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Experimental observation of Einstein-Podolsky-Rosen steering via entanglement detection
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The Einstein-Podolsky-Rosen (EPR) steering is an intermediate quantum nonlocality between entanglement
and Bell nonlocality, which plays an important role in quantum information processing tasks. In the past few
years, the investigations concerning the EPR steering have been demonstrated in a series of experiments.
However, these studies rely on the relevant steering inequalities and the choices of measurement settings. Here,
we experimentally verify the EPR steering via entanglement detection without using any steering inequality and
measurement setting. By constructing two new states from a two-qubit state, we observe the EPR steering by
detecting the entanglement of these new states. The results show that the entanglement of the newly constructed
states can be regarded as an unusual kind of steering witness for these states. Compared to the results of Xiao
et al. [Phys. Rev. Lett. 118, 140404 (2017)], we find that the ability to detect the EPR steering in our scenario is
stronger than that of two-setting projective measurements, which can observe more steerable states. Hence, our
demonstrations can deepen the understanding of the connection between the EPR steering and entanglement.
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I. INTRODUCTION

The investigations of the Einstein-Podolsky-Rosen (EPR)
steering, which was considered as a “spooky” action permis-
sible under the rules of quantum mechanics, can be traced
back to 1935 [1,2]. Assuming two entangled parties shared by
Alice and Bob in separated space, the EPR steering depicts
a distinctive nonclassical trait that Alice can immediately
steer the Bob’s system by implementing a measurement on
her system. Recently, Wiseman et al. rigorously and opera-
tionally defined the EPR steering as an information-theoretic
task [3]. The EPR steering exists in the situation that the
joint probabilities of measurement outcomes cannot be de-
scribed by constructing a local-hidden-variable–local-hidden-
state (LHV-LHS) model. The hierarchy of quantum nonlocali-
ties, namely, steerable states are a strict subset of the entangled
states [4] and a superset of Bell nonlocal states [5,6], was also
provided [3]. The EPR steering can thus be regarded as an
entanglement witness; i.e., there must be entanglement in a
steerable state. In the past decade, the explorations concerning
the EPR steering have attracted increasing attention since it
has many potential applications in quantum information pro-
cessing, for example, one-sided device-independent quantum
key distribution [7–9], secure quantum teleportation [10,11],
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one-sided device-independent randomness generation [12],
and so on.

The EPR steering can be detected by the violation of vari-
ous steering inequalities, including linear steering inequalities
[13,14], inequalities based on entropic uncertainty relations
[15–18], the steering criterion from a geometric Bell-like
inequality [19], and the steering inequality with tolerance
for measurement-setting errors [20]. On the theory side,
based on the choices of measurements, the EPR steering has
been explored from projective measurements [21] to posi-
tive operator-valued measures (POVMs) [22–24], and also
from continuous variable systems [25,26] to discrete systems
[21,23,27].

Experimentally, the EPR steering was investigated by a
few efforts in the past few years, and many significant results
were demonstrated. Saunders et al. experimentally observed
quantum steering for Bell local states via linear steering
inequality [28] and demonstrated that the EPR steering occurs
for mixed entangled states that are Bell local. Bennet et al. ex-
perimentally certified that the EPR steering can be rigorously
implemented in the case of arbitrarily high losses [29]. The
EPR steering of Gaussian states was verified by performing
Gaussian measurements [30] and then was extended to a
multipartite system [31]. By using the steering radius, Sun
et al. [32] and Xiao et al. [33] explored the EPR steering
in different directions through two-setting and multisetting
projective measurements, respectively. The results show that
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more states are shown to be steerable with the increase of
measurement setting in experiments. Considering 16 measure-
ments and a Werner state with a lossy channel at one side,
Wollmann et al. observed the EPR steering in the general
setting of POVMs [24]. Without assumption concerning the
experimental state or measurement, Tischler et al. verified the
asymmetry of the EPR steering in the situation of a two-qubit
state with loss [34]. Also, Li et al. explored the EPR steer-
ing of a two-qubit Werner state via the geometric Bell-like
steering inequality [35]. However, these experimental efforts
rely on the relevant steering inequalities and the choices of
measurement settings, which makes it difficult for them to
avoid the locality loophole presented in the EPR steering tests.
In general, an entangled state can be verified by detecting
the EPR steering, and the converse is not always true [22]. The
detection of the EPR steering is also strictly harder than the
detection of entanglement [28]. Therefore, an open question
is raised: can we realize the observation of the EPR steering
by detecting the entanglement in experiments? That is still
lacking, and the study may provide a way to test a difficultly
detected quantum correlation by translating it into an easily
detected problem.

