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Recently probabilistic hysteresis in isolated Hamiltonian systems of ultracold atoms has been studied in the
limit of large particle numbers, where a semiclassical treatment is adequate. The origin of irreversibility in these
sweep experiments, where a control parameter is slowly (adiabatically) tuned back and forth, turned out to be
a passage back and forth across a separatrix (integrable case) or a passage in and out of a chaotic sea in phase
space (chaotic case). Here we focus on the full quantum mechanical description of the integrable system and
show how the semiclassical results emerge in the limit of large particle numbers. Instead of the crossing of a
separatrix in phase space, where classical adiabaticity fails, the origin of irreversibility in the quantum system is
a series of avoided crossings of the adiabatic energy levels: they become so close that already for modest particle
numbers the change of the external parameter has to be unrealistically slow to reach the quantum adiabatic limit
of perfectly reversible evolution. For a slow but finite sweep rate we find a broad regime where the quantum
results agree with the semiclassical results, but only if besides the limit N → ∞ an initial ensemble of states is
considered, with sufficient initial energy width. For a single initial energy eigenstate we find in contrast that the
backward sweep reveals strong quantum effects even for very large particle numbers.
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I. INTRODUCTION

A. Microscopic irreversibility in slow forward-and-back sweeps

If a control parameter of a physical system is slowly
tuned away from its initial value and then slowly tuned back
again, a specific form of irreversibility can be observed in
some systems: hysteresis. The system does not return to its
initial state, despite the control parameter having the same
value as it had initially. Hysteresis implies the breakdown of
adiabaticity, and in Refs. [1,2] it was demonstrated conversely
that a breakdown of adiabaticity in a microscopic system can
lead to a microscopic form of irreversibility, probabilistic
hysteresis. While one might expect that the microscopic onset
of irreversibility occurs through final states which gradually
become different from the initial state, probabilistic hysteresis
means a gradually rising probability that the final state differs
dramatically from the initial one.

Under classical mechanics the breakdown of adiabaticity
that leads to probabilistic hysteresis cannot be avoided by a
slower variation of the control parameter, but persists even in
the quasistatic limit, because of topological changes in phase-
space energy shells [1,2]. Such quasistatic irreversibility can-
not occur under quantum mechanics, however, because in the
quasistatic limit the quantum adiabatic theorem must apply.
In fact it has been shown that the semiclassical and adiabatic
limits in general do not commute, and so in particular for the
cold-atom systems studied in Refs. [1,2] the Gross-Pitaevskii
mean-field description can become invalid in the adiabatic
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limit [3,4]. It is therefore not obvious whether—or how—
the classical limit of probabilistic hysteresis emerges from
the quantum description of these systems. Even apart from
enhanced adiabaticity, furthermore, ultracold atoms can in
principle show a range of other quantum effects. We there-
fore now study the full quantum mechanical description of
a hysteresis experiment in an isolated system. In this paper
we focus on the quantum version of the integrable system
discussed in Ref. [1], i.e., the experimentally realizable two-
site Bose-Hubbard “dimer,” and leave the chaotic three-site
system of Ref. [2] for future work.

B. Slow sweeps in the classical two-site Bose-Hubbard model

The two-site Bose-Hubbard system offers a convenient toy
model of quantum many-body physics, with competition be-
tween nonlinear interactions and kinetic energy in a minimal
form. Since it can now be realized to a good approximation
with ultracold atoms [5,6], but has also long been used as
a model for Josephson junctions, the two-site Bose-Hubbard
system has been studied extensively. Even on the specific
subject of slow sweeps of the energy detuning between the
two sites, which will be our control parameter, there have been
several papers.

The majority of these Bose-Hubbard sweep papers have
examined the problem within the mean-field approximation,
which represents the evolution in terms of a two-state wave
function, but with a cubically nonlinear Schrödinger equation
for the time evolution of the two complex amplitudes α1,2(t ).
Originally the problem was introduced by Wu and Niu [7],
and almost at the same time by Zobay and Garraway [8], as a
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nonlinear generalization of the two-level Landau-Zener model
for a true quantum two-state system. These papers began a
tradition of referring to |α1,2|2 as “probabilities,” since in the
true quantum two-state system they are the probabilities in
projective measurements. The most important result of the
early works [7] and [8] is that, unlike in the linear Landau-
Zener model, |α2|2 can evolve from zero to nonzero even for
arbitrarily slow sweeps.

Subsequent literature has expanded this understanding of
nonlinear Landau-Zener evolution. An intuitive explanation of
the nonadiabaticity was more recently presented in Ref. [9]. In
Ref. [10] it was also found that, for sweeps starting from the
initial ground state α2 = 0, the scaling of the final |α2|2 with
the sweep rate in the nonlinear problem is different from the
linear case: it changes from an exponential dependence for
weak nonlinearity (as in the linear case) to a power-law de-
pendence for stronger nonlinearity. Other effects of nonlinear
Landau-Zener sweeps have been measured, or their measure-
ment in experimentally realizable systems has been suggested;
see, for example, Refs. [11–15]. The nonlinear Landau-Zener
effect also plays an important role in the adiabatic passage
through a Feshbach resonance [16,17].

While a single nonlinear Landau-Zener sweep thus exhibits
several nontrivial features in the classical two-site Bose-
Hubbard model, adding a second sweep which is the exact
time reverse of the first introduces a dramatic additional
phenomenon: probabilistic hysteresis [1]. Although |α2|2 has
been referred to as a probability, this terminology has simply
been adopted into the nonlinear classical problem from the
true two-state quantum problem; the classical evolution in the
phase space corresponding to the c-number variables α1,2(t )
is deterministic. For single sweeps from low-energy initial
states, moreover, the classical evolution does not even appear
to be highly sensitive to initial conditions, so that there is
no need to introduce a probabilistic description. Any single
low-energy shell in the two-site Bose-Hubbard phase space
evolves, under a single slow sweep, into another single energy
shell. If the initial low energy can be controlled well in
experiments, then shot-to-shot variations in the final energy,
after a single slow sweep, will be small.

That is not necessarily true for higher-energy initial states,
however. A slow Landau-Zener sweep in a two-site Bose-
Hubbard system may split a higher-energy energy shell into
two quite distinct energy shells [1], so that if the initial energy
can be well controlled, but not the precise initial location of
the system within the energy shell, then in each repetition of
an arbitrarily slow classical sweep experiment the final energy
will randomly take one of two quite different final values. In
such cases one can derive probabilities which are not merely a
matter of referring to the classical |α1,2|2 as probabilities, but
which literally represent the random chances, in each single
run of a classical experiment, of finding final α1,2 in different
regions of phase space.

Initial states in the energy range that can evolve in this
kind of truly probabilistic manner were not considered in
mean-field literature before [1], presumably because they did
not seem like natural initial states which could easily be
prepared in experiments. They can be prepared from low-
energy states, however, by a slow Landau-Zener sweep [1].
The two-sweep forward-and-back cycle thus introduces the

possibility of probabilistic hysteresis in the quasistatic limit
even for low-energy initial states.

The mechanism of probabilistic hysteresis has been de-
scribed and explained in Ref. [1] entirely in the classical phase
space of the mean-field model. The mean-field theory has
been widely applied to the two-site Bose-Hubbard system be-
cause this kind of simple quantum many-body system usually
attains this kind of correspondence with classical mechanics
at large particle numbers. The fundamental question of ir-
reversibility, however, warrants a closer check of quantum-
classical correspondence in this problem.

C. Slow sweeps in the quantum two-site system

Although most studies of slow parameter sweeps in two-
site Bose-Hubbard systems have been within mean-field the-
ory, a few papers have gone beyond mean-field to the full
quantum many-body problem, in which there are many more
orthogonal states than just two, but time evolution is governed
by a linear Schrödinger equation for their many complex
amplitudes. It has been shown in Refs. [3,18] that even in the
presence of interparticle interactions the many-body Landau-
Zener probability for nonadiabatic evolution goes to zero in
the limit of infinitely slow sweeping. If a single infinitely
slow sweep is thus always perfectly adiabatic in the quantum
problem, the two successive sweeps of an infinitely slow
forward-and-back cycle must also be adiabatic in the quantum
problem. At infinite slowness, therefore, the quantum system
can never reproduce the quasistatic probabilistic hysteresis
of the corresponding classical system. This means that the
classical and adiabatic limits do not commute for two-site
Bose-Hubbard sweeps [3,18].

