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Higher-order statistical correlations in three-particle quantum systems with harmonic interactions
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Interaction information, a measure of higher-order statistical correlations, is examined in quantum systems
consisting of three coupled and uncoupled oscillators, in position and in momentum space. The magnitudes
of the interaction information are greater than zero, and equal in both spaces, in the uncoupled case. This
is interpreted as a dominance of synergic effects due to the indistinguishability of particles, and is larger for
symmetric wave functions compared to antisymmetric ones. In symmetric wave functions, the magnitude of
interaction information increases with the coupling strength, and the inclusion of coupling reveals differences
in behavior between the spaces. With attractive potentials, interaction information is positive in momentum
space (synergic) and negative in position space (redundant). This is reversed with repulsive potentials. It is now
position space which yields positive values, while momentum space gives negative ones. The inclusion of spin
provides antisymmetric wave functions which yield that the overall tendencies are maintained. However, there
are regions for both attractive and repulsive potentials where the sign of interaction information changes, with the
interpretation that the balance changes from a dominance of synergic to that of redundant interactions, and vice
versa. This suggests that the nature of the interactions in these systems can be tuned with the coupling strength.
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I. INTRODUCTION

Interaction is key to understanding the physical world. It
is the electrons which interact among themselves and the
nucleus to form atoms, the atoms which interact to form
molecules, and the molecules which interact to form clus-
ters and eventually different phases of matter. It is these
interactions which are responsible for different phenomena
at each level of organization. Thus, an appreciation of the
interaction between elements within a larger set is important
in understanding the behavior as a whole.

These ideas are not restricted to electrons, atoms, or
molecules. It is the relations between neurons which lead to
neural activity and between protein structures which yield a
particular biological function. These are all aspects of what
has been termed emergent behavior or the synergy among the
elements belonging to the same set [1].

At the simplest level, it is the pairwise interactions that
are responsible for observed behavior. However, truly emer-
gent phenomena go beyond pairwise associations to consider
higher-order ones between triples, quadruples, etc. It is these
higher-order correlations that will be the focus of our study.
The next relevant question is how to measure or quantify these
so-called higher-order interactions or correlations. The term
correlation is used here as a synonym to depict the presence
of interactions between or among elements.

Correlation is a term taken from statistics, which should
offer ideas about the measurement of pairwise and higher-
order correlations. Indeed, it is a closely related field, infor-
mation theory, which provides one answer of how to quantify
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these correlations. Information theory was conceived in the
context of the analysis of communication signals but has since
made an impact in many fields of study. Central to this is a
framework for the analysis of probability distributions where
inherent uncertainties and the correlation between variables
can be quantified.

It should not be surprising that information theory has
made an impact on quantum mechanics given that the dom-
inant interpretation of quantum mechanics is that of a statis-
tical theory based on probability densities or, more generally,
density matrices or the density operator. In fact, it was realized
earlier on that the Heisenberg uncertainty principle could be
cast in terms of the information entropies, the uncertainty
measures taken from information theory. This has led to
an active discussion of the optimal manner of quantifying
quantum uncertainties. This also begs the question of the best
way to quantify correlations when the underlying distributions
are quantum in nature.

The Heisenberg uncertainty principle is a statement about
the optimal precision that can be attained when treating
noncommuting observables, or incompatible representations,
such as the position and momentum ones. The two are
related, and correlated, via the uncertainty principle. This
has led to considerations of joint probability distributions of
both position and momentum which are called phase-space
distributions. Among these is the Wigner function, which
is a quasiprobability distribution since it can attain negative
values. It is the marginals of the Wigner function which give
the probability densities, in the position and in the momentum
representation. The quantum correlations here would be the
correlations between the conjugate x and p variables, and are
not the topic of this investigation.

The sum of the information entropies in position and in
momentum space, which form the basis of the uncertainty
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principle, can be thought of as emanating from the entropy
of a separable phase-space distribution. Thus, the uncertainty
principle demonstrates that the position and momentum space
representations are equivalent and complementary formula-
tions; however, the information that each representation car-
ries is very different. One of the goals of this work is to
examine the correlation effects in each representation, and to
compare and contrast the similarities and differences.

