2) |〈f|i〉|Re〈B̂〉wθ Im〈B̂〉wθ

Equation (5) means that the modulus of 〈f|N̂ (θ )|i〉 is mag-
nified 1 + Re〈Ĉ〉wθ times, and its argument is shifted by
Im〈Ĉ〉wθ compared with 〈f|i〉. This relation is depicted on
the complex plane shown in Fig. 1(c). Equations (6) and
(7) mean that the real and imaginary parts of 〈Ĉ〉w are for-
mulated as the sensitivity of the variation of the modulus
and argument of the postselection probability amplitude. The
relations between |〈f|N̂ (θ )|i〉/〈f|i〉| and Re〈Ĉ〉w and between
arg[〈f|N̂ (θ )|i〉/〈f|i〉] and Im〈Ĉ〉w are depicted in Figs. 1(d)
and 1(e), respectively.

The remainder of this section notes the special cases of
the small transformation N̂ (θ ). The generator Ĉ is expressed
using two Hermite operators Â and B̂ as Ĉ = iÂ + B̂. When
Ĉ = iÂ, N̂ (θ ) becomes a unitary transformation Û (θ ) := 1̂ +
iθ Â + O(θ2) in the first-order approximation of θ . In contrast,
when Ĉ = B̂, N̂ (θ ) becomes an amplification or attenuation
transformation T̂ (θ ) := 1̂ + θ B̂ + O(θ2), which amplifies (at-
tenuates) the moduli of the amplitudes in the eigenspaces of
B̂ whose eigenvalues are positive (negative) when θ > 0 (how
to realize the amplification or attenuation transformation by
unitary processes is explained in Appendix A). Because of the
following relations:

Re〈Ĉ〉w = −Im〈Â〉w + Re〈B̂〉w, (8)

Im〈Ĉ〉w = Re〈Â〉w + Im〈B̂〉w, (9)

Re〈Â〉w, Im〈Â〉w, Re〈B̂〉w, and Im〈B̂〉w appear in the variation
of 〈f|N̂ (θ )|i〉 as shown in Table I.

B. How to obtain Re〈Ĉ〉w experimentally

This section and the next section describe how to obtain
Re〈Ĉ〉w and Im〈Ĉ〉w experimentally, respectively. Accord-
ing to Eqs. (5) and (6), Re〈Ĉ〉w appears in the modulus
of 〈f|N̂ (θ )|i〉/〈f|i〉. The square of this modulus can be ob-
tained by measuring the postselection probability P(f|i, θ ) :=
|〈f|N̂ (θ )|i〉|2 by the system shown in Fig. 2(a) as

P(f|i, θ )

P(f|i, 0)
= |〈f|N̂ (θ )|i〉|2

|〈f|N̂ (0)|i〉|2 =
∣∣∣∣ 〈f|N̂ (θ )|i〉

〈f|i〉
∣∣∣∣
2

. (10)

Therefore, Re〈Ĉ〉w can be obtained experimentally by measur-
ing the postselection probability P(f|i, θ ) for θ = 0 and θ �= 0
as

P(f|i, θ )

P(f|i, 0)
= 1 + 2 Re〈Ĉ〉wθ + O(θ2), (11)

d

dθ

P(f|i, θ )

P(f|i, 0)

∣∣∣∣
θ=0

= 2 Re〈Ĉ〉w. (12)

(a)

(b)

Detector

(c)

Slope:

FIG. 2. (a) Schematic diagram of the pre- and postse-
lected system for measuring Re〈Ĉ〉w. (b),(c) Relation between
P(f|i, θ )/P(f|i, 0) and Re〈Ĉ〉w. (b) Re〈Ĉ〉w is represented as a half of
the slope of P(f|i, θ )/P(f|i, 0) at θ = 0. (c) Experimentally, Re〈Ĉ〉w

is obtained as the difference between 1 and P(f|i, θ ′)/P(f|i, 0) for
small θ ′.

The relation between P(f|i, θ )/P(f|i, 0) and Re〈Ĉ〉w is illus-
trated in Figs. 2(b) and 2(c). Equation (12) indicates that
Re〈Ĉ〉w is represented as the slope of P(f|i, θ )/P(f|i, 0) at
θ = 0. Experimentally, Re〈Ĉ〉w is obtained as the difference
between 1 and P(f|i, θ )/P(f|i, 0) for small θ . Remarkably,
this method to obtain Re〈Ĉ〉w does not require a probe system,
which is unlike conventional weak measurement. As Eq. (8)
indicates, Re〈Ĉ〉w = Re〈Â〉w when Ĉ = Â, and Re〈Ĉ〉w =
−Im〈Â〉w when Ĉ = iÂ, for a Hermite operator Â. Therefore,
both the real and imaginary parts of the weak value for the
desired Hermite operator Â can be obtained experimentally
without using probe systems. This characteristic can be a
practical advantage for weak-value measurement experiments
and will be discussed in Sec. IV.

C. How to obtain Im〈Ĉ〉w experimentally

Next, we describe how to obtain Im〈Ĉ〉w experimentally
in this formulation. According to Eqs. (5) and (7), Im〈Ĉ〉w

appears in the argument of 〈f|N̂ (θ )|i〉/〈f|i〉. This argument can
be obtained experimentally by measuring the phase difference
between arg〈f|N̂ (θ )|i〉 for θ �= 0 and θ = 0 as

arg〈f|N̂ (θ )|i〉 − arg〈f|N̂ (0)|i〉 = arg
〈f|N̂ (θ )|i〉

〈f|i〉
= Im〈Ĉ〉wθ + O(θ2). (13)