It has also been shown, however [3,18,19], that for a fixed
finitely slow sweep rate, the quantum results do converge onto
the mean-field results with increasing particle number, with
quantum-classical correspondence becoming close for total
particle numbers of order 10. In [19] it was claimed that
the adiabatic and classical limits fail to commute only in a
single trajectory mean-field approach, and that commutability
is restored if it is the classical phase-space flow of a classi-
cal ensemble which is compared to the quantum evolution.
So far, though, only single-sweep evolutions, from initial
ground states, have been considered within the full quan-
tum many-body theory of the two-site Bose-Hubbard system.
In this paper we will therefore extend the fully quantum
mechanical treatment of this slowly time-dependent two-site
Bose-Hubbard problem beyond the single-sweep protocol, to
include also the reverse sweep so that the control parameter is
slowly changed in a cyclic manner.

D. Main results of this paper

Our mainly numerical analysis will confirm that if the
sweep is infinitely slow then no hysteresis occurs in the quan-
tum system. We will see, though, that the slowness needed
to approach this quantum-reversible limit is the extremely
slow timescale of macroscopic quantum tunneling, which can
easily become completely impractical even for quite modest
particle numbers. For sweeps which are not that impossibly
slow, but that are slow enough to be adiabatic in the classical
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problem, we will find that microscopic irreversibility does still
occur in the quantum two-site Bose-Hubbard system.

We will also find, second, however, that this classical-
but-not-quantum adiabaticity is not sufficient to recover the
classical result of probabilistic hysteresis with an ensemble of
final states that is independent of sweep rate. This is because
quantum interference effects [20], which produce nothing
dramatic after a single sweep, turn out to lead, after the second
sweep, to final states that can oscillate rapidly as a function of
sweep rate, even when the sweep is within the wide range
between classical and quantum adiabaticity. This failure to
converge onto the classical form of probabilistic hysteresis
persists even for very large particle number.

This discrepancy between classical and quantum forms
of probabilistic hysteresis cannot be removed by taking a
classical ensemble. Our third main result will be rather the
reverse: the classical form of probabilistic hysteresis, with no
dependence on sweep rate within a wide range of very slow
sweeps, is restored in the quantum two-site Bose-Hubbard
system by taking a sufficiently broad ensemble of initial
energy eigenstates. The mixture of sufficiently many initial
energy eigenstates effectively washes out the quantum in-
terference effects, and the incoherent summation of many
Landau-Zener probabilities will be shown numerically to re-
produce the classical hysteresis probability that was derived
in Ref. [1].

E. Organization of the paper

The rest of the paper is organized as follows. In Sec. II we
explicitly introduce our simple quantum many-body system
along with the parametric time dependence that will define
our cyclic “sweeps.” Section III briefly reviews the semiclas-
sical description obtained in Ref. [1]. Section IV discusses
the quantum energy level structures in different dynamical
regimes. Section V then presents the results of numerical
simulations of the sweep process and shows how the classical
picture, with its two qualitatively different outcomes of the
cyclic sweep experiment, emerges from the quantum system
with increasing particle number. In Sec. VI we focus on the
Landau-Zener description of the sweep processes. To do so
we apply the independent crossing approximation at every
avoided crossing of energy levels, and show numerically that
an incoherent summation of all the Landau-Zener probabili-
ties becomes accurate if the initial energy width is sufficient,
and conforms to the classical hysteresis probability if the
particle number is high. We summarize our main results in
Sec. VII and offer an outlook toward future studies using
quantum phase-space formalisms to provide analytical insight
into the nontrivial quantum-classical correspondence that we
have confirmed here numerically. A final Appendix discusses
different variants of the independent crossing approximation,
including the more accurate modified form which we have
used in our main text.

II. SETUP

Our system is the two-mode (dimer) Bose-Hubbard system
with attractive interaction U < 0 and tunneling rate �; the two
modes have a time-dependent energy offset �(t ), which will

be our control parameter. The system Hamiltonian therefore
reads

Ĥ = −�

2
(â†

1â2 + â†
2â1) + U

2

(
n̂2

1 + n̂2
2

) + �(t )

2
(n̂1 − n̂2),

(1)

where the bosonic operators â†
1,2 (â1,2) create (destroy) a

boson in the respective mode 1 or 2 and the number operators
n̂1,2 = â†

1,2â1,2 are defined as usual. In this paper we choose
units such that h̄ = 1 and measure �, U , energy and time,
in units defined by �. The total particle number operator
N̂ = n̂1 + n̂2 commutes with the Hamiltonian, so that the
total particle number given by its eigenvalue N is conserved.
The classical limit of this Hamiltonian studied in Ref. [1] is
obtained by replacing the operators â1,2 by complex numbers
α1,2 = √

n1,2 e−iϕ1,2 , such that (ϕi, ni ) are canonical coordi-

nates. The creation operators â†
1,2 are replaced by the complex

conjugates α∗
1,2.

Our protocol consists of slowly sweeping the energy offset
from a negative value �I at t = −T to the larger value �0 at
t = 0 (forward sweep) and then back again to �I at t = +T
(backward sweep):

�(t ) = �I
|t |
T

+ �0

(
1 − |t |

T

)
, �0 > �I . (2)

By sweeping “slowly” we mean T � �−1. We will study the
evolution of a quantum state through this cyclic sweep, and
simply ask whether the system finally returns to its initial
state or not. Before we turn to the full quantum description
of this process we briefly review the semiclassical description
obtained in Ref. [1].

III. SEMICLASSICAL DESCRIPTION

A. Classical Hamiltonian and microcanonical ensemble

In the semiclassical description we evolve an ensemble of
initial conditions under the mean-field equations of motion,
obtained from the mean-field Hamiltonian

H = −�

√
p2

0 − p2 cos(q) + U p2 + �(t )p, (3)

where q = ϕ1 − ϕ2 and p = (n1 − n2)/2 are classical canon-
ical coordinates and p0 = N/2 is a constant. The reason why
we choose an ensemble initially instead of single phase-space
points is twofold. If (3) is interpreted as a classical system,
then one can argue that typically one does not have fine control
over the initial conditions but can only tune equilibrium
parameters such as energy or temperature. If instead (3) is
interpreted as an approximation to the quantum system (1),
then the evolution of an appropriate classical ensemble is
the truncated Wigner approximation, which is known to give
a better approximation of the quantum dynamics than the
single-trajectory mean-field approach. For the sake of simplic-
ity we therefore consider a microcanonical ensemble here, and
ask what fraction of the initial classical ensemble returns to its
narrow initial energy range at the end of the forward-and-back
sweep as it had initially. This fraction defines the classical
return probability, which turns out not to be one in general,
even though the sweep can be arbitrarily slow and the classical
evolution is of course exactly deterministic.
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FIG. 1. Evolution of a classical ensemble consisting of 2000 points (black dots) in phase space. The gray lines show adiabatic energy
contours, the dashed black line is the separatrix. Because adiabaticity breaks down when the separatrix is crossed, first between (a) and (b) and
then again between (b) and (c), only a finite fraction of the ensemble returns to the initial energy shell. For a clearer graphical presentation we
have chosen the canonical coordinates q′ = arctan {p/[

√
p2

0 − p2 cos(q)]}, p′ = −√
p2

0 − p2 sin(q) here.

B. Classical adiabaticity breakdown at a separatrix

Since our sweep is assumed to be slow compared to the
intrinsic timescale �−1, the classical adiabatic theorem can
be applied. The action of each trajectory of the ensemble
is thus an adiabatic invariant. During the forward sweep,
therefore, the orbits deform in ways that keep their enclosed
phase-space volumes constant. During the backward sweep
the same deformation happens in reverse, and so ordinarily the
initial and final ensembles are expected to coincide, making
the return probability always be one. This argument relies,
however, on the assumption that the sweep is adiabatic during
the whole sweep process. As long as the mean-field interac-
tion u = UN/� is subcritical (i.e., u > −1 for our attractive
negative u) this can always be fulfilled. In the supercritical
case, however, there is certain range of � within which an
unstable fixed point and a separatrix appear, as has also been
demonstrated experimentally [5]. If the initial energy is not
too high, the entire ensemble is inside one lobe Au of this
separatrix; see Fig. 1. This initial separatrix lobe shrinks dur-
ing the forward sweep, while the phase-space area enclosed
by the ensemble remains fixed adiabatically. At some point
�(t ) = �S , therefore, the incompressible ensemble meets the
shrinking separatrix. Since the separatrix is the orbit that runs
through the unstable fixed point, this means that the orbital
period of the trajectories of the ensemble diverges at this point.
No matter how slow the sweep is, therefore, the condition
for the adiabatic theorem can no longer be satisfied, and the
actions of the trajectories change: they cross the separatrix. At
this time the other separatrix lobe Al is the only phase-space
region which is growing as � is changing; both the initial
lobe Au and the region Ao outside both lobes are shrinking. In
accordance with Liouville’s theorem, therefore, all ensemble
orbits cross into Al , because it is the only phase-space region
which can accommodate additional orbits. After the separatrix
has been crossed the orbital period becomes finite again and
the evolution is again adiabatic, so that the new action is
conserved during the rest of the forward sweep.