The purpose of this work is to use three uncoupled and cou-
pled quantum oscillators to probe the nature of higher-order or
interaction information, in position and in momentum space.
These systems are attractive since analytical solutions of the
wave functions are available. We will examine how physical
constraints imposed upon the system affect the behavior of
the information measures and their interpretations. We use
particle indistinguishability and the symmetry-antisymmetry
of the wave function to probe the differences in the uncoupled
case. In the coupled scenario, we will study the differences
between attractive and repulsive potentials in symmetric wave
functions and how these manifest with the coupling strength.
Lastly, we will examine the measures when spin is included,
yielding antisymmetric wave functions. In doing so, we will
pay particular attention to the disparities or resemblances
in behavior between the pairwise correlation measures and
the interaction information (higher order) to examine how
the particular degree of organization influences the interpre-
tations obtained from these measures. Also of interest will
be a comparison of the correlations among the position of
the particles (position space) with the correlations among
the momenta (momentum space) to examine their differ-
ences with regard to the nature and strength of the coupling
potential.

There is current interest in examining effective three-body
interactions [2–5] in these systems of interacting oscillators.
Examination of the behaviors with regard to the strength
of the two-body interaction potential is one way to gauge
the influence of an effective potential that is generated by a
three-body one. This work aims to use information measures
to assess how the nature and strength of the interaction po-
tentials influence the statistical correlation between (among)
the three particles. In doing so, we examine the concept of
higher-order statistical correlation among the three particles
and compare its behavior to the well-studied and established
pair correlations.

Sections II and III provide the definitions of the informa-
tion and correlation measures, while Sec. IV gives the details
about the coupled and uncoupled oscillators. This is followed
by the presentation of the results in Sec. V, and lastly, the
conclusions are outlined in Sec. VI.

II. INFORMATION MEASURES

Shannon entropies

We now proceed to give the definitions that are used in this
work. Shannon entropies are measures of the uncertainties in
the underlying distributions and have been used to examine
quantum systems [6–28]. Shannon entropies of hydrogenic
systems and the harmonic oscillator have been discussed
in [6,7], while Bose-Einstein condensates have been studied
via these entropies [29–32]. They have also been employed

to study the nature of confined quantum systems [33–43].
Shannon information entropies of the Wigner function have
also been explored [44,45].

In three-particle systems, such as the ones under con-
sideration, there is the three-variable density correspond-
ing to the wave function. The Shannon entropies for three-
variables (particles), in position (x1, x2, x3) and in momen-
tum (p1, p2, p3) space, are defined in terms of the wave
functions as

S� = −
∫

|�(x1, x2, x3)|2 ln[|�(x1, x2, x3)|2]dx1dx2dx3,

(1)

S� = −
∫

|�(p1, p2, p3)|2 ln[|�(p1, p2, p3)|2]d p1d p2d p3.

(2)

These three-variable distributions may be reduced by inte-
grating over one of the variables to yield a two-variable
distribution. The two-variable or marginal distributions are

�(x1, x2) =
∫

|�(x1, x2, x3)|2dx3, (3)

�(p1, p2) =
∫

|�(p1, p2, p3)|2d p3. (4)

The Shannon entropies of the two-variable reduced
densities are

S� = −
∫

�(x1, x2) ln[�(x1, x2)]dx1dx2, (5)

S� = −
∫

�(p1, p2) ln[�(p1, p2)]d p1d p2. (6)

Shannon pair entropies have been studied in different quantum
systems [46–48].

A further reduction by integration can be carried out to
yield the one-variable densities, which are

ρ(x) =
∫

|�(x1, x2, x3)|2dx2dx3 =
∫

�(x1, x2)dx2, (7)

π (p) =
∫

|�(p1, p2, p3)|2d p2d p3 =
∫

�(p1, p2)d p2. (8)

The Shannon entropies of the one-variable distributions are

Sρ = −
∫

ρ(x) ln[ρ(x)]dx, (9)

Sπ = −
∫

π (p) ln[π (p)]d p. (10)

Particles are indistinguishable in quantum mechanics, and
thus the reductions (integrations) can be made over any vari-
able or pair of variables. Note also that the subscript has
been suppressed on the one-particle densities to reflect the
indistinguishability. The limits of integration are not specified,
but are in the [−∞,∞] range for each x or p variable since
these are oscillator systems.