This argument shift, which appears in the global phase of
the postselected state, cannot be measured experimentally
with only the system shown in Fig. 2(a); however, using an
interferometer for another degree of freedom as in Figs. 3(a)
and 3(b), we can measure it experimentally. The added ex-
ternal degree of freedom is depicted as the path mode in the
interferometer. The internal degrees of freedom are pre- and
postselected to |i〉 and |f〉, respectively, and, in the upper path,
the small linear transformation N̂ (θ ) is set between the pre-
and postselection. The relative phase δ in the interferometer
is varied by the phase shifter eiδ in the lower path. The
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(a)
BS

BS

Detector

(c)

Path qubit

Measured
system

(b)

FIG. 3. (a) Schematic diagram of the interferometer for measur-
ing Im〈Ĉ〉w. The upper and lower path modes in the interferometer
show the added external degrees of freedom. BS: beam splitter,
which works as a Hadamard operator for the external degrees of
freedom. (b) Quantum circuit representation of the interferometer
(a). (c) Variation of the detection probability P(f|i, θ, δ) with respect
to δ. The black dashed and green solid lines are the cases for θ = 0
and θ �= 0, respectively. The phase shift of the interference fringes
corresponds to arg[〈f|N̂ (θ )|i〉/〈f|i〉], which approximately equals
Im〈Ĉ〉w.

postselection probability P(f|i, θ, δ) is expressed as

P(f|i, θ, δ) = |〈f|i〉|2
4

{∣∣∣∣ 〈f|N̂ (θ )|i〉
〈f|i〉

∣∣∣∣
2

+ 1

+
∣∣∣∣ 〈f|N̂ (θ )|i〉

〈f|i〉
∣∣∣∣2 cos

[
δ − arg

〈f|N̂ (θ )|i〉
〈f|i〉

]}
,

(14)

which exhibits interference fringes with respect to δ. For
θ �= 0, the phase of the interference fringe is displaced
by arg[〈f|N̂ (θ )|i〉/〈f|i〉] from that for θ = 0, and the slope
of arg[〈f|N̂ (θ )|i〉/〈f|i〉] at θ = 0 corresponds to Im〈Ĉ〉w,
as shown in Fig. 3(c). Therefore, Im〈Ĉ〉w can be ob-
tained by measuring the interference fringe’s phase shift
arg[〈f|N̂ (θ )|i〉/〈f|i〉] for small θ . We note that measurement
of Im〈Ĉ〉w requires another degree of freedom, which corre-
sponds to a probe system in conventional weak measurement,
whereas the formulation of Im〈Ĉ〉w in Eq. (7), i.e., how it
appears in mathematical formulas, does not require it.

D. Case of mixed pre- and postselection and that
of preselection only

Here, we extend the proposed operational formulation of
weak values to the case of the mixed pre- and postselection.
Then, we use this extended formulation to show that the
expectation values for a preselected system are formulated in

the same form as the weak values for a pre- and postselected
system. This relation indicates that the weak values are natural
extensions of the expected values, regardless of the presence
of the probe systems.

The weak value of Ĉ for the system pre- and postselected
in the mixed states ρ̂i and ρ̂f , respectively, is given as

〈Ĉ〉w = tr(ρ̂fĈρ̂i )

tr(ρ̂f ρ̂i )
. (15)

The formulation proposed in Sec. II A appears to not be
suitable for this case because the postselection probability
amplitude is not defined for mixed states. However, the mea-
surement methods introduced in Secs. II B and II C also work
to observe the real and imaginary parts of the weak values
even for the case of the mixed pre- and postselection. In
the system shown in Fig. 2(a), the postselection probability
for the pre- and postselection {ρ̂i, ρ̂f} is given as P(f|i, θ ) =
tr[ρ̂f N̂ (θ )ρ̂iN̂†(θ )]. Therefore, the following relation same as
Eq. (12) holds:

d

dθ

P(f|i, θ )

P(f|i, 0)

∣∣∣∣
θ=0

= d

dθ

tr[ρ̂f N̂ (θ )ρ̂iN̂†(θ )]

tr(ρ̂f ρ̂i )

∣∣∣∣
θ=0

= 2 Re〈Ĉ〉w.

(16)

Similarly, the postselection probability in the system shown in
Fig. 3(a) is given as

P(f|i, θ, δ) = tr(ρ̂f ρ̂i )

4

{
tr[ρ̂f N̂ (θ )ρ̂iN̂†(θ )]

tr(ρ̂f ρ̂i )
+ 1

+
∣∣∣∣ tr[ρ̂f N̂ (θ )ρ̂i]

tr(ρ̂f ρ̂i )

∣∣∣∣2 cos

[
δ− arg

tr[ρ̂f N̂ (θ )ρ̂i]

tr(ρ̂f ρ̂i )

]}
.

(17)

The phase difference between the interference fringes when
θ �= 0 and those when θ = 0, arg {tr[ρ̂f N̂ (θ )ρ̂i]/tr(ρ̂f ρ̂i )},
shows the following relation same as Eq. (7):

d

dθ
arg

tr[ρ̂f N̂ (θ )ρ̂i]

tr(ρ̂f ρ̂i )

∣∣∣∣
θ=0

= Im〈Ĉ〉w. (18)

As a special case of the mixed pre- and postselection,
postselection in the completely mixed state 1̂/d (d is the
dimension of the system) corresponds to the case of the
preselection only. Especially, when the preselected state is a
pure state ρ̂i = |i〉〈i|, Eq. (16) becomes

d

dθ

‖N̂ (θ )|i〉‖
‖|i〉‖

∣∣∣∣
θ=0

= Re〈i|Ĉ|i〉. (19)

This equation means that the real part of the expectation value
of Ĉ for the preselected state |i〉 appears in the sensitivity to
θ of the ratio of the norms of N̂ (θ )|i〉 for θ �= 0 and θ = 0.
The formulation of Re〈Ĉ〉w in Eq. (6), which seems to have a
different form from that of Eq. (19), can also be rewritten as
the ratio of the norms after the postselection as

d

dθ

‖〈f|N̂ (θ )|i〉|f〉‖
‖〈f|i〉|f〉‖

∣∣∣∣
θ=0

= Re〈Ĉ〉w. (20)

Besides, Eq. (18) for the preselected system |i〉 becomes

d

dθ
arg〈i|[N̂ (θ )|i〉]

∣∣∣∣
θ=0

= Im〈i|Ĉ|i〉. (21)
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 the ratio of norms:
  

 the relative phase:
Sensitivity of{

FIG. 4. Unified interpretation of the expectation values and
the weak values in our formulation. The real (imaginary) part of
the expectation values appears in the sensitivity of the ratio of
norms (the relative phase) of the states with and without a small
transformation in the preselected system. This formulation using the
ratio of norms and the relative phase can also be applied to weak
values in the pre- and postselected system.