In this paper, we demonstrate the EPR steering via detect-
ing entanglement in experiments, without using any steering
inequality and measurement setting. To be specific, we exper-
imentally construct two new states from a two-qubit state on
the basis of the recent theories of Das et al. [36] and Chen
et al. [37], and we observe the EPR steering by detecting
the entanglement of these states. The results verify that the
entanglement of newly constructed states can be considered
as an unusual kind of EPR steering witness for two-qubit
states in experiments. These experimental results can deepen
our understanding of the connection between steering and
entanglement. We further compare our results with the ones
of Xiao et al. [33], and it is shown that the ability to detect
the EPR steering in our scenario is stronger than that of
two-setting projective measurements.

II. OBSERVING THE EPR STEERING THROUGH
ENTANGLEMENT DETECTION

Consider a bipartite quantum state ρAB shared by Alice
and Bob, and the possible choices of measurements are A
(measurement operators are denoted by MA

a ) and B (mea-
surement operators are denoted by MB

b ) for Alice and Bob,
respectively. Assuming that Alice obtains the measurement
outcome a by carrying out the measurement of A on her
subsystem, Bob obtains the corresponding outcome b by
implementing the measurement B on his subsystem. If and
only if the corresponding joint probability distribution of
the outcomes cannot be expressed by P(a, b|A, B, ρAB) =∑

λ P(λ)P(a|A, λ)PQ(b|B, ρλ), then ρAB is steerable from Al-
ice to Bob [3]. Here, P(λ) is the probability distribution over
the LHVs λ satisfying

∑
λ p(λ) = 1. P(a|A, λ) indicates a

general probability distribution, and PQ(b|B, ρλ) = tr[ρλMB
b ]

is the probability of outcome b performing measurement B
on the LHS ρλ. In other words, ρAB can realize steering from
Alice to Bob if and only if there is no LHV-LHS model
described by the joint probability distribution for arbitrary
measurements implemented by Alice and Bob.

Any bipartite separable state is defined as a convex
mixture of product states, namely, ρAB = ∑

λ p(λ)ρA
λ ⊗ ρB

λ .
The state ρAB is entangled if and only if the joint
probability distribution cannot be represented by
P(a, b|A, B, ρAB) = ∑

λ P(λ)PQ(a|A, ρA
λ )PQ(b|B, ρB

λ ), where
PQ(a|A, ρA

λ ) = tr[ρA
λ MA

a ] and PQ(b|B, ρB
λ ) = tr[ρB

λ MB
b ].

That is, ρAB is an entangled state if and only if there is
no LHS-LHS model described by this joint probability
distribution for arbitrary measurements performed by Alice
and Bob. Recently, Das et al. [36] and Chen et al. [37]
proposed a criterion sufficient to detect the EPR steering for
bipartite states through the entanglement detection of newly
constructed states. In theory, for any two-qubit state ρAB

shared by Alice and Bob, we can construct two new states as
τ 1

AB and τ 2
AB,

τ 1
AB = μ1ρAB + (1 − μ1)ρ̃1

AB (1)

and

τ 2
AB = μ2ρAB + (1 − μ2)ρ̃2

AB. (2)

Here, ρ̃1
AB = ρA ⊗ I/2, ρA = trB[ρAB], ρ̃2

AB = I/2 ⊗ ρB, ρB =
trA[ρAB], μ1 ∈ [0, 1/

√
3], and μ2 ∈ [0, 1/

√
3]. If τ 1

AB is an
entangled state, then the state ρAB is steerable from Bob to
Alice. In addition, if τ 2

AB is entangled, then the steering task
from Alice to Bob can be realized. It is important to mention
here that whether the given state ρAB may be steerable from
Bob to Alice (from Alice to Bob) is not certain when the newly
constructed state τ 1

AB (τ 2
AB) is separable. As a consequence,

the unsteerability of ρAB cannot be demonstrated via detecting
the entanglement of newly constructed states. In order to
observe the EPR steering in experiment, the steerable states
need to be prepared in our photon-polarization-qubit system.
We focus our attention on a family of two-qubit states [38]:

ρAB(α, θ ) = α|ψ (θ )〉〈ψ (θ )| + (1 − α)I/2 ⊗ ρB, (3)

with |ψ (θ )〉 = cos(θ )|HH〉 + sin(θ )|VV 〉 and ρB =
trA[|ψ (θ )〉〈ψ (θ )|]. Here, 0 � α � 1 and 0 � θ � π/4.
The horizontally and vertically polarized components
are represented by H and V, respectively. It is shown
that the state is steerable from Alice to Bob if α > 1/2.
Moreover, it is demonstrated that Bob cannot steer Alice
for cos2(2θ ) � (2α − 1)/(2 − α)α3 by employing the
uniform distribution as an ansatz for the LHS ensemble [38].
According to Refs. [36,37], the newly constructed states
τ 1

AB(α, θ ) and τ 2
AB(α, θ ) for ρAB(α, θ ) can be given by

τ 1
AB(α, θ ) = μ1ρAB(α, θ ) + (1 − μ1)ρ̃1

AB(α, θ ) (4)

and

τ 2
AB(α, θ ) = μ2ρAB(α, θ ) + (1 − μ2)ρ̃2

AB(α, θ ), (5)

where ρ̃1
AB(α, θ ) = ρA(α, θ ) ⊗ I/2 with ρA(α, θ ) =

trB[ρAB(α, θ )], and ρ̃2
AB(α, θ ) = I/2 ⊗ ρB(α, θ ) with

ρB(α, θ ) = trA[ρAB(α, θ )]. It is known that the entanglement
of two-qubit states can be effectively identified by the
concurrence [39]. The concurrence of ρAB is written
as C(ρAB) = max{0,

√
λ1 − √

λ2 − √
λ3 − √

λ4}, where
λi (i = 1, 2, 3, 4) are the eigenvalues with decreasing order
of the matrix ρAB(σy ⊗ σy)ρ∗

AB(σy ⊗ σy). The variable ρ∗
AB

represents the complex conjugate of ρAB in the fixed basis
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{|00〉, |01〉, |10〉, |11〉}. By some calculations, the condition
for the case that τ 1

AB(α, θ ) is an entangled state (Bob can steer
Alice) can be given by
√

3 − √
3 cos(4θ ) − 2

√
7 − 4 cos(4θ ) + cos2(4θ )

cos(4θ ) − 5
< α � 1,

(6)

with 0 < θ � π/4. The condition of τ 2
AB(α, θ ) being an en-

tangled state (Alice can steer Bob) can be written as 1/
√

3 <

α � 1 and 0 < θ � π/4. Hence, to make sure that τ 2
AB(α, θ ) is

an entangled state and τ 1
AB(α, θ ) is a separable state, it should

satisfy the following condition:

1√
3

< α

�
√

3 − √
3 cos(4θ ) − 2

√
7 − 4 cos(4θ ) + cos2(4θ )

cos(4θ ) − 5
,

(7)

with 0 < θ < π/4. The detailed calculations are given in
Appendixes A and B.

III. EXPERIMENTAL IMPLEMENTATION AND RESULTS

Figure 1 provides the schematic diagram of our experi-
mental setup. The setup consists of three modules: (a) state
preparation, (b) new state construction, and (c) entanglement
detection. To be specific, a tunable diode laser emits a center
wavelength of 405 nm and a high-power (130 mW) con-
tinuous laser beam, which passes through the polarization
beam splitter (PBS). Subsequently, the transmitted beam is
passed through a 405-nm half-wave plate (HWP1) and fo-
cused on two type-I β-barium borate (BBO) crystals (6.0 ×
6.0 × 0.5 mm. The state |ψ (θ )〉 = cos(θ )|HH〉 + sin(θ )|VV 〉
shared by a pair of entangled photons (λ = 810 nm) is gen-
erated via spontaneous parametric down-conversion [40]. We
can control the state parameter θ by adjusting the rotation
angle of HWP1. We insert an unbalanced interferometer (UI0)
in the path of A, and the 50/50 beam splitter (BS) in the UI0
separates the photon into two paths (represented by p1 and
p2). In path p1, the state of photons remains unchanged. Path
p2 is composed of HWP2 with 22.5o and three 2.6-mm yt-
trium orthovanadate (YVO4) crystals, which can completely
destroy the coherence. The state shared by the photons of path
p2 and path B in module (a) of Fig. 1 is transformed into an
incoherent state in the basis of eigenvectors of the Pauli matrix
σz, and the diagonal elements are cos2θ/2, sin2θ/2, cos2θ/2,
and sin2θ/2, respectively. The two-qubit states ρAB(α, θ ) can
be prepared by combining paths p1 and p2 into one, and the
state parameter α can be conveniently changed by using the at-
tenuator (ATT) in the UI0. Thirty states ρAB(α, θ ) are prepared
to carry out the EPR steering test via entanglement detection
in our experiment, and their distributions are denoted by the
red, blue, and green solid circles in Fig. 2. Based on the
theories of Refs. [36,37], the distributions of theoretically
steerable states ρAB(α, θ ) are also displayed by different color
regions. The red region represents the states ρAB(α, θ ) for
which τ 1