C. Semiclassical probabilistic hysteresis

During the backward sweep adiabaticity again guarantees
that the evolution of the ensemble is the time-reversed evolu-

tion of the forward sweep until the separatrix is encountered
again. Since at this point in the forward sweep Al was growing
while both Au and Ao were shrinking, now on the reverse
sweep it is the other way around. The ensemble has to leave
the now shrinking separatrix lobe Al , but the original separa-
trix lobe Au as well as the outside region Ao are both growing.
Under incompressible Liouvillian flow, the trajectories of the
ensemble must be distributed into both these growing regions.
The fraction that goes to the upper separatrix lobe Au—and
therefore returns to the initial ensemble at the end of the
sweep—is determined in the quasistatic limit by the ratio of
the growth rates of Au and Ao; this statement is known as
Kruskal’s theorem (see Ref. [21] and references therein).

Once the entire ensemble has crossed the separatrix again,
its components in Au and Ao evolve adiabatically in the two
different regions of phase space, connected only by extremely
thin threads of ensemble density that stretch between the two
regions. The final state therefore consists essentially of two
ensembles with very different energies, only one of which is
the initial energy. Which initial phase-space points will end up
in which region finally depends sensitively on initial phase-
space position as well as on the very slow sweep rate, but
the fraction of the initial ensemble which returns to the initial
energy range settles down for slow sweeps to the constant
probability given by Kruskal’s theorem. In this sense there is
a finite probability for each member of the initial ensemble
to return to the initial energy shell (reversible evolution) or to
the higher, initially unoccupied energy shell (irreversible evo-
lution). This phenomenon was called probabilistic hysteresis
in Ref. [1], and the probability to return to the initial energy
shell was defined as the return probability. Note that hysteresis
and irreversibility are absent in the quasistatic limit if the
maximum sweep extent �0 < �S , because then the ensemble
never meets the separatrix and adiabaticity never breaks down.

In this paper we now consider how this (semi-)classical
result can emerge from the full quantum description. To do
so we first study the adiabatic quantum spectrum in the next
section.

IV. THE QUANTUM SPECTRUM

In this section we review the quantum spectrum of
the Bose-Hubbard dimer and its relation to the mean-field
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FIG. 2. Eigenvalues of the Bose-Hubbard dimer in the subcrit-
ical case (a) and supercritical case (b)–(d). All level crossings are
avoided. In the subcritical case (a) no extremely narrow avoided
crossings are present. In the supercritical case (b) and (c), however,
many energy gaps become extremely small. Panel (d) shows the
energies of the stationary states of the mean-field Hamiltonian in red
on top of the same quantum system shown in (c). The swallowtail
structure of the classical stationary states can be seen clearly in the
quantum spectrum: the stable classical stationary states correspond to
quantum energy eigenvalues while the unstable classical state traces
an arc of avoided crossings.

stationary states as well as to Bohr-Sommerfeld quantization.
Most of the results presented in this section have already
been presented elsewhere (see, e.g., Refs. [18,22,23]) but are
reviewed here for the reader’s convenience.

A. Quantum and classical adiabaticity

The two essentially nonclassical features of the quantum
system both stand out in Fig. 2, showing the quantized energy
eigenvalues of Ĥ from (1) as functions of detuning �. The
first nonclassical feature is simply that the plots are full
of curving lines: energy levels are quantized. The vertical
spacings between successive lines are mostly of order �, with
little dependence on N .

As long as the quantum energy levels remain separated
from each other by order �, the “slow sweep” condition
�T � 1 which makes the classical evolution adiabatic every-
where except near a separatrix also makes the quantum evo-
lution adiabatic. If the system begins in an energy eigenstate,
and the levels remain separated by order �, then during a slow
sweep of � the system will remain in the same energy eigen-
state, as the energy eigenvalue slowly changes, in accordance
with the quantum adiabatic theorem [24]. In the “subcritical”
regime with mean-field interaction strength |u| < 1, there is
never any classical separatrix because the attractive nonlin-
earity is too weak to ever support self-trapping, and so the
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FIG. 3. Minimal level spacing δmin in the spectra for subcritical
u = 0 (top, black +), u = −0.5 (middle, blue ◦) and u = −0.9
(bottom, red ∗). The size of level spacing quickly settles to a constant
finite value for increasing particle number N .

classical evolution remains adiabatic throughout both forward
and backward slow sweeps, giving perfect reversibility [1].

As Fig. 2(a) indicates for u = −0.5 and N = 20, the
quantum energy spectrum in the subcritical regime never has
any levels approach each other more closely than order �.
The energy gaps δ between successive pairs of energy levels
are all smallest at � = 0, with the smallest individual gap
δmin being between the lowest two levels. As the particle
number increases the absolute size of this minimal energy
gap decreases, but it quickly settles to a finite value δ∗

min/� =√
1 + u [3] depending only on u; see Fig. 3. Since all other

energy gaps are even larger than δmin, the quantum adiabatic
limit at subcritical u can easily be reached for every initial
state [24], even for arbitrarily large particle numbers, and the
evolution is fully reversible since the system stays in the same
adiabatic level during the whole forward-and-back sweep.
Quantum-classical correspondence is thus straightforward in
the subcritical regime, where probabilistic hysteresis does not
occur.

B. The quantum “separatrix”

In the supercritical regime u < −1, however, things are
more complicated. As Figs. 2(b)–2(d) show for different
N at u = −3, the second distinctly nonclassical feature of
the quantum system now shows up in the energy spectrum:
crossings and brief close approaches (“avoided crossings”) of
eigenvalue curves in the (E ,�) plane. These crossing features
are all found within the inverted triangle “swallowtail” region
of the (E ,�) plane, which is bounded by the energies of the
classical fixed points [see Fig. 2(d)]. The connection between
these classical energies and the quantum levels is simply
Bohr-Sommerfeld quantization, which becomes highly accu-
rate at large particle number N for this classically integrable
system. Under Bohr-Sommerfeld quantization the quantum
energy levels are found by quantizing the actions of classical
orbits, so that in a Bohr-Sommerfeld system quantum and
classical adiabaticity generally coincide.

Simple geometry dictates, however, that when u < −1
there are crossings of Bohr-Sommerfeld energy levels within
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FIG. 4. Density of states for N = 1000 and u = −3.

the swallowtail which is traced by the classical fixed points
in the (E ,�) plane, as well as a rather dense accumulation
of intersecting lines along the inverted arch at the top of
the swallowtail. We will refer to this upper border of the
swallowtail feature as “the separatrix,” even though it is a
curve in the (E ,�) plane rather than in phase space, because
the particular curve which defines the upper edge of the
swallowtail is precisely the energy of the classical separatrix.
Bohr-Sommerfeld theory explains why the separatrix shows
up as a peak in the quantum density of states, which for large
N becomes very sharp, with energy levels packing closely
together [25,26]; see Fig. 4. This connection between the
density of states and the classical unstable fixed point follows
from the energy E = Iω in action-angle coordinates (I, ω =
2π/T ), where T is the orbital period, together with the Bohr-
Sommerfeld quantization rule In = 2π (n + 1/2)h̄:

T = 2π
dI

dE
= 4π2h̄

dn

dE
. (4)

Therefore the unstable fixed point, where the orbital period T
diverges, corresponds to a maximum in the density of states
dn/dE [22,23].

C. Avoided crossings

The top of the swallowtail does not correspond to a single
Bohr-Sommerfeld level, however; nor does the high density
of states around the separatrix represent many eigenvalues
running parallel to each other at small separations. Instead
the high density of states within this narrow arc represents
a network of avoided crossings. As N becomes large the
network of crossings becomes dense in the (E ,�) plane, and
the minimal separations at each individual avoided crossing
become narrower. One can see this pattern by looking closely
at Fig. 2(b), for which N = 20; at N = 100 the network has
already become too dense to see clearly in Fig. 2(c).