This equation indicates that the imaginary part of the expec-
tation value 〈Ĉ〉 appears in the sensitivity to θ of the relative
phase of N̂ (θ )|i〉 to |i〉, where the relative phase of |ψ〉 to |φ〉
is defined as arg〈φ|ψ〉 [27]. The formulation of Im〈Ĉ〉w in
Eq. (7) can also be rewritten as the sensitivity of the relative
phase after the postselection as

d

dθ
arg[〈f|〈i|f〉][〈f|N̂ (θ )|i〉|f〉]|θ=0 = Im〈Ĉ〉w. (22)

In this manner, a unified interpretation of the expectation
values and the weak values is given in our formulation, as
shown in Fig. 4, and the weak values are interpreted as natural
extensions of the expected values in our formulation, which
requires no probe systems.

E. Related previous studies and difference of our formulation

The operational formulation of weak values as the sensitiv-
ity of the system to a small transformation has been mentioned
partially in previous studies [9,28–34]. Our formulation de-
scribed so far is a generalization of them. Here, we refer to
each of them and explain the difference of our formulation.

The relation between the modulus change of postselection
probability amplitude and the weak value of the generator of
the small transformation in Eq. (6) [or Eq. (12)] has been
mentioned in Refs. [9,28–33]. References [28–32] assume
that the small transformation is the unitary transformation
in the form of exp(iθ Â) and show that Im〈Â〉w appears in
the modulus change of postselection probability amplitude.
References [9,29] assume the attenuation transformation in
the form of exp(θ B̂) and show that Re〈B̂〉w appears there.
In contrast, the relation between the argument shift of post-
selection probability amplitude and the weak value of the
generator of the small transformation in Eq. (7) has been
mentioned in Refs. [30,33,34]. These studies assume that the
small transformation is the unitary transformation in the form
of exp(iθ Â) and show that Re〈Â〉w appears in the argument
shift of postselection probability amplitude. Also, we note that
Refs. [9,28,29,32,34] do not assume the use of probe systems

like our formulation, whereas Refs. [30,31,33] assume the von
Neumann interaction with probe systems.

Compared with the related previous studies, our formu-
lation of weak values has the following difference. (i) A
small transformation is considered to be not only the unitary
transformation exp(iθ Â) and the attenuation transformation
exp(θ B̂) but also the general form of Eq. (2). It includes,
for example, a mixture of the unitary and attenuation trans-
formations, an amplification transformation, and a linearly
parametrized attenuation transformation 1̂ − θĈ. (ii) It is
noteworthy that when a small amplification or attenuation
transformation 1̂ + θ B̂ + O(θ2) is set between pre- and posts-
election, the imaginary part of the weak value of B̂ appears in
the argument shift of the postselection probability amplitude,
as shown in the bottom right of Table I. (iii) Our formulation
is applicable to the systems pre- and postselected in mixed
states, which include preselected-only systems. Consequently,
the weak values are interpreted as natural extensions of the
expected values even without probe systems.

III. EXAMPLES OF DIRECT INTERPRETATION OF
STRANGE WEAK VALUES BY THE OPERATIONAL

FORMULATION

In this section, we apply our formulation of weak values
to the examples of the strange weak values. We deal with
the case of the quantum box problem [3,4] in Sec. III A,
and the case of the huge weak value of the spin of a spin-
1/2 particle [1] in Sec. III B. In both sections, we explain
how the conventional physical quantities—classical physical
quantities and/or quantum expectation values—and the weak
values are interpreted directly by our formulation.

A. Case of quantum box problem

Here, we analyze the quantum box problem using a small
attenuation transformation, as an example of the case where
the real part of the weak value appears in the sensitivity of the
postselection probability mentioned in Sec. II B. The quantum
box problem was proposed as a gedanken experiment where
a pre- and postselected system shows a curious result [3] and,
later, its three box version (three box problem) was experi-
mentally demonstrated using optical weak measurement [4].
In the three box problem, the particle can be a superposition of
three orthogonal path states |A〉, |B〉, and |C〉. When the parti-
cle is pre- and postselected in |i〉 = (|A〉 + |B〉 + |C〉)/

√
3 and

|f〉 = (|A〉 + |B〉 − |C〉)/
√

3, respectively, the weak values of
the projection operators of the paths, which are called weak
probabilities, become

〈|A〉〈A|〉w = 〈|B〉〈B|〉w = 1, 〈|C〉〈C|〉w = −1. (23)

Unlike ordinary probabilities, the weak probabilities can be
arbitrary complex values out of [0,1] while satisfying that the
sum of them is one. Here, we explain that in the proposed
formulation, such strange weak probabilities can also be
understood in a similar way to the existence probabilities of
particles in classical and preselected quantum systems.