AB(α, θ ) and τ 2
AB(α, θ ) are not entangled states. The

results imply that the EPR steering in both directions cannot
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FIG. 1. Experimental setup. The setup includes three modules:
(a) state preparation, (b) new state construction, and (c) entanglement
detection. A family of two-qubit states ρAB(α, θ ) are prepared by the
procession of a spontaneous parametric down-conversion and the un-
balanced interferometer (UI0) in module (a). In module (b), two new
states τ 1

AB(α, θ ) and τ 2
AB(α, θ ) from any ρAB(α, θ ) are constructed. If

we only let the unbalanced interferometer (UI1) influence path B of
module (b), and let path A remain unchanged, the state τ 1

AB(α, θ ) can
be prepared. On the contrary, if we let the unbalanced interferometer
(UI2) influence path of module (b), and let path B remain unchanged,
the state τ 2

AB(α, θ ) can be generated. Module (c) is used to realize
the entanglement detection of the new states. Abbreviations: HWP,
half-wave plate; QWP, quarter-wave plate; PBS, polarizing beam
splitter; BBO, type-I β-barium borate; IF, interference filter; BS,
beam splitter; ATT, attenuator; YVO4, yttrium orthovanadate crystal;
SPD, single-photon detector.

be determined through entanglement detection in theory. The
cyan region, which is depicted by Eq. (7), represents the states
ρAB(α, θ ) for which only τ 2

AB(α, θ ) are entangled states. That
is to say, only the EPR steering from Alice to Bob can be
theoretically observed via entanglement detection, whether
Bob can steer Alice cannot be determined. The green region
represents the case that both τ 1

AB(α, θ ) and τ 2
AB(α, θ ) are

entangled states, and the steering tasks theoretically succeed
in both directions. In our method, we observe the EPR steering
of 30 prepared states ρAB(α, θ ) by detecting the entanglement
of the new states τ 1

AB(α, θ ) and τ 2
AB(α, θ ) without using any

steering inequality or measurement setting. This is distinct
from the scenarios in Ref. [33], which investigated the EPR
steering of ρAB(α, θ ) by using the multimeasurement settings
and the steering radius.

Note that Fig. 2 also provides the distributions of the theo-
retically steerable states in the scenarios of two-measurement
and three-measurement settings, which were experimentally
verified in Ref. [33]. The red (blue) solid line and the dashed
curve in Fig. 2 indicate the theoretical results by using two-
measurement (three-measurement) settings and the steering
radius. In the cases of two-measurement settings and the steer-
ing radius, the states below the red solid line are unsteerable.
The states between the red solid line and the dashed curve are
steerable from Alice to Bob in the case of two-measurement
settings. The states above the red dashed curve can achieve the
steering task in both directions for two-measurement settings.
By employing three-measurement settings and the steering
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FIG. 2. Distributions of the prepared states ρAB(α, θ ) in our ex-
periment and the theoretically steerable states in different scenarios.
The red, blue, and green solid circles in the corresponding regions
are the experimentally prepared states, and their steerability needs
to be demonstrated via entanglement detection in our work. The
red, cyan, and green areas represent the distributions of theoretically
steerable states in the case of entanglement detection. The red
(green) area corresponds to the states for which the EPR steering
in both directions cannot (can) be theoretically demonstrated by
detecting entanglement. The states located in the cyan area can only
theoretically realize EPR steering from Alice to Bob in the scenario
of entanglement detection, whether Bob can steer Alice cannot be
determined. The red (blue) solid line and the red (blue) dashed
curve are the theoretical results in the cases of two-measurement
(three-measurement) settings and the steering radius [33]. Using the
two-measurement settings and the steering radius, the states below
the red solid line (above the red dashed curve) are theoretically
unsteerable (both-way steerable) states. The states between the red
solid line and the red dashed curve can only theoretically realize
the EPR steering form Alice to Bob for two-measurement settings.
Similarly, by using the three-measurement settings and the steering
radius, the states below the blue solid line (above the blue dashed
curve) are unsteerable (both-way steerable) in theory. The region
between the blue solid line and the blue dashed curve represents
the states that only the steering task from Alice to Bob can be
theoretically achieved in the case of three-measurement settings. By
using infinite-measurement settings [38], the states below (above) the
black curve are steerable from Alice to Bob (both-way steerable).