As a matter of fact there are no actual crossings of any
energy levels at all. All of the apparent crossings in Fig. 2 are
really avoided crossings, because a tridiagonal matrix cannot
have degenerate eigenvalues [27], and Ĥ is tridiagonal in the
Fock basis. The avoidances of most of these crossings are
impossible to see at larger N , though, because the energy

gaps with which they are avoided become extremely narrow
[25,26,28].

The two lowest-lying eigenvalues which seem to cross
at � = 0, for example, are the energies of states with the
majority of the attractively interacting particles localized in
Bose-Hubbard site 1 or site 2, respectively. These energies
avoid crossing because the unique ground and first excited
states at � = 0 are both mesoscopic “Schrödinger’s cat”
superpositions, with relative phase 0 or π respectively, of
these two significantly different distributions of particles. The
tiny energy difference between these even and odd superpo-
sition states is due to mesoscopic quantum tunneling; it is
exponentially small in N . Below we will confirm numerically
that the other avoided crossings within the swallowtail region
are all likewise exponentially small for large N .

The avoidance of Bohr-Sommerfeld crossings due to dy-
namical tunneling turns out to be the crucial feature for prob-
abilistic hysteresis in quantum systems. Outside the (E ,�)
swallowtail, quantum level spacings are all of order �, and
quantum adiabaticity is ensured as long as �T � 1, as we
always assume. All evolution outside the swallowtail region is
thus essentially trivial; everything significant happens because
of the avoided crossings within the swallowtail.

D. Nonclassical quantum adiabaticity

To illustrate the implications of these very narrowly
avoided crossings, suppose that the system’s initial state is the
ground state at large negative �. In a slow upward sweep of �,
therefore, the system follows the lowest energy level up to the
avoided crossing of the first two levels at � = 0. If the sweep
is really perfectly slow such that T → ∞ (quasistatic limit),
the system stays in the adiabatic ground state through the
narrowly avoided crossing and continues to follow the lowest
energy level. When the sweep returns the avoided crossing
is encountered again, and by the same argument the system
inevitably ends up back in the initial ground state at t = +T .
In this extreme case of infinite slowness our sweep process is
completely reversible, just as in the subcritical case.

In any real experiment, however, the sweep time 2T is
necessarily finite, and the validity of the adiabatic approx-
imation depends on the size of the energy gaps δ at the
avoided crossings. Figure 5 shows these energy gaps at three
avoided crossings as a function of the particle number N as
an example. We find that with increasing particle number N
the energy gaps of the narrowly avoided crossings quickly be-
come exponentially small in N and do not settle to a constant
nonzero value. In fact this is true for all avoided crossings
within the swallowtail structure. With rising particle number,
therefore, it quickly becomes increasingly difficult to fulfill
the condition of the quantum adiabatic theorem. Already for
moderate particle numbers and slow but finite sweep rates
there is a significant probability to follow the diabatic path
at the first avoided crossing, making a transition to the second
adiabatic energy level. As the sweep continues, more avoided
crossings are encountered and the same reasoning can be
applied. Whether or not the system ends up in its initial state
when the forward-and-back sweep is completed now becomes
a nontrivial question. In the next sections we will determine
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FIG. 5. Size of the energy gap δ at three different avoided crossings for u = −3 in dependence of the particle number. The energy gaps do
not approach a finite value as in the subcritical case but are exponentially small in N (for N not too small) as we show in (b) and (c) with linear
or logarithmic y axis, respectively. As examples we have considered the avoided crossings marked in (a): the avoided crossing of the first two
levels (blue), the rightmost avoided crossing of the third and fourth levels, and the second avoided crossing between the fourth and fifth levels
from the right. The lines in (b) and (c) simply connect the numerical points, as guides to the eye.

this nontrivial evolution numerically for a representative range
of particle numbers.

V. REGIMES OF PARTICLE NUMBER

Throughout the rest of this paper we will take u = −3
as a representative supercritical case; all other cases u <

−1 are essentially similar. The range of particle numbers in
the supercritical case can be divided for u = −3 into three
qualitatively different regimes:

(1) Quantum adiabatic regime (N � 20)
(2) Irreversible quantum regime (20 � N � 50)
(3) Classical correspondence regime (N � 50)
In the following we will discuss these regimes briefly

and show the results obtained by numerically solving the
Schrödinger equation. Except in regime 1 we will choose the
same sweep rate for all simulations.

A. Regime 1: Quantum adiabatic

In the quantum adiabatic regime all the level spacings are
large enough that the quantum adiabatic limit can realistically
be reached, i.e., the sweep can be made so slow that the
system always stays in the adiabatic state in which it started.

Accordingly the return probability is always one and does not
depend on the sweep rate, as long as it is slow enough. We
emphasize that due to the exponential smallness of most of
the energy gaps this regime can be hard to reach even for
small particle numbers, so that we have to choose a much
slower sweep rate than in the other regimes. An example for
N = 10 and T = 108�−1 is shown in Fig. 6. For N = 20
and the same parameters, the total sweep time 2T already
has to be on the order of 1015�−1 to obtain a fully reversible
evolution, which would be around 30 years if � were in the
experimentally typical MHz regime, or even 30 000 years for
� in the experimentally feasible kHz regime. (These estimates
of minimum sweep time are based on the Landau-Zener
formula that we will discuss in Sec. VI, assuming generously
that “fully reversible” evolution means a diabatic transition
probability of around 1% or less.)

B. Regime 2: Irreversible quantum

As the particle number is increased it becomes rapidly
more and more difficult to reach the quantum adiabatic limit.
At some point we may say that the evolution has become
irreversible for all practical purposes, since sweep times of
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(b) Forward sweep
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(c) Backward sweep

FIG. 6. Quantum adiabatic regime: Panel (a) shows the adiabatic eigenenergies for N = 10. Panels (b) and (c) show the probability to find
the system in the adiabatic eigenstate with energy E during the forward and backward sweep with T = 108�−1, starting from the second-lowest
initial energy eigenstate (as an example). In this case the system always stays in the same adiabatic eigenstate, and so the return probability is
one. Note that in panel (b) time runs from left to right (forward sweep) and in panel (c) from right to left (backward sweep).
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FIG. 7. Irreversible quantum regime: Panel (a) shows the relevant adiabatic eigenenergies for N = 30. Panels (b) and (c) show the
probability to find the system in the adiabatic eigenstate with energy E during the forward and backward sweep with T = 5000�−1. Unlike in
Fig. 6 the probability spreads over many adiabatic eigenstates. To stay in the same adiabatic eigenstate and obtain a fully reversible evolution
as in Fig. 6 the sweep time would have to be on the order of 1022�−1, an unattainable requirement for practically any realizable �. Here again
we have shown evolution from the second-lowest initial eigenstate as an example.

many thousand years (!) are clearly impractical. When this
form of irreversibility sets in the initial state is in general not
recovered with unit probability after any realistically feasible
slow sweep; see Fig. 7. After the forward sweep in regime 2,
therefore, the system is not in a single adiabatic eigenstate any
more, but in a coherent superposition of adiabatic eigenstates.
In the backward sweep the probability spreads further so that
the initial state is recovered with only about 50% probability.
The rest of the final probability is spread over a range of
energies around the initial energy. Notice, however, that the
final probability distribution is quite different from what we
found semiclassically. In the semiclassical case we had two
well-separated final energy shells, one coinciding with the
initial energy shell and one having much higher energy. In
Fig. 7, however, this clear separation of final energies is not
present. Although we therefore find irreversibility in regime
2, it is significantly different from the irreversibility we found
in the semiclassical system.

C. Regime 3: Classical correspondence

For even larger particle numbers the final probability dis-
tribution does indeed consist of two well-separated peaks,

much as in the semiclassical case, and the probability for
intermediate energies becomes vanishingly small (see Fig. 8).
Further increasing the particle number reduces the spread in
energy of the two branches; see the results for very large
particle number N = 1000 in Fig. 9. We do not show the
adiabatic spectrum in Fig. 9, as with N = 1000 it is simply
too dense to identify individual levels. Instead in Fig. 9(c)
we show for comparison the energy of two trajectories of
the semiclassical ensemble with the same initial energy and
sweep rate. Qualitatively the result for N = 1000 is very
similar to the result for N = 100, but the widths of the two
final branches of the probability become narrower, and their
energies are very close to the energies of the sets of trajectories
of the semiclassical ensemble.