First, let us consider the classical pre- and postselected sys-
tem shown in 5(a), in which the particle is prepared in the path
j with a probability of pi, j (

∑
j pi, j = 1) at preselection and
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FIG. 5. (a),(b) Pre- and postselected classical system and its
normalized detection probability when a probabilistic shutter is set
on the path A. The solid blue curve shows that for the case of pi,k =
pf,k = 1/3 for all k. Its slope at θ = 0, −2 × (1/3), indicates that the
conditional existence probability on the path A of the postselected
particle is 1/3. The green dashed curve shows that for the case of
pi,A = 1 and its slope at θ = 0, −2 × 1, indicates that the particle has
existed on the path A with a probability of 1. (c),(d) Quantum system
preselected in |i〉 and its detection probability when an attenuator
is set on the path A. The solid blue curve and green dashed curve
show those for the case of |i〉 = (|A〉 + |B〉 + |C〉)/

√
3 and |i〉 =

|A〉, respectively. As in graph (b), their slopes at θ = 0 indicate
the conditional existence probability on the path A. (e) Quantum
system pre- and postselected in |i〉 = (|A〉 + |B〉 + |C〉)/

√
3 and

|f〉 = (|A〉 + |B〉 − |C〉)/
√

3, respectively. (f) Normalized detection
probabilities when an attenuator is set on the path A (solid blue curve)
and C (dash-dot blue curve). The slope of the solid blue curve at
θ = 0 is −2 × 1, which looks as if the particle has existed on the
path A with a probability of 1. The slope of the dash-dot blue curve
at θ = 0 is −2 × (−1), which looks as if a “negative” particle has
existed on the path C.

is detected in path j with a probability of pf, j at postselection.
The detection probability P(f|i) is given as

P(f|i) = pi,A pf,A + pi,B pf,B + pi,C pf,C . (24)

Next, we put a probabilistic shutter, which passes the particle
with a probability of e−2θ (θ is a non-negative real parameter)
on the path k. In this case, the detection probability P(f|i, k, θ )
is given as

P(f|i, k, θ ) = P(f|i) − (1 − e−2θ )pi,k pf,k . (25)

The normalized detection probability P(f|i, k, θ )/P(f|i) has
the following derivative with respect to θ at θ = 0:

d

dθ

P(f|i, k, θ )

P(f|i)
∣∣∣∣
θ=0

= −2
pi,k pf,k

P(f|i) . (26)

The right-hand side [pi,k pf,k/P(f|i)] means the conditional ex-
istence probability on the path k of the postselected particles,
and it appears in the sensitivity of the normalized detection
probability [P(f|i, k, θ )/P(f|i)] with respect to θ at θ = 0.
The relation between P(f|i, A, θ )/P(f|i) and pi,A pf,A/P(f|i) is
depicted in Fig. 5(b). For example, when pi,k = pf,k = 1/3
for all k, the particle’s conditional existence probability is
1/3, and the variation of P(f|i, A, θ )/P(f|i) (blue solid curve)
has a slope of −2 × (1/3) at θ = 0. In another example,
when pi,A = 1, the particle has existed on the path A with a
probability of 1, and the variation of P(f|i, A, θ )/P(f|i) (green
dashed curve) has a slope of −2 × 1 at θ = 0. These results
can be intuitively understood: a path with a higher existence
probability should be more affected by the shutter, and the
reduction rate of the normalized detection probability should
be larger.

This intuitive relation also holds for preselected quantum
systems. Next, we consider the quantum system preselected
in |i〉 shown in Fig. 5(c). Because postselection is not per-
formed, the detection probability is P(f|i) = ‖|i〉‖2 = 1. The
filter on the path k with amplitude transmittance e−θ , which
corresponds to the probabilistic shutter in the classical case, is
represented as an attenuation transformation exp(−θ |k〉〈k|).
The detection probability P(f|i, k, θ ) is given as

P(f|i, k, θ ) = ‖ exp(−θ |k〉〈k|)|i〉‖2

= 1 − (1 − e−2θ )〈i|k〉〈k|i〉 (27)

and the derivative of the normalized detection probability
P(f|i, k, θ )/P(f|i) with respect to θ at θ = 0 is given as

d

dθ

P(f|i, k, θ )

P(f|i)
∣∣∣∣
θ=0

= d

dθ

‖ exp(−θ |k〉〈k|)|i〉‖2

‖|i〉‖2

∣∣∣∣
θ=0

= −2〈i|k〉〈k|i〉. (28)

Therefore, the existence probability of the particle on the
path k (〈i|k〉〈k|i〉) appears in the sensitivity of the normalized
detection probability [P(f|i, k, θ )/P(f|i)] with respect to θ

at θ = 0, as mentioned in Sec. II D. The relation between
P(f|i, A, θ )/P(f|i) and 〈i|A〉〈A|i〉 is depicted in Fig. 5(d).
The variation of P(f|i, A, θ )/P(f|i) when |i〉 = (|A〉 + |B〉 +
|C〉)/

√
3 (solid blue curve) and |i〉 = |A〉 (green dashed curve)

show the same curves as those of the classical system in
Fig. 5(b).

Finally, we consider the quantum system pre- and posts-
elected in |i〉 and |f〉, respectively, shown in Fig. 5(e). The
detection probability with the attenuation filter on the path k
is represented as

P(f|i, k, θ ) = |〈f| exp(−θ |k〉〈k|)|i〉|2
= |〈f|i〉|2[1 − (1 − e−θ )2 Re〈|k〉〈k|〉w

+ (1 − e−θ )2|〈|k〉〈k|〉w|2]. (29)
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FIG. 6. (a) Schematic setup considered in Sec. III B. The spin-1/2 particles are pre- and postselected in |i〉 and |f〉 by the Stern-Gerlach
devices SG-i and SG-f, respectively. Between the pre- and postselection, the particles undergo a unitary transformation Û (θ ) = exp(iθ Ŝz )
by a uniform magnetic field in z direction. θ corresponds to the strength of the unitary transformation, which includes the interaction time t
and the strength of the magnetic field B. The particles’ states before the postselection, Û (θ )|i〉 and |i〉, show the relative phase arg〈i|Û (θ )|i〉,
and those after the postselection, |f〉〈f|Û (θ )|i〉 and |f〉〈f|i〉, show the relative phase arg[〈f|Û (θ )|i〉/〈f|i〉]. (b) Bloch sphere representation of
the pre- and postselected states. When δ is small, the pre- and postselected states are nearly orthogonal. (c) Variation of the relative phases
arg〈i|Û (θ )|i〉 (blue solid line) and arg[〈f|Û (θ )|i〉/〈f|i〉] (blue dashed line) when χ = 7π/16 (δ = π/16). The slope of arg〈i|Û (θ )|i〉 at θ = 0
corresponds to the expectation value of the spin angular momentum for |i〉: cos(χ )h̄/2 ∈ [−h̄/2, h̄/2]. The slope of arg[〈f|Û (θ )|i〉/〈f|i〉] at
θ = 0 is [cos(χ )]−1h̄/2 ≈ δ−1 h̄/2, which becomes arbitrarily large when δ is small. When this slope is identified with their spin angular
momentum, it seems like the postselected particles have a huge spin angular momentum.