radius, the states below the blue solid line (above the blue
dashed curve) cannot (can) realize the EPR steering in both
directions. The states between the blue solid line and the
dashed curve are demonstrated to be steerable from Alice
to Bob through three-measurement settings. In comparison
with the two-measurement settings, the scenario of entan-
glement detection can capture more steerable states. Addi-
tionally, the green region (detectable both-way steerability by
using entanglement detection) does not exactly coincide with
the region above the blue dashed line (detectable both-way
steerability by using three-measurement settings). However, it
can be found that the scenario of entanglement detection is
approximately equal to the three-measurement settings in the
detection of both-way steerability. We also depict the inner
bound described by cos2(2θ ) = (2α − 1)/(2 − α)α3 for the

border of steering from Bob to Alice as the black solid curve
shown in Fig. 2. The states below the curve can only realize
steering from Alice to Bob by using infinite-measurement
settings [38,41].

Next let us construct states τ 1
AB(α, θ ) and τ 2

AB(α, θ ) in
our all-optical setup, as shown in module (b) of Fig. 1. To
construct τ 1

AB(α, θ ), we block path p2 in UI2, and only let
the unbalanced interferometer (UI1) influence path B. In other
words, we let the photon of path B in module (b) be sent to
UI1 and then sent to Bob. The photon of path A is sent to
Alice directly. The photon state of path p1 in UI1 remains
unchanged. The state shared by path p2 in UI1 and path
A is dephased into an incoherent state, and the weights in
bases of |HH〉〈HH |, |HV 〉〈HV |, |V H〉〈V H |, and |VV 〉〈VV |
are (1 + α cos 2θ )/4, (1 + α cos 2θ )/4, (1 − α cos 2θ )/4, and
(1 − α cos 2θ )/4, respectively. The τ 1

AB(α, θ ) can be con-
structed by combining the two paths p1 and p2 (in UI1)
into one in the experiment. The state parameter μ1 is set
to 1/

√
3 ≈ 0.58 by adjusting the ATT in UI1. The detailed

method for determining μ1 is shown in Appendixes A and
B. Similarly, in order to construct τ 2

AB(α, θ ), we need to block
path p2 in UI1 and let UI2 influence path A. That is, the photon
of path B in module (b) is sent to Bob directly, and the photon
of path A is sent to UI2 and then sent to Alice. The two-photon
state shared by the photons in path p2 of UI2 and path B is
transformed into an incoherent state; the diagonal elements
are cos2θ/2, sin2θ/2, cos2θ/2, and sin2θ/2, respectively. The
state τ 2

AB(α, θ ) can be constructed by mixing paths p1 and p2

of UI2 into one. The state parameter μ2 is also set to 1/
√

3 ≈
0.58 by using the ATT in UI2. Module (c) of Fig. 1 is used to
realize the detection of entanglement by performing a quan-
tum state tomography process [42]. The fidelity of τ 1

AB(α, θ )
and τ 2

AB(α, θ ) are calculated by F (τ, τ0) ≡ tr
√√

ττ0
√

τ [43],
where τ and τ0 are the experimental and theoretical density
matrices, respectively. In our experiment, 30 states τ 1

AB(α, θ )
and 30 states τ 2

AB(α, θ ) are constructed, and the fidelities of all
these states are beyond 0.9873.

In the following, we observe the EPR steering by detecting
the entanglement of these 60 states. The results of the experi-
ment are shown in Fig. 3, and the insets in Figs. 3(e) and 3(f)
are the magnifications of the regions in the purple panes. The
solid circles and hollow triangles represent the experimental
results of C(τ 1

AB(α, θ )) and C(τ 2
AB(α, θ )), respectively, which

are calculated according to the density matrices τ 1
AB(α, θ )

and τ 2
AB(α, θ ) obtained by quantum state tomography. Based

on the standard deviation from the statistical variation of
the photon counts, which are assumed to follow Poisson
distribution, all error bars are estimated in the experiment.
Note that some of the error bars are very small and are not
displayed in Fig. 3. In order to make the experimental results
correspond to the prepared states in Fig. 2, we use solid
circles and hollow triangles with different colors in Fig. 3
to represent the corresponding experimental results. As seen
from Fig. 3, the 6 red solid circles and 6 red hollow triangles
display that the experimental states τ 1