Figure 10 shows the final probability distribution of ener-
gies at the end of the sweep for N = 100 and N = 1000, i.e.,
a slice along the vertical axis at �/� = −2 in Fig. 8(c) and
Fig. 9(b). As in the classical case there are now two quali-
tatively different outcomes of the experiment, corresponding
to the inner disk and outer shell in Ref. [1] or the inner and
outer shell in Fig. 1. In the quantum evolution this simply
corresponds to two well-separated peaks in the final probabil-
ity distribution of energy eigenvalues. In the correspondence

(a) Relevant part of the adiabatic spectrum
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FIG. 8. Classical correspondence regime: Panel (a) shows the relevant adiabatic eigenenergies for N = 100. Panels (b) and (c) show the
probability to find the system in the adiabatic eigenstate with energy E during the forward and backward sweep with T = 5000�−1. In panel
(c) we see a clear bifurcation of the probability during the backward sweep into two branches, as in the corresponding classical problem. Here
we have chosen the fourth-lowest initial eigenstate as the example because it has approximately the same energy per particle as the initial state
of Fig. 7.
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FIG. 9. Classical regime: Panels (a) and (b) show the probability to find the system with N = 1000 in the adiabatic eigenstate with
energy E during the forward and backward sweep with T = 50 00�−1. For comparison panel (c) shows two representative trajectories of
the semiclassical ensemble with the same initial energy, one that returns to the initial state (solid black) and one that does not (dashed red).
Note that in contrast to previous figures panel (c) here shows the forward and backward sweep in a single plot. We do not show the adiabatic
quantum spectrum in this case because the levels are too dense to be seen. For the quantum simulation we have chosen the 37th initial eigenstate
as an example because it has approximately the same energy per particle as the initial state of Figs. 7 and 8.

regime 3 we can therefore unambiguously define the quantum
return probability Pret as the sum of the probabilities within the
first peak. In regime 2 such a definition would not be possible
since the two peaks overlap, making a clear separation into
qualitatively different fractions impossible.

This unambiguous definition of Pret in regime 3 as the
probability in the first final energy peak is also clearly
measurable experimentally. Because the large final detuning
completely dominates the tunneling term in the Hamiltonian,
the final-time energy eigenstates are essentially eigenstates of
particle number in the two sites. The two peaks in Fig. 10
correspond to particle number distributions which are easily
distinguished, even with very coarse particle-counting reso-
lution. In this regime of clearly separated final energy peaks,
therefore, it should be relatively straightforward to recognize,
in each run of an experiment, which of the two possible final
energy ranges has been reached in that run. After many runs
the return probability can therefore be measured empirically
in a straightforward manner.
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FIG. 10. Final probability distribution at the end of the forward-
and-back sweep for the same scenarios as in Figs. 8 and 9. There
are two qualitatively different groups of final states: one with energy
close to the initial state and one with much higher energy. Increasing
the particle number reduces the widths of each of these two groups,
so that as in the semiclassical case two sharp final energies are
obtained for large N . The return probability Pret is then defined as
the sum of the probabilities in the left peak, which is centered around
the initial energy.

D. Quantitative correspondence?

So far we have confirmed numerically that for large par-
ticle numbers, and for a sufficiently but not excessively slow
sweep rate, qualitatively similar results to the semiclassical
results are obtained, inasmuch as an initial energy eigenstate
evolves through the forward-and-back sweep into two narrow
ranges of energies, each range well separated from the other.
Probabilities for any final energies between these two distinct
narrow ranges become extremely small. The probability to
return to the initial energy range is theoretically well defined
and experimentally measurable.

We have not yet fully confirmed the emergence of semi-
classical probabilistic hysteresis from quantum mechanics,
however, because the classical return probability is deter-
mined quantitatively by Kruskal’s theorem, but we have not
yet evaluated the quantum return probability quantitatively.
Quantitative comparison is necessary even just to estimate the
correct sweep timescale at which the semiclassical quasistatic
result should be expected, since in the quantum quasistatic
limit of infinite slowness the return probability will always
be one. We have now seen that for some quantum cases,
with large but finite T , the return probability is at least
something less than one. In what range of sweep timescales
T , if any, will the classical and quantum probabilities actually
agree?

At least for particle numbers up to around N = 1000
we can answer this question numerically for any particu-
lar case, by numerically solving the time-dependent many-
body Schrödinger equation for the two-site Bose-Hubbard
system. We can also make steps toward understanding the
numerical results analytically, by considering the evolution
in terms of quantum adiabatic theory. Because our sweep
is slow, the quantum system certainly follows an adiabatic
eigenstate until an avoided crossing is encountered. At ev-
ery avoided crossing the probability for a diabatic transi-
tion can be calculated by the Landau-Zener formula. The
whole sweep can thus be considered as a long series of
Landau-Zener “mini-sweeps” through a succession of avoided
crossings.
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VI. QUANTUM-CLASSICAL CORRESPONDENCE VIA
LANDAU-ZENER TRANSITIONS

The celebrated Landau-Zener formula states that the proba-
bility for a diabatic transition over a parametric sweep through
an avoided crossing of two energy levels E1,2 is given by

Pdiab = e− 2πv2

|α| , (5)

where v is the off-diagonal matrix element coupling the two
levels and α = [E2(t ) − E1(t )]/t is the slope of the separation
of the diabatic energy levels, provided that this separation
changes linearly with time. Although the Landau-Zener for-
mula is derived for a two-level system, it is well known that
it also applies to multistate problems as long as the avoided
crossings are well enough separated to justify a two-level
approximation locally. This approximation is known as the
independent crossing approximation (ICA) [18,29–32].

The ICA is justified as long as adiabatic evolution only
breaks down at any given time within orthogonal two-state
subspaces of the total Hilbert space, so that there is never any
need to compute nonadiabatic evolution within a subspace of
dimension three or more, and the full evolution can be given
as a tensor product of adiabatic and Landau-Zener evolutions.
For example if one level has a narrowly avoided crossing
with another level, and then later has another avoided cross-
ing with another level, the two successive crossings may be
treated independently as long as the ranges of � within which
each crossing gives nonadiabatic evolution do not overlap.
The ranges of � within which adiabaticity fails are defined
by En+1(�) − En(�) � �̇/�, and hence they can be made
arbitrarily narrow by reducing the sweep rate. The ICA is
therefore bound to be valid for slow enough sweeps. In the
following sections we will discuss the ICA for our system.

A. Independent crossing approximation (ICA)

The ICA has been given several somewhat different im-
plementations in the literature, which we discuss in the Ap-
pendix. We use here the variant in which the probability of a
diabatic transition from the adiabatic level i to j at an avoided
crossing is given as

Pi j = e
− πδ2

i j
2�̇αi j , (6)

where δi j is the size of the energy gap at the avoided crossing,
�̇ = (�0 − �I )/T is the sweep rate, and αi j is the difference
of the asymptotic slopes of the adiabatic levels i and j. Further
details concerning the method, and a comparison of the results
obtained by successive application of (6) to a numerical
solution of the Schrödinger equation, can be found in the
Appendix. The ICA becomes a more accurate approximation
for lower particle numbers (since the lower density of levels
means fewer avoided crossings within any � range) and
slower sweep rates (since the � ranges in which diabatic
transitions occur become narrower). Very low N or large T are
by no means needed, however; we show in the Appendix that
the ICA remains good even for N = 1000 and �̇ = 8 × 10−4,
which are the highest particle number and sweep rate that we
have considered.

Note that (6) gives only the transition probabilities but no
phase information, even though the Landau-Zener problem
can be solved exactly for the complex transition amplitude
including a phase. The phases of individual Landau-Zener
transitions can only affect the final probability distribution,
however, if there are interference effects between multiple
transitions, as levels cross and recross. We will see that such
interference affects can indeed occur; the reason to ignore
the Landau-Zener phase is not that it never matters. The
reason to ignore the Landau-Zener phase in the ICA is that
if interference between multiple crossings is important then
the crossings are not really independent, even though they
are all nicely separate, and so since one has to keep track
of a complicated array of many quantum phases anyway, one
might as well just solve the whole problem numerically and
forget the ICA.

By comparing such full numerical solutions with approx-
imations based on the probabilities (6), however, we will see
below that there are indeed conditions under which one may
apply the ICA incoherently, summing probabilities given by
(6) without considering phases. We will also find that it is
precisely under these conditions that the correspondence of
the quantum evolution with classical probabilistic hysteresis
emerges. Before proceeding to these comparisons, we will
first analyze the behavior of the Landau-Zener probabilities
for individual crossings as given by (6).