Furthermore, all densities are normalized to unity,∫
|�(x1, x2, x3)|2dx1dx2dx3 =

∫
�(x1, x2)dx1dx2

=
∫

ρ(x)dx = 1, (11)
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∫
|�(p1, p2, p3)|2d p1d p2d p3 =

∫
�(p1, p2)d p1d p2

=
∫

π (p)d p = 1. (12)

The interpretation of the Shannon entropies is that they
are measures of the (de)localization in the underlying dis-
tributions, where larger values correspond to more delocal-
ized distributions while smaller values are indicative of more
localized ones.

The Shannon entropies have been used to quantify the un-
certainties in the Heisenberg uncertainty relationship. These
have led to the entropic uncertainty relations for D dimen-
sions, where [7,49–51]

SD
T = S(x) + S(p) � D(1 + ln π ). (13)

The Shannon entropies at the D = 1 (one-), D = 2 (two-),
and D = 3 (three)-variable levels form the basis from which
one can construct the correlation measures, as will be outlined
in the next section. The entropy sum has been proposed as
a measure of basis set quality [6], as a correlation measure
in atomic systems [52], and examined in different quantum
systems [35,39,53].

III. CORRELATION MEASURES

A. Pairwise correlation

The pairwise correlation between two variables can be
quantified in terms of the mutual information (MI) [54–58].
MI in the context of indistinguishable quantum systems is

Ix = I (x1; x2) =
∫

�(x1, x2) ln

[
�(x1, x2)

ρ(x1)ρ(x2)

]
dx1dx2 � 0

= Sρ − S(x1|x2) = 2Sρ − S�, (14)

where the conditional entropy is defined as [54,59]

S(x1|x2) = −
∫

�(x1, x2) ln

[
�(x1, x2)

ρ(x2)

]
dx1dx2. (15)

The interpretation is that it is a relative entropy between
the two- variable distribution and a reference which is the
product of the two marginals. Another interpretation is that
it is the difference between the one-variable reduced entropy
and the conditional entropy, that is, the entropy with knowl-
edge of the other variable.

Pairwise-mutual information is bounded from below by
zero, which corresponds to a separable distribution. It has
been examined in a variety of different quantum systems and
shown to increase with increasing correlation (coupling) in
the system. One of the goals of this work is to compare and
contrast the behavior of the correlation occurring between
pairs of variables (MI) to that of the correlation among all
three variables (interaction information), as given in the next
section.

Note that for brevity, we will only provide the expres-
sions in position space. The corresponding ones in momen-
tum space are obtained by substituting |�(x1, x2, x3)|2 with
|�(p1, p2, p3)|2, �(x1, x2) with �(p1, p2), and ρ(x) with
π (p).

B. Interaction information

One can also consider higher-order information that mea-
sures the correlation among three variables. There are a num-
ber of different ways in which this can be defined. The total
correlation [60,61] is defined as

I3(x1; x2; x3) =
∫

|�(x1, x2, x3)|2 ln

[ |�(x1, x2, x3)|2
ρ(x1)ρ(x2)ρ(x3)

]

× dx1dx2dx3

= 3Sρ − S�, (16)

and measures all the distinct types of correlations in the
system.

Perhaps the most compelling of the higher-order informa-
tion is the interaction information (II) [54,62–66], which takes
into account the correlation or interaction among the three
variables. It is given as

I3
x = I3(x1; x2; x3) = I (x1; x2|x3) − I (x1; x2), (17)

where the first term is a conditional mutual information. Thus,
II is defined as

I3(x1; x2; x3) =
∫

|�(x1, x2, x3)|2 ln

[ |�(x1, x2, x3)|2ρ(x3)

�(x1, x3)�(x2, x3)

]

× dx1dx2dx3 − (2Sρ − S� )

= 3S� − 3Sρ − S�, (18)

and results from the fact that the marginal densities in the
denominator of the logarithmic argument are conditioned by
ρ(x3).

The interpretation is that it represents the difference in
correlation between x1 and x2, when x3 is known [first terms
of Eqs. (17) and (18)] and when it is not known [second
terms of Eqs. (17) and (18)]. It is important to note that unlike
pairwise-mutual information, this quantity can either be pos-
itive or negative. Discrete versions have been utilized in the
neurosciences to measure how neurons fire as a group [67–69]
and also in the study of protein structure [70].