AB(α, θ ) and τ 2
AB(α, θ )

are all separable. The results certify that the EPR steering
of 6 prepared states ρAB(α, θ ) (represented by 6 red solid
circles in Fig. 2) cannot be observed via the detection of
entanglement. The 11 blue solid circles and 11 blue hollow
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FIG. 3. The experimental results. The solid circles and the hol-
low triangles represent the experimental results of C(τ 1

AB(α, θ )) and
C(τ 2

AB(α, θ )), respectively. The red solid circles and hollow triangles
correspond to the results that the τ 1

AB(α, θ ) and τ 2
AB(α, θ ) are all

separated; i.e., the EPR steering of ρAB(α, θ ) cannot be verified
through entanglement detection. The blue solid circles and hollow
triangles correspond to the case for which only the τ 2

AB(α, θ ) is
entangled, namely, only the steering from Alice to steer Bob can
be observed via entanglement detection. The green solid circles and
hollow triangles correspond to the results that τ 1

AB(α, θ ) and τ 2
AB(α, θ )

are all entangled; i.e., Alice and Bob can steer each other. Some of
error bars are very small and not shown.

triangles in Fig. 3 represent that the τ 1
AB(α, θ ) are separable

states and the τ 2
AB(α, θ ) are entangled states, respectively.

The experimental results can help us to identify that the 11
prepared states ρAB(α, θ ) (represented by 11 blue solid circles
in Fig. 2) can realize the EPR steering from Alice to Bob,
and whether Bob can steer Alice cannot be decided in this
scenario. Hence, the results do not imply that the 11 prepared
states are one-way steering (namely, Alice can steer Bob’s
state but Bob cannot steer Alice’s state). One can see from
Fig. 3 that the 13 green solid circles and 13 green hollow
triangles indicate that the τ 1

AB(α, θ ) and τ 2
AB(α, θ ) states are

all entangled states in the experiment. The results verify that
the 13 prepared states ρAB(α, θ ) (represented by 13 green
solid circles in Fig. 2) are both-way steering states, in which
the steering tasks succeed in both directions (Alice and Bob
can steer each other). Hence, the experimental results show
good agreement with the theoretical predictions in Fig. 2,
and the EPR steering of the two-qubit states ρAB(α, θ ) can
be observed through the entanglement detection of these new
states. As shown in Fig. 2, some steerable states (the states
between the red solid line and the blue solid line), which can
be demonstrated in our scenario, cannot be verified in the case
of two-setting projective measurements. Nearly all steerable
states (the states above the blue solid line), which can be
observed in the case of three-setting projective measurements,
can be witnessed by detecting entanglement. This means that

FIG. 4. The experimental results for ρAB(α, π/4) through the
geometric Bell-like steering inequality. The blue and red solid
circles denote the left-hand side (LHS-G) and the right-hand side
(RHS-G) of the geometric Bell-like steering inequality, respectively.
The experimental data labeled by 1, 2, 3, 4, and 5 correspond to the
test results of states labeled by 1, 2, 3, 4, and 5 in Fig. 2, respectively.
Some of the error bars are too small to display.

the ability to detect the EPR steering in our strategy is stronger
than that of two-measurement settings and can compete with
the three-measurement settings.

In order to further verify the effectiveness of our sce-
nario, we take the EPR steering of ρAB(α, π/4) (labeled by
1, 2, 3, 4, and 5 in Fig. 2) by using the geometric Bell-
like steering inequality as an example, which is denoted by