The derivative of the normalized detection probability
P(f|i, k, θ )/P(f|i) with respect to θ at θ = 0 is given as

d

dθ

P(f|i, k, θ )

P(f|i)
∣∣∣∣
θ=0

= −2 Re〈|k〉〈k|〉w, (30)

which has the same form as Eq. (12) in which Ĉ = −|k〉〈k|.
The weak probability on the path k (〈|k〉〈k|〉w) appears in
the rate of change of the normalized detection probability
[P(f|i, k, θ )/P(f|i)] with respect to θ at θ = 0. By identify-
ing Eq. (30) with Eqs. (26) and (28), the weak probability
can be understood in the same manner as the ordinary ex-
istence probability of the particle. When |i〉 = (|A〉 + |B〉 +
|C〉)/

√
3 and |f〉 = (|A〉 + |B〉 − |C〉)/

√
3, the variation of

P(f|i, k, θ )/P(f|i) for k = A and C are illustrated as the solid
and dash-dot blue curves, respectively, in Fig. 5(f). The solid
blue curve, whose slope at θ = 0 is −2 × 1, has the same
shape as the green dashed lines in Figs. 5(b) and 5(d); there-
fore, the variation of P(f|i, A, θ )/P(f|i) looks as if the particle
exists on path A with a probability of 1. The same argument
holds for the path B. In contrast, the dash-dot blue curve,
whose slope at θ = 0 is −2 × (−1), has no counterparts in the
classical and preselected quantum systems. The normalized
detection probability P(f|i,C, θ )/P(f|i) is amplified despite
the attenuation transformation exp(−θ |C〉〈C|), and it looks
as if a “negative” particle exists on the path C [29]. In this
manner, the strange weak probabilities can be understood in a
similar way as the correspondence between the particle’s con-
ditional existence probability and the response of the detection
probability to an attenuation transformation in classical or
preselected quantum systems.

B. Case of the large weak value of the spin of a spin-1/2 particle

In the seminal paper of weak values [1], Aharonov et al.
proposed that the weak value of the spin z of a spin-1/2
particle can be 100h̄ under appropriate pre- and postselection.
We next analyze this huge spin weak value using a small
unitary transformation, as an example of the case where the
real part of the weak value appears in the sensitivity of the ar-

gument of the postselection probability amplitude mentioned
in Sec. II C. Based on our formulation of weak values, we
explain that this huge spin weak value can also be observed
in the change of the spin system itself under a magnetic
field, in a method similar to the expectation value of the spin
angular momentum in a preselected-only spin system. Note
that their classical counterpart is not considered here because
the argument cannot be defined in the classical system.

First, we consider that a spin-1/2 system preselected in
|i〉 interacts slightly with the z-directional uniform constant
magnetic field B as shown in Fig. 6(a). Ŝz is the z-directional
spin operator of a spin-1/2 particle, and |0〉 and |1〉 are the
eigenstates of Ŝz for eigenvalues +h̄/2 and −h̄/2, respec-
tively. The interaction Hamiltonian is Ĥ = −γ ŜzB, where
γ is the gyromagnetic ratio, and the time evolution unitary
operator for time t is exp(iγ ŜzBt/h̄) = exp(iθ Ŝz ) =: Û (θ ),
where θ := γ Bt/h̄. After the interaction, the spin state is
transformed into Û (θ )|i〉. While the unitary transformation
Û (θ ) does not change the norm of Û (θ )|i〉, the global phase
of Û (θ )|i〉 changes depending on the spin z component of
|i〉. The relative phase of Û (θ )|i〉 to |i〉 shows the following
relations:

d

dθ
arg〈i|[Û (θ )|i〉]|θ=0 = Im〈i|(iŜz )|i〉 = 〈i|Ŝz|i〉. (31)

Therefore, the expectation value of Ŝz for the preselected state
|i〉 (〈i|Ŝz|i〉) appears in the sensitivity to θ of the relative
phase of Û (θ )|i〉 to |i〉 [arg〈i|Û (θ )|i〉] under an external effect
(the magnetic field), as mentioned in Sec. II D. The variation
of arg〈i|Û (θ )|i〉 for |i〉 = cos(χ/2)|0〉 + sin(χ/2)|1〉 (χ ∈
[0, π ]) is shown in Fig. 6(c). Its slope at θ = 0 is 〈i|Ŝz|i〉 =
cos(χ )h̄/2, which is bounded in the range of the eigenvalues
of Ŝz, [−h̄/2, h̄/2].