Interaction information may be rewritten as

I3(x1; x2; x3) = I (x1; x2, x3) − I (x1; x2) − I (x1; x3) (19)

or

I3(x1; x2; x3) =
∫

|�(x1, x2, x3)|2 ln

[ |�(x1, x2, x3)|2
ρ(x1)�(x2, x3)

]

× dx1dx2dx3 − I (x1; x2) − I (x1; x3)

= (S� + Sρ − S� ) − 2I (x1; x2), (20)

since the particles are indistinguishable [I (x1; x2) = I (x1; x3)].
Equations (19) and (20) represent the difference in the cor-

relation between x1 and (x2x3) as compared to the correlations
between x1x2 and x2x3. All three terms are mutual information
(relative entropy), and thus must be greater than or equal to
zero by construction. The last two terms are also equal in
quantum systems. Since these terms correspond to pairwise
interactions, they can be considered as redundant (redundan-
cies) when addressing higher-order correlations. What is most
interesting is the first term, which contains the correlations
among the three variables and is referred to as the synergy.
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Thus, interaction information is a balance between the syn-
ergistic first term and the redundancies. It is positive valued
when the synergic term is larger than the redundancies. On the
other hand, a negative-valued II implies that the redundancies
are larger than the synergic term, and the pairwise correlations
prevail in this instance.

IV. INTERACTING HARMONIC OSCILLATORS

The Hamiltonian of a system of three one-dimensional
interacting oscillators using position space canonical
coordinates is

H = − 1

2

(
∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

)
+ 1

2
ω2

(
x2

1 + x2
2 + x2

3

)

± 1

2
λ2[(x1 − x2)2 + (x1 − x3)2 + (x2 − x3)2]. (21)

We use units of h̄ = m = 1. This Hamiltonian is known as
the Moshinsky atom in the literature [71,72] and has been
employed in atomic physics and in quantum chemistry to
study correlation effects. Moreover, ω is the natural frequency
of the oscillator and λ is the coupling strength of the inter-
action potential between pairs of particles. The positive sign
corresponds to attractive potentials, while the negative sign is
for repulsive ones.

The canonical coordinates in position space (x1, x2, x3) can
be transformed into Jacobi coordinates (R, r1, r2) by applying
the following changes of variable:

R = 1√
3

(x1 + x2 + x3), (22)

which corresponds to the center-of-mass coordinates, and

r1 = 1√
6

(−2x1 + x2 + x3), r2 = 1√
2

(x2 − x3), (23)

which are the relative coordinates. The Hamiltonian is rewrit-
ten in the new coordinates as

H = 1

2

[(
− ∂2

∂R2
+ α1R2

)
+

(
− ∂2

∂r2
1

+ α2r2
1

)

+
(

− ∂2

∂r2
2

+ α3r2
2

)]
, (24)

where α1 = ω2 and α2 = α3 = ω2 ± 3λ2. The positive sign
is for the attractive interactions, while the negative sign
corresponds to repulsive interactions. Moreover, λ < ω√

3
, in

the repulsive case, for the potential to be real valued [2].
Pair correlations in systems with harmonic interactions have
been studied in two-particle systems [57,58] to N-particle
ones [58].

The Schrödinger equation can be solved in the new coordi-
nates using the Hamiltonian (24),

H�nRnr1 nr2
(R, r1, r2) = E�nRnr1 nr2

(R, r1, r2), (25)[
− 1

2

(
∂2

∂R2
+ ∂2

∂r2
1

+ ∂2

∂r2
2

)
+ 1

2

(
α1R2 + α2r2

1 + α3r2
2

)]

× �nRnr1 nr2
(R, r1, r2)

= E�nRnr1 nr2
(R, r1, r2). (26)

The equation is separable in the new coordinates, and
thus the eigenfunction �(R, r1, r2) ≡ |nRnr1 nr2〉 is written as
a product of three eigenfunctions,

�nRnr1 nr2
(R, r1, r2) = ψnR (R)ψnr1

(r1)ψnr2
(r2) = ∣∣nRnr1 nr2

〉
,

(27)
where we have

ψnR (R) =
(

α1
1
4

2nR nR!π
1
2

) 1
2

e− 1
2

√
α1R2

HnR

(
α

1
4
1 R

)
, (28)

ψnr1
(r1) =

(
α2

1
4

2nr1 nr1 !π
1
2

) 1
2

e− 1
2

√
α2r2

1 Hnr1

(
α

1
4
2 r1

)
, (29)

ψnr2
(r2) =

(
α3

1
4

2nr2 nr2 !π
1
2

) 1
2

e− 1
2

√
α3r2

2 Hnr2

(
α

1
4
3 r2

)
, (30)

and Hn(x) is an n-order Hermite polynomial.
In addition, the corresponding eigenvalue is

E = ER + Er1 + Er2 ,
(31)

E = ω

(
nR + 1

2

)
+

√
ω2 ± 3λ2

(
nr1 + nr2 + 1

)
.