B. Crossover from diabatic to adiabatic

As we discussed in Sec. V, the energy gaps δi j at most
of our avoided crossings become extremely small in number
regimes 2 and 3, which require only N � 20. Consequently,
for realistic sweep rates and not too small particle numbers,
many of the probabilities given by (6) tend to be close to
one. In particular, if the system starts in a low-energy state
then the probabilities for diabatic transitions through the first
avoided crossings that are encountered, as �(t ) is initially
swept forward, are all close to one.

As the sweep continues through its succession of diabatic
avoided crossings, however, the system is steadily moving
upwards in the (E ,�) plane through the swallowtail region,
towards the separatrix at the top of the swallowtail. Beyond
the separatrix there are no more extremely narrow avoided
crossings; all energy gaps are of order �. As the system
moves up through the swallowtail to approach the separatrix,
therefore, the energy gaps δi j at the avoided crossings must
eventually begin to be larger.

Figure 11 shows this pattern by showing the sequence of
δi j that would be encountered in succession on the forward
sweep, if the system began in the ground state and then went
through every crossing diabatically. Each successive δi j would
be a single point in the (�, δ) plane, but we wish to compare
cases with greatly differing N , for which the points would be
differently spaced because for larger N the avoided crossings
are packed more closely together. Figure 11 therefore shows
the δi j sequences for all N as interpolated smooth curves
δ(�). The curves are also extrapolated to show large avoided
crossing widths δ ∼ � at larger � > �S even though the
“crossings” in this range are really just energy differences
between levels that never approach closely.
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FIG. 11. Energy gaps δ at avoided crossings encountered during
the sweep, for various particle numbers N , if the initial state is the
ground state and the system is assumed to follow the diabatic path
at every avoided crossing. For visual clarity the discrete sequences
of encountered crossings, each with a particular δ at a particular �,
are represented by interpolation as continuous curves δ(�). In all
cases the gaps at the first avoided crossings are extremely small,
so that the system indeed takes the diabatic path with extremely
high probability. The gaps become larger around � = �S , which is
the value of � at which the classical separatrix shrinks to a point
and vanishes (dashed line at �/� ∼ 1.1). Over a small range of
� around �S , Pdiab drops to very low values, and thereafter the
system essentially just follows the adiabatic path. For larger N the
transition from diabaticity to adiabaticity around �S becomes more
abrupt, but the the density of the level spectrum also increases
with N , and for large N there are many crossings within the range
of � over which the avoided crossing gaps grow. There are thus
many avoided crossings within this range for which the evolution
is between diabatic and adiabatic, with significant Landau-Zener
probability to take each branch. Through each such crossing the
system’s quantum state is split coherently into a superposition of the
two branches.

In spite of these subtleties in interpreting Fig. 11, its
implications should be clear. The point � = �S where the
quantum δi j suddenly rise for large N , when the initial state
is the ground state, is precisely the point at which adiabaticity
breaks down classically even in the quasistatic limit, allowing
quasistatic irreversibility to occur [1]. A similar pattern occurs
for other initial states; the general phenomenon is that as
the quantum system approaches the separatrix in the (E ,�)
plane, the avoided crossing gap δ begins suddenly climbing.
For large N the climb is almost vertically sharp and begins
abruptly right at the separatrix, with δ remaining very small
until just below the separatrix and then already being of order
� just above it. (This correspondence between the classical
separatrix and abrupt increase in quantum level splittings has
previously been noticed in Ref. [25].)

The classical result of perfect reversibly in cases where
� reverses its sweep before the initial ensemble meets the
separatrix is thus also clear quantum mechanically. For evo-
lution that never brings the quantum system to the (E ,�)
separatrix, all the energy gaps encountered during the sweep
are vanishingly small for even moderate N , so the system
follows the diabatic path with essentially unit probability

in both the forward and backward sweep, and the return
probability is essentially one. The system essentially remains
at all times in a single adiabatic energy state.

What of quantum-classical correspondence in cases where
the � sweep continues through �S , though?

C. Between diabatic and adiabatic

Insofar as there even are any avoided crossings above the
quantum separatrix, they are wide enough for the Landau-
Zener evolution through them to be essentially perfectly adi-
abatic. Below the quantum separatrix, on the other hand, the
avoided crossings are so narrow for any practical sweep rate,
even for moderate N � 50, that their Landau-Zener evolution
is essentially perfectly diabatic. Although the crossover is
quite sharp for large N , from nearly perfect quantum diabatic-
ity below the separatrix to nearly perfect adiabaticity above
it, the transition from diabaticity to adiabaticity is not fully
accomplished between one avoided crossing and the next, not
even in dynamical regime 3.

For large N the avoided crossings are densely packed along
�, and as the system approaches the separatrix there are many
avoided crossings with Pdiab neither close to zero nor to one.
Through each of these intermediate avoided crossings the sys-
tem’s state bifurcates significantly into a superposition of two
different energy eigenstates. Consequently, the quantum state
after the sequence of many of these transitions around �S is a
coherent superposition of many adiabatic eigenstates. If the �

sweep continues further, subsequent avoided crossings under
classically adiabatic conditions �T � 1 are all essentially
perfectly adiabatic, so no further bifurcations occur on the
forward sweep.

On the backward sweep through the same set of avoided
crossings, all these quantum amplitudes interfere at each
crossing, providing even more nontrivial bifurcation. If a
single energy eigenstate is coherently split by a Landau-
Zener transition of intermediate probability, then passing back
through the same Landau-Zener transition can potentially
merge the two branches of the superposition back into the
single initial eigenstate—but only if the two branches begin
the reverse transition with exactly the right relative phase.
If we were dealing here with only a single avoided crossing
of two states, then we could achieve this perfect reversal of
a bifurcation just by carefully timing our sweep so that the
accumulated adiabatic phases of the two branches had the
right difference. With amplitude spread over many energy
eigenstates, however, and then returning through a sequence
of many nontrivial avoided crossings, there is no way to
ensure that the initial single energy eigenstate is recovered
with unit probability.

The quantum forward-and-back sweep process for N →
∞ thus exhibits probabilistic hysteresis for �0 > �S , just as
the classical process also does, unless the quantum sweep is so
impossibly slow that even the exponentially narrow avoided
crossings are adiabatic. Such slowness is only remotely fea-
sible in dynamical regime 1 (N � 20 for u = −3); already
in regime (ii) (20 � N � 50 for u = −3) there is quantum
probabilistic hysteresis. In regime 2 the Landau-Zener Pdiab

may range between 0 and 1 for avoided crossings within the
full area of the (E ,�) swallowtail, so that bifurcations leading
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to probabilistic hysteresis are not only associated with the
separatrix itself, as they are in the classical problem. This
regime is thus complex and we will analyze it no further in
this paper.

In regime 3 (N � 50 for u = −3) the avoided crossings
are all extremely narrow except very close to the separatrix,
and so bifurcations into many energy eigenstates only occur
within that narrow region. Because the separatrix region has
high density of states, these many eigenstates are all within a
narrow range in energy, even though they are many. For slow
sweeps at the large N of regime 3, therefore, the quantum
system becomes nonadiabatically spread over many states
within a narrow range of energies right around the classical
separatrix. Under subsequent adiabatic evolution this narrow
range separates into two narrow ranges that move quite far
apart from each other in energy, much as the classical ensem-
ble was likewise divided in Ref. [1].

This is still only a qualitative quantum-classical correspon-
dence, however, inasmuch as both cases show some degree
of probabilistic hysteresis. What circumstances can further
ensure that the quantum and classical probabilities are actually
the same?

D. Correspondence failure

First of all we can confirm that the quantum and classical
probabilities do not automatically coincide for large N . To
confirm this we consider several different eigenstates of the
initial Hamiltonian Ĥ (t = −T ) as initial states, and for each
of them we numerically evolve through a forward-and-back
sweep at a slow rate 1/T 
 � to compute the probabilities of
ending up in various final energy eigenstates at t = +T . What
we can then see in Fig. 12 is that all these quantum prob-
abilities depend sensitively on the precise sweep timescale
T : variations in T of less than 1% can change the quantum
probabilities by factors of order unity, even when �T is very
large. The semiclassical probabilities, in stark contrast, are
independent of T as long as T � �−1.