Next, we consider a spin-1/2 system pre- and postselected
in |i〉 and |f〉, respectively, as shown in Fig. 6(a). The post-
selected (unnormalized) state becomes |f〉〈f|Û (θ )|i〉, and its
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relative phase to |f〉〈f|i〉 shows the following relations:

d

dθ
arg[〈i|f〉〈f|][|f〉〈f|Û (θ )|i〉]|θ=0 = d

dθ
arg

〈f|Û (θ )|i〉
〈f|i〉

∣∣∣∣
θ=0

= Re〈Ŝz〉w. (32)

Equation (32) has the same form as that of Eq. (7) in which
Ĉ = iŜz and indicates that Re〈Ŝz〉w corresponds to the sen-
sitivity to θ of the relative phase of |f〉〈f|Û (θ )|i〉 to |f〉〈f|i〉
[34]. Unlike 〈i|Ŝz|i〉 in Eq. (31), Re〈Ŝz〉w can be an arbitrary
real number. For example, if |i〉 = cos(χ/2)|0〉 + sin(χ/2)|1〉
and |f〉 = cos(χ/2)|0〉 − sin(χ/2)|1〉 (χ ∈ [0, π ]) as shown
in Fig. 6(b), Re〈Ŝz〉w = [cos(χ )]−1h̄/2. When χ = π/2 − δ

and 0 < δ 
 1, Re〈Ŝz〉w ≈ δ−1h̄/2, which is much larger
than h̄/2. In this case, the relative phase arg[〈f|Û (θ )|i〉/〈f|i〉]
changes sensitively to the change of θ as shown in Fig. 6(c).
By identifying Eq. (32) with Eq. (31), the particles look as if
they have a huge angular momentum δ−1h̄/2. In this manner,
the huge weak value can be interpreted as a natural extension
of the expectation value of the spin angular momentum. We
note that the measurement of these relative phases requires an
additional degree of freedom as mentioned in Sec. II C.

IV. PERFORMANCE EVALUATION OF WEAK-VALUE
MEASUREMENT METHOD WITHOUT

USING PROBE SYSTEMS

In the previous sections, we illustrated the conceptual
advantage of the proposed operational formulation of weak
values so that the strange weak values can be understood
directly. Here, we also note that the weak-values measurement
method based on this formulation has a practical advantage,
i.e., this measurement system can be simplified compared
with the original weak measurement. In contrast, the original
weak measurement requires the preparation and measurement
of the probe system. The measurement of the weak values ap-
pearing in the modulus change of the postselection probability
amplitude in our formulation can be performed by directly
measuring the system and external degrees of freedom are
not required. To clarify the applicability of our measurement
method to various weak-value measurement experiments, we
discuss the following three points. In Sec. IV A, we describe
how to apply our measurement method to weak-value ampli-
fication. In Sec. IV B, we evaluate the performance of our
measurement method as a weak-value estimation method in
terms of accuracy and precision. In Sec. IV C, we mention the
weak-value measurement methods other than weak measure-
ment previously reported and compare the advantages of these
methods and our measurement method.

A. Weak-value amplification in the proposed formulation

Weak-value amplification [11–14], which is one of the
most important applications of weak measurement, aims to es-
timate the interaction strength of a given weak von Neumann
interaction between two systems. Because the measurement
systems for weak-value amplification inevitably involve probe
systems, our measurement method appears not applicable
to weak-value amplification directly. In this section, we de-
scribe how to apply our measurement method to weak-value
amplification.

(b)

Detector

(a)

FIG. 7. (a) Quantum system for weak-value amplification. The
upper system (system 1) is pre- and postselected in |i〉1 and |f〉1,
respectively. The lower system (system 2) is a probe system pres-
elected in |φi〉2 and, after the interaction Û12(θ ), the probe shift is
measured. When |1〈f|i〉1| 
 1, |〈Â1〉w| becomes large; therefore, the
probe shift can be detected even if θ is very small. (b) Quantum
system in our measurement method. Systems 1 and 2 are considered
as a composite system pre- and postselected in |Ψi〉12 and |Ψf〉12,
respectively. θ is estimated from the variation of the postselection
probability P(Ψf |Ψi, θ ), which can be detected even if θ is very small
when |12〈Ψf |Ψi〉12| 
 1.

As shown in Fig. 7(a), in weak-value amplification, a
weak von Neumann interaction between a system to be mea-
sured (system 1) and a probe system (system 2) is given,
and the unitary transformation caused by this interaction
is expressed as Û12(θ ) = exp(iθ Â1 ⊗ Â2), where Â1 and Â2

are Hermite operators on the systems 1 and 2, respectively,
and θ is a small real parameter to be estimated. To apply
our measurement method, we consider the two systems as
a composite single system as shown in Fig. 7(b). When
the total system is pre- and postselected in |Ψi〉12 = |i〉1|φi〉2

and |Ψf〉12 = |f〉1|φf〉2, respectively, the ratio of its postse-
lection probability P(Ψf |Ψi, θ ) for θ �= 0 to that for θ = 0 is
represented as

P(Ψf |Ψi, θ )

P(Ψf |Ψi, 0)
= |12〈Ψf |Û12(θ )|Ψi〉12|2

|12〈Ψf |Ψi〉12|2
= 1 + 2 Re(i〈Â1〉w〈Â2〉w)θ + O(θ2), (33)

where 〈Â1〉w := 1〈f|Â1|i〉1/1〈f|i〉1 and 〈Â2〉w :=
2〈φf |Â2|φi〉2/2〈φf |φi〉2. When the pre- and postselected
states are prepared so that i〈Â1〉w〈Â2〉w becomes a huge
real value, the difference P(θ )/P(0) − 1 can be detected
experimentally even if θ is very small, and when 〈Â1〉w and
〈Â2〉w are known, θ can be estimated from the difference
P(θ )/P(0) − 1. This is the same strategy as weak-value
amplification.