Max⇀
m,

⇀
n
EQ( ⇀

m,
⇀
n) � 2(

∑3
i, j=1 T 2

i j )/3 [19]. Here, ⇀
m · ⇀

σ
A

and
⇀
n · ⇀

σ
B

are projective measurements implemented by Alice and

Bob, respectively. ⇀
σ

A
and ⇀

σ
B

are Pauli matrices, and Ti j =
tr[ρAB(σ A

i ⊗ σ B
j )] is the matrix element of the spin correlation

matrix. We use LHS-G and RHS-G to represent the left-hand
side and the right-hand side of the geometric Bell-like steer-
ing inequality, respectively. Note that, the state ρAB(α, π/4)
corresponds to the Werner state [44]. It is well known that the
state is steerable from Alice to Bob in the case of α > 1/2, and
Bob can steer Alice for α > 1/2 [3,45]. Based on the quantum
state tomography, the experimental LHS-G and RHS-G are
calculated according to the density matrix of ρAB(α, π/4) (the
fidelities of all these states are higher than 0.9893). The exper-
imental results are shown in Fig. 4. The both-way steering of
the states labeled by 2, 3, 4, and 5 in Fig. 2 can be observed
in our scenario [see Fig. 3(f)], and these states also violate the
geometric Bell-like steering inequality (the data of LHS-G are
less than the data of RHS-G, see Fig. 4). The results further
verify that the entanglement detection of newly constructed
states can effectively witness the EPR steering in experiments.
Meanwhile, it is worth noting that the EPR steering of the
state labeled by 1 in Fig. 2 can be observed by employing the
geometric Bell-like steering inequality; however, it cannot be
observed through our scenario. The reason is that the ability
of geometric Bell-like steering inequality to detect the EPR
steering of the Werner state (for α > 1/2 [19,35]) is stronger
than the scenario of entanglement detection (for α > 1/

√
3).
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IV. CONCLUSIONS

In this paper, based on 30 prepared two-qubit states
ρAB(α, θ ), 60 states τ 1

AB(α, θ ) and τ 2
AB(α, θ ) are constructed

in the experiment. The EPR steering of ρAB(α, θ ) are exper-
imentally observed by detecting the entanglement of these
newly constructed states, and any steering inequality and
measurement setting are not used in the process of demon-
stration. Our results verify that the steering from Bob to
Alice can be witnessed by the entanglement of τ 1

AB(α, θ ),
and the steering from Alice to Bob can be witnessed by
the entanglement of τ 2

AB(α, θ ). Hence, the entanglement of
newly constructed states provides a way to witness the EPR
steering in experiments. The ability to testing the EPR steer-
ing in our scenario is stronger than that of the two-setting
projective measurements, and more steerable states can be
observed by detecting the entanglement of the constructed
states. Consequently, our work demonstrates that one can
effectively certify the EPR steering by translating it into an
easily certified quantum nonlocality (i.e., the entanglement)
in experiments, and it is also potentially used to understand
the relation between steering and entanglement in quantum
information tasks.
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APPENDIX A: THE EPR STEERING CONDITION FOR
ρAB(α, θ) BASED ON THE ENTANGLEMENT DETECTION

Considering a two-qubit state ρAB, the concurrence is writ-
ten as C(ρAB) = max{0,

√
λ1 − √

λ2 − √
λ3 − √

λ4} [39],
where λi (i = 1, 2, 3, 4) are the eigenvalues with decreasing
order of the matrix ρAB(σy ⊗ σy)ρ∗

AB(σy ⊗ σy). The variable
ρ∗

AB represents the complex conjugate of ρAB in the fixed basis
{|00〉, |01〉, |10〉, |11〉}. For the two-qubit X states ρX

AB, the
concurrence can be derived in a simple form [46]:

C(ρX
AB)

= 2 max
{
0,

√
ρX

14ρ
X
41 −

√
ρX

22ρ
X
33,

√
ρX

23ρ
X
32 −

√
ρX

11ρ
X
44

}
.

(A1)

According to Eqs. (4) and (A1), the concurrence of τ 1
AB(α, θ )

is obtained by

C
(
τ 1

AB(α, θ )
) = 2 max

{
0,C1

AB1,C2
AB1

}
, (A2)

with

C1
AB1 = 2α

√
1 − cos(4θ ) −

√
5 − α(2

√
3 + α) − (

√
3α − 1)

2
cos(4θ )

4
√

6
(A3)

and

C2
AB1 = −

√
5 + α(2

√
3 − α) − (

√
3α + 1)

2
cos(4θ )

4
√

6
. (A4)

The condition of the EPR steering from Bob to Alice is
C[τ 1

AB(α, θ )] > 0. Then the conditions can be given by 0 <

θ � π/4 and
√

3 − √
3 cos(4θ ) − 2

√
7 − 4 cos(4θ ) + cos2(4θ )

cos(4θ ) − 5
< α � 1.