It is important to note that the permutation of x1, x2, or x3

does not necessarily result in a state that is indistinguishable
from the original |nRnr1 nr2〉 one. This can be seen from the
definition of the relative coordinates in Eq. (23). Thus, we
will focus our attention in this work on the ground state |000〉,
which is symmetric to particle exchange. We will see in the
following section that the inclusion of spin offers a route to
obtain antisymmetric wave functions.

The wave function in momentum space, �(p1, p2, p3), can
be obtained by applying the Fourier transform to the wave
function in position space, �(x1, x2, x3),

�(p1, p2, p3) =
(

1

2π h̄

) 3
2
∫

�(x1, x2, x3)

× e−i(p1x1+p2x2+p3x3 )/h̄dx1dx2dx3. (32)

However, we will use the following Hamiltonian to get the
wave function in the momentum space:

H = 1

2

[(
Q2 − α1

∂2

∂Q2

)
+

(
q2

1−α2
∂2

∂q2
1

)
+

(
q2

2−α3
∂2

∂q2
2

)]
,

(33)

where the coordinates (Q, q1, q2) correspond to the Jacobi
coordinates in the momentum space which are obtained using
the same Eqs. (22) and (23) with respect to the canonical
coordinates (p1, p2, p3). The wave function in momentum
space is expressed as

�nQnq1 nq2
(Q, q1, q2) = φnQ (Q)φnq1

(q1)φnq2
(q2) = ∣∣nQnq1 nq2

〉
,

(34)
where

φnQ (Q) =
(

1

α1
1
4 2nQ nQ!π

1
2

) 1
2

e
− 1

2
√

α1
Q2

HnQ

⎛
⎝ Q

α
1
4
1

⎞
⎠, (35)

φnq1
(q1) =

(
1

α2
1
4 2nq1 nq1 !π

1
2

) 1
2

e
− 1

2
√

α2
q2

1 Hnq1

⎛
⎝ q1

α
1
4
2

⎞
⎠, (36)
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φnq2
(q2) =

(
1

α3
1
4 2nq2 nq2 !π

1
2

) 1
2

e
− 1

2
√

α3
q2

2 Hnq2

⎛
⎝ q2

α
1
4
3

⎞
⎠. (37)

Noninteracting oscillator wave functions are obtained by
setting λ = 0 in the Hamiltonian in Eq. (21). In this case, the
equation is now separable in the canonical coordinates with
solutions which are products of the harmonic oscillator wave
function,

φn(x) =
√

ω1/2

2nn!π1/2
e−ωx2/2Hn(

√
ωx). (38)

Symmetric (S) and antisymmetric (A) wave functions are
built from these orbitals by considering (anti)symmetrized
determinantal products,

�A,S (x1, x2, x3) = 1√
6

∣∣φn1 (x1)φn2 (x2)φn3 (x3)
∣∣, (39)

and n1, n2, and n3 are the three quantum numbers.
The momentum-space representation of the orbitals in

Eq. (38) is

φ̃n(p) =
√

1

2nn!(ωπ )1/2
e−p2/2ωHn

(
p√
ω

)
. (40)

Thus, symmetric and antisymmetric wave functions in mo-
mentum space are obtained by forming the orbital products in
an analogous manner to Eq. (39).

Interacting harmonic oscillators with spin

Antisymmetric wave functions considering spin functions
|σ1, σ2, σ3〉 = |±,±,±〉 can be constructed [2] using the
cyclic permutation of Jacobi coordinates (R, r1, r2),

R = R′ = R′′ = 1√
3

(x1 + x2 + x3), (41)

r′
1 = 1√

6
(x1 − 2x2 + x3), r′′

1 = 1√
6

(x1 + x2 − 2x3), (42)

r′
2 = 1√

2
(x3 − x1), r′′

2 = 1√
2

(x1 − x2). (43)

Quantum numbers can be defined as nR = nR′ = nR′′ for the
center-of-mass coordinates R, and nr1 = nr′

1
= nr′′

1
and nr2 =

nr′
2
= nr′′

2
for the relative coordinates r1 and r2.