In the conventional weak measurement for weak-value
amplification, the amount of the probe shift needs to be mea-
sured. For example, optical weak measurement experiments
at the single-photon level require a single-photon detector
with spatial resolution, such as an electron multiplying CCD
camera or an avalanche photodiode array. However, our mea-
surement method can be realized with a relatively inexpensive
experimental device such as a photon detector without spatial
resolution. Therefore, the implementation of our measurement
method is easier than the conventional weak measurement.
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B. Accuracy and precision in the proposed
measurement method

Here, we evaluate the performance of our measurement
method as a weak-value estimation method in terms of the
accuracy and precision. First, the accuracy is defined as the
difference of the estimator for infinite number of trials from
the true value. In our measurement method, Eq. (3) indicates
that there is a difference O(θ2) between 〈f|N̂ (θ )|i〉/〈f|i〉 − 1
and 〈Ĉ〉wθ , and the estimator of the weak value for infinite
number of trials, [〈f|N̂ (θ )|i〉/〈f|i〉 − 1]/θ , contains an error of
O(θ ). Nevertheless, the first order term of θ in this error can be
canceled by measuring not only 〈f|N̂ (θ )|i〉/〈f|i〉 − 1 but also
〈f|N̂ (−θ )|i〉/〈f|i〉 − 1 and taking the difference between the
two as

〈f|N̂ (θ )|i〉
〈f|i〉 − 〈f|N̂ (−θ )|i〉

〈f|i〉 = 2〈Ĉ〉wθ + O(θ3). (34)

If the strength of the transformation θ is known, 〈Ĉ〉w can
be estimated with an error of O(θ2) for infinite number of
trials. This technique can be used for estimating the real
and imaginary part of weak values in Eqs. (11) and (13),
respectively, to cancel the first order term of θ in their errors.
In weak measurement using a Gaussian probe, the estimation
error of a weak value for infinite number of trials can also be
reduced to O(θ2), where θ is the interaction strength between
the measured and probe systems (see Appendix B for details).

Next, the precision is defined as the uncertainty (mean
square error deviation) of the estimator for finite number of
trials. The lower bound of this estimation uncertainty for n
trials, �〈Ĉ〉w, is given by quantum Cramér-Rao inequality
[35] as follows:

�〈Ĉ〉w � 1√
nF

� 1√
nFQ

, (35)

where F and FQ are classical and quantum Fisher information,
respectively. When θ is known and Re〈Ĉ〉w is to be estimated,
the classical Fisher information of the probability distribution
{P(f|i, θ ) = |〈f|N̂ (θ )|i〉|2, 1 − P(f|i, θ )} is given as

F = 4|〈f|i〉|2
1 − |〈f|i〉|2 θ2 + O(θ3). (36)

This value is larger than that for weak measurement using a
Gaussian probe (see Appendix B for details) and becomes
particularly large when the denominator 1 − |〈f|i〉|2 is close
to zero. In contrast, when θ is to be estimated, the quantum
Fisher information of the state N̂ (θ )|i〉 is given as

FQ = 4(〈i|Ĉ†Ĉ|i〉 − |〈i|Ĉ|i〉|2) + O(θ ). (37)

If Ĉ is anti-Hermite [i.e., N̂ (θ ) is unitary], the right equality in
Eq. (35) holds when the postselected state is chosen as

|f〉 = 1√
2

[
|i〉 + (1̂ − |i〉〈i|)Ĉ|i〉

‖(1̂ − |i〉〈i|)Ĉ|i〉‖

]
. (38)

We note that the weak value 〈Ĉ〉w is not huge for this |f〉,
which indicates that the strategy of weak-value amplification
is not optimal for such an ideal situation, similar to the
results in the previous studies [36–38]. Nevertheless, there
is a possibility that weak-value amplification becomes an

optimal strategy under the presence of a specific technical
noise [39–41].

C. Other weak-value measurement methods

While our measurement method is an alternative to weak
measurement to obtain weak values, some other weak-value
measurement methods have been proposed so far [42–49].
Here, we mention these weak-value measurement methods
other than weak measurement and compare the advantages of
each method and our measurement method.

Some of the methods previously reported [42–47] employ
indirect (von Neumann) measurement via strong system-
probe interactions. The others [48,49] are direct measurement
methods, in which weak values are obtained from a combi-
nation of several projective (strong) measurements of prese-
lected systems. These methods have an advantage over weak
measurement in terms of efficiency because of the strong
interactions or measurements, while the pre- and postselected
systems are strongly disturbed. Therefore, these methods can
be applied to, for example, direct measurements of wave
functions and pseudoprobability distributions of the system’s
preselected state [15–22].

In contrast, the characteristic of hardly disturbing mea-
sured pre- and postselected systems, which weak measure-
ment has, is essential for the studies that have investigated
physical quantities of quantum systems after postselection
by weak measurement [3–10] and weak-value amplification
[11–14]. Our weak-value measurement method also maintains
the characteristic of hardly disturbing the pre- and postse-
lected systems because the weak values are obtained at the
limit of very small transformation. Therefore, our measure-
ment method is widely applicable to such applications instead
of weak measurement.

V. CONCLUSION

In this study, we proposed an operational formulation of
weak values as the response of the pre- and postselected sys-
tem, without using probe systems. In this formulation, when
a small quantum transformation is given between the pre- and
postselections, the weak value of the generator of this small
transformation appears in the change of the postselection
probability amplitude. This formulation is a generalization
of the results that have been reported before and therefore
covers various cases, such as when the small transformation
is other than unitary or attenuation transformations, or when
the pre- and postselection is in a mixed state. We applied this
formulation to examples of the quantum box problem and the
huge weak value of spin to provide a direct interpretation of
the strange weak values as a natural extension of the conven-
tional physical quantities such as probability and spin angular
momentum. In addition, we explained that the measurement
of the weak values appearing in the modulus change of the
postselection probability amplitude in this formulation, which
does not require external degrees of freedom, can be applied
to simplify various weak-value measurement experiments.
Thus the proposed operational formulation of weak values,
freed from the concept of probe shift, is expected to play an
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important role in both fundamental and practical investigation
on weak values and pre- and postselection quantum systems.
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APPENDIX A: HOW TO REALIZE AMPLIFICATION
OR ATTENUATION TRANSFORMATION