The quantum variations in probability are in fact oscillatory
as functions of T ; this indicates that they are due to inter-
ference effects through the avoided crossing network, which
are sensitive to time-dependent phase differences between
bifurcated branches of the quantum state in the instantaneous
energy basis. It is possible that the amplitude of these oscil-
lations will eventually become small at some very large N ,
but our numerical investigations at the largest computationally
feasible N of around 1000 indicate that the approach to
quantum-classical correspondence with increasing N is very
slow (possibly logarithmic).

We emphasize that this sensitive dependence on the precise
sweep rate is only revealed because we have included the
backward sweep in our protocol. After only the forward
sweep, when the amplitude has only been spread over a
narrow range of energies, the differences the system state for
different sweep rates are very subtle, in the sense that the
probability distribution among nearby states is only slightly
changed. In particular what is called “Landau Zener tunneling
probability” in Refs. [3,7,10,19], namely, the ratio of the
populations of the two sites at the end of the forward sweep,
does not sensitively depend on the precise sweep rate.

FIG. 12. Each panel shows the probability (solid blue) to end
up in the eigenstate of the initial Hamiltonian that is given by the
panel’s column, provided that the initial state was the state given
by the panel’s row (i.e., the panel in the ith column and jth row
shows the probability to be in the ith state at the end of the sweep,
starting initially in the jth state). The dashed red line shows the corre-
sponding probability in the incoherent Landau-Zener approximation,
which is basically constant in the displayed T range. The incoherent
Landau-Zener approximation gives the correct short-time average of
the probability. This is also true for the panels far away from the
diagonal, where the probabilities become too small to be seen in this
figure. The system parameters are N = 50, u = −3, �I/� = −2,
and �0/� = 1.

E. The incoherent Landau-Zener approximation

Also shown in Fig. 12, however, are dashed lines indicat-
ing the probabilities for each final state, given each initial
state, that we obtain if we apply the ICA at every avoided
crossing during the forward-and-back sweep, but taking only
the probabilities Pdiab, neglecting phases and all interference
effects. We call this calculation the incoherent Landau-Zener
approximation. The dashed curves that it produces in Fig. 12
are all essentially horizontal lines, with negligible dependence
on the precise sweep timescale T . This is because ignoring
phases and interference is equivalent to time averaging all
the phases, and then since the phases evolve quite quickly
while the sweep of �(t ) is slow, time averaging is essentially
equivalent to averaging over the sweep timescale T , since
slightly faster or slower sweeps lead to greatly differing rel-
ative phases accumulating over the times between successive
avoided crossings, whereas Pdiab changes on a much longer
timescale. The incoherent ICA thus effectively averages away
the oscillations of probabilities with sweep rate T , yielding
average probabilities that are independent of T .

The incoherent Landau-Zener approximation will thus be
an accurate approximation for experiments in which return
probabilities are measured by repeated runs, with imperfect
control over variations in sweep time T among runs. In
this sense the averaged probability given by the incoherent
Landau-Zener approximation emerges naturally as the quan-
tity that can most straightforwardly be measured.

A second sense in which the incoherent ICA is actually
realistic appears when we note in Fig. 12 how the probabilities
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FIG. 13. Comparison of the return probability (solid) with the
incoherent Landau-Zener approximation (dashed red) for different
sweep times and different initial states [(a) 37th eigenstate; (b) en-
semble containing four (black) or 20 (blue) eigenstates with the
same mean energy as in (a)]. The oscillations around the incoherent
Landau-Zener result are strongly suppressed for the finite width
ensembles in the right panel. Since even just a few states are enough
to suppress the oscillations, the energy width can still be very small.
Note that the incoherent Ladau-Zener result itself changes by less
than 10−5 in the displayed T range. The system parameters are
N = 1000, u = −3, �0/� = −�I/� = 2.

for any single-sweep rate T vary with starting eigenstate i.
Especially for large particle numbers N it is experimentally
unrealistic to prepare a single eigenstate initially; more realis-
tic is a microcanonical or canonical ensemble (as in Ref. [1])
with a finite energy width. Experimental measurements of
return probability will therefore effectively sum over initial
eigenstates i, even for a single run with a fixed T . When
many adiabatic eigenstates participate in the evolution, the
oscillations of probability shown in Fig. 12 are smeared out
[33], effectively reproducing the incoherent ICA result, as
we demonstrate below. Since the dimension of the Hilbert
space is d = N + 1, the average number of eigenstates in any
normalized energy range �E/�N is proportional to N , so that
even for a very small energy width a large number of levels is
initially occupied, for large enough N .

Figure 13 shows the return probability for N = 1000 and
a single initial state (left) and two initially microcanonical
ensembles with different energy width (right) over time. The
dashed line indicates the incoherent Landau-Zener result.
We find that the oscillations in the return probability are
suppressed in the case of a finite width ensemble so that
even when the sweep time is held exactly constant between
different runs the incoherent Landau-Zener approximation
gives the correct return probability. For even larger particle
numbers or initial energy range we expect the oscillations to
vanish completely, as in the semiclassical case [1].

F. Recovering quantum-classical correspondence

After having thus established the incoherent Landau-Zener
approximation as accurate for realistic experiments with im-
perfectly reproducible T or, more importantly, finite initial
energy width, we can finally compare the quantum results for
the return probability calculated with the incoherent Landau-
Zener approximation with the semiclassical results. Figure 14
shows the return probability for N = 1000 plotted against the
total sweep time 2T for initially microcanonical ensembles of
states with different energy. The dashed lines indicate the cor-
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FIG. 14. Comparison of the return probability in the incoherent
Landau-Zener approximation for microcanonical initial ensembles
(colored lines) and the corresponding semiclassical values in the
quasistatic limit (dashed). Note that the logarithmic horizontal axis
covers a wide range of sweep times. Since it has been demon-
strated in Fig. 13 that the incoherent Landau-Zener approximation
does indeed closely approximate the quantum return probability, we
conclude that the quantum return probabilities for initial quantum
ensembles agree well with the classical values over a broad range of
sweep rates. The system parameters are N = 1000, u = −3, �0/� =
−�I/� = 2.

responding semiclassical adiabatic values. We find that there
exists a broad range of sweep rates for which the quantum re-
turn probability is approximately constant and agrees with the
semiclassical adiabatic value found in Ref. [1]. The existence
of this correspondence regime of probabilistic hysteresis is on
the one hand surprising because it is not the quantum adiabatic
limit (where the return probability would be always one, as
discussed above), and yet the return probability is nearly
independent of the sweep rate. On the other hand the existence
of this correspondence regime is expected, since ultimately
the semiclassical results must emerge from the full quantum
description. For very slow sweep rates and low initial energy,
a significant deviation from the semiclassical results can still
be observed; the semiclassical result seems to underestimate
the quantum return probability in these cases. The range of
sweep rates over which quantum-classical correspondence
is good for probabilistic hysteresis is quite broad, however,
even at these lowest energies. That is our paper’s main
result.

We emphasize both that the incoherent Landau-Zener re-
sult corresponds to the semiclassical result and that a fi-
nite initial energy width is needed to justify this incoherent
treatment. In principal we can obtain very similar results as
in Fig. 14 also for smaller particle numbers (N ∼ 100), but
then the initial energy width has to be very wide to support
enough quantum states (e.g., �E/�N ∼ 0.25 for N = 100 so
that we would have only two lines in Fig. 14). If the energy
width is too small, the return probability oscillates around the
semiclassical value—a purely quantum effect. We therefore
conclude that even for very large N strong quantum effects
can be observed if the initial energy width is small enough
(see Fig. 13).
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VII. DISCUSSION

A. Summary and conclusion

In conclusion we have demonstrated how irreversibility in
the form of probabilistic hysteresis emerges in a small isolated
quantum system and how the semiclassical limit is attained.
Instead of the separatrix crossing mechanism discussed in
Ref. [1] for the classical system, the origin of irreversibility
in the quantum system was found to be in a series of Landau-
Zener crossings, leading at large N to two qualitatively dif-
ferent outcomes of the sweep experiment. Although in the
true quantum adiabatic limit the evolution is always fully re-
versible, we showed that already for modest particle numbers
the sweep rate has to be unrealistically slow to reach this limit.
For large particle numbers we found that the return probability
as a function of the sweep rate is almost constant over nearly
three orders of magnitude, and within this broad range of
slow sweep rates it agrees closely with the semiclassical
adiabatic prediction. While it is therefore technically true that
the adiabatic and semiclassical limits do not commute, we
have shown that there still exists a broad quantum regime in
good correspondence with the semiclassical adiabatic limit.