The antisymmetric wave functions are constructed
�nRnr1 nr2

(R, r1, r2) for indistinguishable particles (electrons)
considering spin as

N
[(∣∣nR′′nr′′

1
nr′′

2

〉|+ + −〉 + ∣∣nR′nr′
1
nr′

2

〉|+ − +〉
+ ∣∣nRnr1 nr2

〉|− + +〉)], (44)

for odd values of nr2 .
The three-variable density function is built from the an-

tisymmetric wave function in Eq. (44). We then integrate
with respect to the spin variables, |σ1, σ2, σ3〉, where there
are terms that are canceled due to orthogonality of the spin
functions. Thus, we obtain the spin-traced density function in
position space as

N2
[∣∣nRnr1 nr2

〉〈
nRnr1 nr2

∣∣ + ∣∣nR′nr′
1
nr′

2

〉〈
nR′nr′

1
nr′

2

∣∣
+ ∣∣nR′′nr′′

1
nr′′

2

〉〈
nR′′nr′′

1
nr′′

2

∣∣]. (45)

One- and two-particle densities are obtained by integrating
the three-particle density function in Eq. (45) with respect
to one or two of the canonical coordinates (x1, x2, x3). The
functions and densities in momentum space are built in an
analogous manner to Eqs. (44) and (45) for position space.

There is also one further point that should be mentioned
here. With λ = 0, one does not return to the antisymmetrized
noninteracting systems, since a combination of functions have
been used to build the antisymmetric function in Eq. (44). In
this work, we will center our attention on the |001〉 state.

V. RESULTS

The results are divided into two sections. The results
from the first section on noninteracting oscillators offer an
analysis of the influence of the wave-function symmetry on
the entropies and on the pair and higher-order information
measures. The section on interacting oscillators examines the
effects of the strength and nature (attractive or repulsive)
of the interaction potential on the entropies and information
measures. We begin each section with a discussion of the
behavior of the information entropies since these are the
basis from which the correlation measures are constructed.
Subsequently, the correlation measures are then presented and
discussed.

A. Noninteracting oscillators

We now discuss the influence of the wave-function sym-
metry on the information measures.

Figure 1 shows the behavior of the three-variable entropies,
in position and in momentum space, as a function of the
inverse of the one-body potential (1/ω). The one- and two-
variable entropies are not shown, but are very similar in
behavior to the three-variable ones. The |012〉 state with
antisymmetric wave function was chosen. The corresponding
symmetric wave function yields plots which are very similar
to the antisymmetric ones, and are also not presented. The
values, however, of the entropies from symmetric and anti-
symmetric wave functions are different.

One can see that the position-space entropies increase
with 1/ω, while the momentum-space entropies decrease. The
interpretation is that the position-space densities localize with
increasing ω, while the momentum-space densities delocalize.
Important to note is that all three entropy sums are constant
with 1/ω. That is, the increase in value in position space
is equal in magnitude to the decrease in momentum space.
Note that there is no interaction potential here (λ = 0). This
observed behavior of the entropy sums will be important in
the subsequent discussion of the interacting oscillators.

Figure 2 compares the behavior of the pair mutual infor-
mation with that of the interaction information for symmetric
and antisymmetric wave functions with the same quantum
numbers. There is no interaction potential in these noninter-
acting systems so all of the correlation is due to the particular
symmetry of the wave function.

The magnitudes of the correlation at the pair and higher-
order levels are equal in both position and momentum space.
Thus, the correlation due to indistinguishability of particles
offers no distinction between the spaces. This will be further
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FIG. 1. Left: Plots of the position-space S� (red, lower curve) and momentum-space S� (blue, upper curve) entropies vs 1
ω

. Right: Plots of
the entropic sum SD

T vs 1
ω

for D = 3 (green, upper curve), D = 2 (red, middle curve), and D = 1 (blue, lower curve).

commented on when interacting oscillators are discussed.
These magnitudes are also constant with 1/ω since there is
no interaction potential present.

The magnitude of the pair correlation is larger for the
antisymmetric wave function compared to the symmetric one.
This is expected due to the presence of the Fermi hole in the
antisymmetric functions.