In this Appendix, we describe how to realize the small
amplification or attenuation transformation by unitary pro-
cesses. While the time evolution of closed systems must be
unitary in quantum mechanics, the small amplification or
attenuation transformation in a target space can be realized
effectively by embedding that transformation into a unitary
transformation on a dilated space, as shown below. Let us
consider the target d-dimensional Hilbert space H and a
dilated (d + d ′)-dimensional Hilbert space H ⊕ H′, where
H′ is an additional d ′-dimensional Hilbert space satisfying
H′ ⊥ H. The initial state k(|i〉 + |χi〉), where |i〉 ∈ H, |χi〉 ∈
H′, and k = 1/

√〈i|i〉 + 〈χi|χi〉, undergoes unitary evolution
Û (θ ) = 1̂ + iθ Â + O(θ2), where Â is a Hermite operator on
H ⊕ H′ and then is projected onto H by P̂ := 1̂H ⊕ 0H′ . Â is

represented as Â =
[

Â11 Â12

Â21 Â22

]
, where Â11 : H → H and Â22 :

H′ → H′ are Hermite operators and Â12 : H′ → H and Â21 :
H → H′ satisfy Â†

12 = Â21 due to the Hermitian condition
Â† = Â. The resulting state after the transformation is given
as

P̂Û (θ )k(|i〉 + |χi〉) = (1̂ + iθ Â11)k|i〉 + iθ Â12k|χi〉 + O(θ2).

(A1)

The first term of the right-hand side, (1̂ + iθ Â11)k|i〉, rep-
resents the unitary evolution in H, and the second term,
iθ Â12k|χi〉 ∈ H, represents the inflow of the amplitude from
H′ to H. Therefore, if Â11 = 0 and iθ Â12k|χi〉 is represented
as B̂k|i〉, the amplification or attenuation transformation 1̂ +
θ B̂ + O(θ2) for the state k|i〉 is effectively realized.

Another way to realize an amplification or attenuation
transformation is using an interaction with an ancilla system.
Let us consider a weak von Neumann interaction between
a system to be measured (system 1) and a probe system
(system 2) expressed as exp(iθ Â1 ⊗ Â2), where Â1 and Â2

are Hermite operators on the systems 1 and 2, respectively.
When the system 2 is pre- and postselected in |φi〉2 and |φf〉2,
respectively, the system 1 undergoes the following effective
small transformation:

2〈φf |exp(iθ Â1 ⊗ Â2)|φi〉2

= 2〈φf |φi〉2[1 + θ (i〈Â2〉wÂ1) + O(θ2)], (A2)

where 〈Â2〉w := 2〈φf |Â2|φi〉2/2〈φf |φi〉2. If 〈Â2〉w is real, the
effective small transformation becomes a unitary transforma-
tion whose generator is an anti-Hermite operator i〈Â2〉wÂ1.

In contrast, if 〈Â2〉w is purely imaginary, the effective small
transformation becomes an amplification or attenuation trans-
formation whose generator is a Hermite operator i〈Â2〉wÂ1.
We note that the case where the norm of the state vector of
system 1 exceeds one because of the effective amplification
transformation is understood as follows: the postselection
probability for system 2 becomes larger than |2〈φf |φi〉2|2;
therefore, the number of trials of system 1 that remains after
the postselection of system 2 is increased.

APPENDIX B: ACCURACY AND PRECISION IN WEAK
MEASUREMENT USING A GAUSSIAN PROBE

In this Appendix, we provide the accuracy and precision in
weak measurement using a Gaussian probe. Before that, we
review the weak measurement using a Gaussian probe. The
initial states of the measured and probe systems are |i〉 and
|φ〉, respectively. We assume that |φ〉 can be expanded in the
position basis {|x〉} as

|φ〉 =
∫ ∞

−∞
dx φ(x)|x〉, φ(x) = 1

π1/4
√

σ
exp

−x2

2σ 2
. (B1)

The initial state |i〉|φ〉 is evolved through the weak system-
probe interaction exp(−iθ Â ⊗ p̂), where Â is the measured
observable, p̂ is the momentum operator of the probe system,
and θ is a small coupling constant satisfying θ‖Â‖ 
 σ

(‖Â‖ is the maximum eigenvalue of Â). After the system is
postselected into |f〉, the un-normalized state of the probe
system |φ̃f〉 is represented as

|φ̃f〉 = 〈f| exp(−iθ Â ⊗ p̂)|i〉|φ〉

= 〈f|i〉
(

1̂ − iθ〈Â〉w p̂ − θ2

2
〈Â2〉w p̂2

)
|φ〉 + O(θ3).

(B2)

The projection measurement of the position {|x〉〈x|} for
|φ̃f〉 gives the following probability density distribution
P(x|Re〈Â〉w):

P(x|Re〈Â〉w) = 〈φ̃f |x〉〈x|φ̃f〉
〈φ̃f |φ̃f〉

= |φ(x)|2
[

1 + 2 Re〈Â〉wx

σ 2
θ

+ |〈Â〉w|2 + Re〈Â2〉w

2σ 2

(
x2

σ 2
− 1

2

)
θ2

]

+ O(θ3). (B3)

In weak measurement, Re〈Â〉w is estimated as the averaged
value of the outcomes of the position measurement to the
probe system. For an infinite number of trials, the estimator
of Re〈Â〉w is given as the expectation value of the probability
density distribution P(x|Re〈Â〉w), which is represented as∫ ∞

−∞
dx P(x|Re〈Â〉w) = θ Re〈Â〉w + O(θ3). (B4)

Therefore, Re〈Â〉w can be estimated with an error of O(θ2) for
an infinite number of trials.
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The classical Fisher information of the probability density distribution P(x|Re〈Â〉w) is given as

J =
∫ ∞

−∞
dx

1

P(x|Re〈Â〉w)

[
dP(x|Re〈Â〉w)

d (Re〈Â〉w)

]2

= |〈f|i〉|2θ ′2 + O(θ ′3), (B5)

where θ ′ := θ/σ is the parameter representing the substantial strength of the interaction.
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