To obtain these results it is important to have a finite energy
width initially, so that several quantum states are supported
and quantum interference effects are averaged out. In this
case the return probability can be calculated accurately by
the incoherent Landau-Zener approximation. We therefore
conclude that the semiclassical adiabatic limit corresponds to
the incoherent sum of all Landau-Zener probabilities, with
quantum interference effects neglected. If only a single state
is initially occupied, however, the interference effects lead
to significant oscillation of the return probability around
the semiclassical value predicted by the incoherent Landau-
Zener approximation, even for very large particle numbers.
Therefore strong quantum effects can be observed at large
particle numbers provided that the initial energy width is small
enough. The semiclassical value of the return probability is
obtained only if, in addition to being in the limit of large
particle numbers, a finite initial energy width also applies.

B. Outlook

The results in this paper are all based on the Landau-Zener
description of the sweep process. There is, however, a com-
plementary viewpoint using the phase-space formulation of
quantum mechanics in terms of quasiprobability distributions
such as the Wigner function or Husimi function. Since the
semiclassical description is based on considerations in phase
space we expect that these quantum phase-space methods
can give further insights into the relationship between the
quantum and classical mechanics of probabilistic hysteresis
as the microscopic limit of irreversibility. Details will be
published elsewhere.

The results reported here have all been purely numerical,
and in particular the main result of correspondence between
the incoherent Landau-Zener approximation and the semiclas-
sical probabilities derived from Kruskal’s theorem has been
obtained purely as a numerical fact. The implication of this
fact is that the Landau-Zener transition probabilities in the
quantum problem are somehow related to the classical rates

of phase-space area growth that are involved in Kruskal’s
theorem. It should therefore be possible to demonstrate this
relationship analytically. We are pursuing this goal.

The system studied here is completely integrable. It has
been shown in Ref. [2], however, that chaos has strong effects
on microscopic irreversibility and probabilistic hysteresis.
Instead of introducing nonintegrability by adding another
degree of freedom to the dimer system, perturbations in the
form of periodic kicks of either the coupling constant � or
the interaction parameter U can lead to dynamical chaos. In
classical phase space a chaotic strip first forms close to the
separatrix of the unperturbed system. This way of introducing
chaos should also work in the quantum dimer presented
here, where we expect the level spacing statistics to change
from a Poissonian to a Wigner-Dyson distribution around
the maximum of the density of states, so that the effect of
quantum chaos in probabilistic hysteresis can in future be
studied by fairly straightforwardly modifying our integrable
Hamiltonian.
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APPENDIX: VARIANTS OF THE ICA

There are several variants of the ICA; here we discuss
them. The standard form for multistate Landau Zener assumes
a Hamiltonian of the form Ĥ = Â + B̂t , where Â and B̂ can be
represented by constant Hermitian matrices. Our Hamiltonian
(1) has this form if we treat the forward and backward sweep
separately. The diabatic basis is the basis in which B̂ is
diagonal, which in our case is the Fock basis |n1, N − n1〉. In
this basis the Hamiltonian (1) assumes the form

Ĥ =

⎛
⎜⎜⎜⎜⎝

ε0 + β0t v0 0 . . . 0
v0 ε1 + β1t v1 . . . 0
...

...
. . .

...
...

0 0 . . . εN−1 + βN−1t vN−1

0 0 . . . vN−1 εN + βNt

⎞
⎟⎟⎟⎟⎠

(A1)
with

εi = U

(
N2

2
+ i2 − Ni

)
,

βi = �̇(t )

2
(2i − N ),

vi = �

2

√
(i + 1)(N − i). (A2)

The diabatic levels are then given by the diagonal elements of
Ĥ (i.e., the eigenvalues of the uncoupled system vi = 0), and
their separation depends linearly on t . The goal of the ICA is
to treat each avoided level crossing as if it were an avoided
crossing in a two-level system, and apply (5). To do so the
corresponding parameters v and α have to be found for every
avoided crossing.
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FIG. 15. Comparison of the modified ICA (blue crosses) and
an improved modified ICA (red crosses, see text) with a numerical
solution of the Schrödinger equation (black open circles). We show
the probability to be in an adiabatic eigenstate at the end of the
forward sweep where the initial state is the ground state, so that
there are no effects of path interference. The system parameters are
N = 1000, 2�T = 10 000, �0/� = −�I/� = 2. Lines between
data points have been added as guides to the eye.

In the easiest form of the ICA, often used for problems
where the ICA result can be calculated analytically, the slope
α which is relevant for the transition between the levels i and
j is assumed to be β j − βi, and the parameter v is given by
the matrix element Hi j [29–32]. This procedure is motivated
by the two-level system, where v is exactly half of the size
of the energy gap δ at the avoided crossing. In the multistate
problem, however, δ/2 and v are in general different; in
particular there can be indirect coupling of two diabatic levels
even if the corresponding matrix element vanishes [18]. In our
system there is only one nonzero off-diagonal matrix element
for each diabatic level i coupling it to the level i + 1, but
clearly there can be level transitions at every avoided crossing.
These transitions can be captured by using δ/2 instead of v

in the Landau-Zener formula. this better approximation was
called modified ICA in Ref. [18].

We can now test the accuracy of the modified ICA in
our system. To do so we consider the large particle number
N = 1000 and total sweep time 2�T = 10 000 for a sweep
from �I/� = −2 to �0/� = 2, as in Fig. 9. In general
there will be many different paths along the adiabatic levels,
branching at avoided crossings, to connect a given initial and
final state. Therefore, if we describe the system state in the
adiabatic basis, the interference between the amplitudes of
different paths has to be taken into account; yet typically this
interference is not included in the ICA. If the initial state
is chosen to be the ground state, however, then there is no
interference during the forward sweep because there exists
only a single path connecting the initial ground state at �I

and any given state at �0 (see Fig. 2), so that the dynamical
phase that is responsible for interference plays no role. We can
therefore use this setup to test the modified ICA. Figure 15
shows the probability distribution over adiabatic eigenstates
at the end of the forward sweep (t = 0, �(t ) = �0), obtained
from a direct numerical solution of the Schrödinger equation
and from the modified ICA. We find that the modified ICA
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FIG. 16. Definition of δmax, �max and �c for the avoided crossing
indicated by the red circle.

gives reasonably good results given the fact that there are
1001 states. The modified ICA can be greatly improved,
though, if we do not use the difference of the slopes of the
diabatic levels in the Landau-Zener formula, but rather the
difference of the asymptotic slopes of the adiabatic levels.
To find this difference of the asymptotic slopes for a given
avoided crossing of the levels i and j at � = �c, we search
for the nearest local maximum of the level separation δmax

i j
of the involved adiabatic levels at � = �max and set the
slope to αi j = δmax

i j /|�max − �c|; see Fig. 16. Note that this
construction does not work for the highest energy levels, far
away from the swallowtail, as here there are no longer any
clear maxima and minima of the level separation. This does
not pose a problem, though, because for our slow sweep the
diabatic transition probability is essentially zero at these high
energies. Moreover, as we have seen in Figs. 7–9, the adiabatic
levels for which the level separation has no clear local extrema
play no role in the evolution. If we label the energy gap
at the avoided crossing by δi j , the probability for a diabatic
transition from the adiabatic level i to j is given by

Pi j = e
− πδ2

i j
2�̇αi j , (A3)

as stated in the main text. Note that in general there are
multiple avoided crossings between two adiabatic levels i and
j, so that all the quantities mentioned above should have
an additional index labeling the different avoided crossings.
Note also that the first avoided crossing (between the first and
second adiabatic level) has to be treated differently, because
also for it there is no local maximum of the corresponding
level separation, but that it is only this first pair of levels
which need this special treatment, and the special treatment
is simple. If we look at Fig. 2, then it is clear that we can just
use the level separation at the value of � where second and
third adiabatic levels have an avoided crossing as value for
δmax

12 .
In effect this “improved modified” procedure gives a much

better local two-level approximation of each avoided crossing
than the ordinary modified ICA; accordingly this improved
modified ICA (red crosses in Fig. 15) gives a much better
approximation to the true probability distribution after the
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sweep. In this paper we have used only this improved version
of the modified ICA, although for brevity we have referred
to it simply as “the Landau-Zener approximation.” The draw-
back of this method compared to the usual ICA is that the
Hamiltonian has to be diagonalized at a large number of �

values to find the minima and maxima of the separation of
the adiabatic levels, whereas the slopes and coupling matrix
elements in the usual ICA can be read off the Hamiltonian.
Even for N = 1000, however, this can be done on a desktop
computer within just a few days.
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