On the other hand, it is the symmetric wave functions
which have the largest interaction information. This is distinct
from the pair mutual information. Both symmetric and an-
tisymmetric functions have positive-valued interaction infor-
mation. Thus, the synergic first term from Eq. (20) outweighs
the redundancies in the second term. The interpretation here is
that indistinguishability in these three-particle systems leads
to a synergic type of dominant statistical interaction.

B. Interacting oscillators

We now turn our attention to examine the impact of
attractive and repulsive interaction potentials on the infor-
mation measures. We will also analyze the contributions
from the redundancies and synergy terms to the interaction
information.

Three-variable Shannon entropies for oscillators inter-
acting with attractive potentials as a function of coupling
strength, λ, are presented in Fig. 3 for the antisymmetric |001〉
state. Note that we set the value of ω at one for all calculations
involving interacting oscillators. Results with different values
of ω are qualitatively the same. The position-space entropies
diminish with increasing λ as the densities localize, while
the momentum-space entropies increase as the corresponding

densities delocalize. The one- and two-variable entropies are
not shown but display similar tendencies.

The entropy sum is constant with coupling strength, similar
to the behavior in the noninteracting oscillators with 1/ω.
However, the entropy sums for the reduced one- and two-
variable densities are not constant and increase with λ. This is
different from the behavior in the uncoupled oscillators. Thus,
the effect of the interaction potential is inherent in the entropy
sums of the reduced quantities.

Figure 4 presents the entropies for the repulsive interaction
potential. The behaviors of S� and S� are now opposite to
that observed for the attractive potential. The position-space
entropies increase as the underlying densities delocalize with
increasing λ and the momentum-space entropies decrease as
the corresponding densities localize.

The plots of the entropy sums show the same type of behav-
ior as in the attractive potential. The three-variable sum is not
dependent on the coupling strength, while the reduced one-
and two-variable entropy sums increase with λ, particularly
for larger values of the coupling strength.

Plots of the reduced one-particle position- and momentum-
space densities, for two values of the coupling strength, are
presented in Fig. 5. These figures illustrate how the densities
change in the respective spaces, with an increase in λ. One
observes that the position-space density delocalizes with an
increased repulsive potential. This is translated into an in-
crease in the corresponding entropic value. On the other hand,
the momentum density localizes with a decrease in the en-
tropic value. The entropic sum (S1

T ) as shown in Fig. 4 seems
constant in the interval of λ = 0.1–0.4; however, it increases

0 0.5 1
1/0.1

0.3
Ix,Ip

0 0.5 1
1/0.1

0.2

Ix
3,Ip

3

FIG. 2. Left: Plots of the mutual information (Ix = Ip) vs 1
ω

for symmetric (blue, lower curve) and antisymmetric (red, upper curve) wave
functions of the |012〉 state. Right: Plots of the interaction information (I3

x = I3
p ) vs 1

ω
for symmetric (blue, upper curve) and antisymmetric

(red, lower curve) wave functions.
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FIG. 3. Upper left: Plots of the position-space S� (red, lower curve) and momentum-space S� (blue, upper curve) entropies vs the coupling
strength λ for the |001〉 state with attractive potential. Upper right: Plot of the entropic sum S3

T (green) vs the coupling strength λ. Lower row:
Plots of the entropy sums, S2

T (red) and S1
T (blue), vs the coupling strength λ.

slightly in this given range. Thus the effects of delocalization
in position space are not matched by an equivalent localization
in momentum space, with increasing λ.

The entropies obtained from the symmetric |000〉 state
are not presented but have very similar behaviors to those
presented in Figs. 3 and 4.
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FIG. 4. Upper left: Plots of the position-space S� (red, upper curve) and momentum-space S� (blue, lower curve) entropies vs the coupling
strength λ for the |001〉 state with repulsive potential. Upper right: Plot of the entropic sum S3

T (green) vs the coupling strength λ. Lower row:
Plots of the entropy sums, S2

T (red) and S1
T (blue), vs the coupling strength λ. The dashed vertical line bounds the range in which the potential

is real valued.
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FIG. 5. Upper row: Plots of the one-variable densities ρ(x) (red) vs x, for a repulsive potential with λ = 0.1 (left) and λ = 0.4 (right).
Bottom row: Plots of the one-variable densities π (p) (blue) vs p, for a repulsive potential with λ = 0.1 (left) and λ = 0.4 (right).