(A5)

Similarly, the concurrence of τ 2
AB(α, θ ) is expressed as

C
(
τ 2

AB(α, θ )
) = 2 max

{
0,C1

AB2,C2
AB2

}
, (A6)

where

C1
AB2 = (3α − √

3) sin(2θ )

4
√

3
(A7)

and

C2
AB2 = − (

√
3 + α) sin(2θ )

4
√

3
. (A8)

The condition of the EPR steering from Alice to Bob is
C(τ 2

AB(α, θ )) > 0, which can be easily derived as 1/
√

3 <

α � 1 and 0 < θ � π/4 . Hence, we obtain the condition for
the case that τ 2

AB(α, θ ) is an entangled state and τ 1
AB(α, θ ) is a

separable state, i.e.,

1√
3

< α

�
√

3 − √
3 cos(4θ ) − 2

√
7 − 4 cos(4θ ) + cos2(4θ )

cos(4θ ) − 5
,

(A9)

with 0 < θ < π/4.

APPENDIX B: THE METHOD TO DETERMINE THE
EXPERIMENTAL PARAMETERS μ1 AND μ2

As seen from Fig. 1 in the main text, we block path p2 in
UI2 and let the photon of path A in module (b) be sent to Alice
directly. Meanwhile, we let the photon of path B in module (b)
be sent to UI1 and then sent to Bob. The state of path p1 in UI1
remains unchanged, i.e., ρUI1

p1
(α, θ ) = ρAB(α, θ ). The state of
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path p2 in UI1 can be written as

ρUI1
p2

(α, θ ) = 1 + α cos 2θ

4
|HH〉〈HH |

+ 1 + α cos 2θ

4
|HV 〉〈HV |

+ 1 − α cos 2θ

4
|V H〉〈V H |

+ 1 − α cos 2θ

4
|VV 〉〈VV |. (B1)

Combining paths p1 and p2 into one, the state τ 1
AB(α, θ ) can be

prepared. The mixed parameter μ1 in τ 1
AB(α, θ ) is determined

as follows.
We denote a set of measurement bases as M =

{|HH〉〈HH |, |HV 〉〈HV |, |V H〉〈V H |, |VV 〉〈VV |}. First, we
block path p2 in UI1 and implement a set of measurements
in the basis of M. The corresponding coincidence counts are
labeled as M1

1 , M1
2 , M1

3 , and M1
4 , and the total photon count

is C1
1 = M1

1 + M1
2 + M1

3 + M1
4 . Second, we block path p1 in

UI1. After performing a complete measurement in the basis
of M, the corresponding coincidence counts are denoted as
N1

1 , N1
2 , N1

3 , and N1
4 . The total photon count is C1

2 = N1
1 +

N1
2 + N1

3 + N1
4 . Finally, The mixed parameter μ1 is obtained

by μ1 = C1
1/(C1

1 + C1
2 ).

Similarly, the parameter μ2 in the state τ 2
AB(α, θ ) can be

determined. As shown in Fig. 1 in the main text, we block
path p2 in UI1 and let the photon of path B in module (b) be
sent to Bob directly. Meanwhile, we let the photon of path
A in module (b) be sent to UI2 and then sent to Alice. The
state of path p1 in UI2 remains unchanged, i.e., ρUI2

p1
(α, θ ) =

ρAB(α, θ ). The state of path p2 in UI2 is transformed into

ρUI2
p2

(α, θ ) = cos2θ

2
|HH〉〈HH | + sin2θ

2
|HV 〉〈HV |

+ cos2θ

2
|V H〉〈V H | + sin2θ

2
|VV 〉〈VV |. (B2)

We construct the state τ 2
AB(α, θ ) by combining paths p1 and

p2 mentioned above into one. The mixed parameter μ2 can be
obtained as follows. We block path p2 in UI2 and carry out
a set of measurements in the basis of M. The photon counts
are labeled as M2

1 , M2
2 , M2

3 , and M2
4 , and the total photon

count is C2
1 = M2

1 + M2
2 + M2

3 + M2
4 . Then, we block path p1

in UI2 and implement a complete measurement in the basis
M; the corresponding coincidence counts are written as N2

1 ,
N2

2 , N2
3 , and N2

4 . The total photon coincidence count is C2
2 =

N2
1 + N2

2 + N2
3 + N2

4 , and the parameter μ2 is determined by
μ2 = C2

1 /(C2
1 + C2

2 ).
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[19] M. Żukowski, A. Dutta, and Z. Yin, Geometric Bell-like in-
equalities for steering, Phys. Rev. A 91, 032107 (2015).

[20] A. Rutkowski, A. Buraczewski, P. Horodecki, and M.
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