We now turn our attention to the comparison of the behav-
iors of pair mutual information and interaction information, in
position and momentum space, in the antisymmetric |001〉 and
symmetric |000〉 cases. Note that the following comparisons
do not strictly demonstrate the effects of spin or symmetry
since the quantum numbers are different. The |001〉 spin-free
function is not indistinguishable, while the |000〉 antisymmet-
ric function with spin included is zero.

Figure 6 presents the behavior for the attractive potential.
First, the magnitudes of both measures are different in each
space. This result is different from that of the uncoupled
oscillators presented in Fig. 2, where they are equal. Thus,
the presence of the interparticle potential separates the magni-
tudes of the measures in the two representations.

The pairwise correlation in the spin-free case (top row)
increases with coupling strength and is larger in position space
compared to momentum space. On the other hand, the magni-
tudes of the interaction information are equal, I3

p = |I3
x |, and

both increase with coupling strength. The interpretation here
is that the balance of interactions is synergic in momentum
space (positive), while in position space it is the redundancies
or the pairwise correlations that dominate the balance.

The inclusion of spin in the wave function modifies these
results. This can be seen from comparing the top and bottom
rows of Fig. 6. In the antisymmetric case, I3

p �= |I3
x |. Fur-

thermore, there is now a region at smaller coupling strength
where the pair correlation in position space is smaller than
the corresponding momentum-space one, and passes through
a shallow minimum. That is, in this region, the pair correlation
is smaller for a larger value of the coupling strength. In
the minimum, the condition 2∂Sρ/∂λ = ∂S�/∂λ is obeyed.
This provides a relationship between the changes at the two-
variable and one-variable levels. For larger values of λ, the

information measures behave as the ones without the spin
included.

The behavior of the interaction information in momentum
space does not seem to be modified by the inclusion of
spin. However, in position space, there is a region, again at
smaller λ, where the interaction information is positive. This
is distinct from the spinless case, where it was observed to be
negative in the range of λ.

At larger λ, both cases have a consistent behavior in that
the interaction information is negative valued. The positive-
valued region would be interpreted as a balance in favor of
synergic interactions. The zero corresponds to the particular
value of the coupling strength, where the magnitudes of
the synergic and redundant interactions are equal. This also
suggests that the balance between the synergic and redundant
interactions can be tuned with the coupling strength.

The results from the repulsive interaction potential are
presented in Fig. 7. In the spinless case, the pairwise cor-
relation is now larger in momentum space for the entire
range of coupling strength. This is the reverse of the behavior
from the attractive potential in Fig. 6 where position space is
larger.

The behaviors of the interaction information are also oppo-
site to that of the attractive potential. It is the position-space
measure which is now positive valued, while the momentum
space one is negative valued. Thus, it is now position space
which exhibits the synergic interactions and which increases
in magnitude with the coupling strength. Momentum space,
on the other hand, displays redundancies. What is shared
with the attractive potential is that the magnitudes are equal,
I3
x = |I3

p |.
The comparison of spin free (top row) and spin (bottom

row) also demonstrates differences. Pairwise correlation with
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FIG. 6. Left column: Plots of the mutual information Ix (red, upper curve [larger λ]) and Ip (blue, lower curve [larger λ]) vs the coupling
strength λ, with attractive potential, for the |000〉 symmetric state (upper) and the |001〉 antisymmetric state (lower). Right column: Plots of
the interaction information I3

x (red, lower curve) and I3
p (blue, upper curve) vs the coupling strength λ, with attractive potential, for the |000〉

symmetric state (upper) and the |001〉 antisymmetric state (lower).

the inclusion of spin is larger in position space than in
momentum space. Also notable is that the pair correlation
in momentum space passes through a minimum at relatively

larger values of the coupling strength before increasing to
the limiting value of λ. The condition 2∂Sπ/∂λ = ∂S�/∂λ is
obeyed at this minimum. Thus, in a large region of coupling

0 0.3 0.6
0

0.3
Ix,Ip

0.3 0.6

−0.2

0

0.2

Ix
3,Ip
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FIG. 7. Left column: Plots of the mutual information Ix (red, lower curve) and Ip (blue, upper curve) vs the coupling strength λ, with
repulsive potential, for the |000〉 symmetric state (upper) and the |001〉 antisymmetric state (lower), Ix (red, upper curve) and Ip (blue, lower
curve). Right column: Plots of the interaction information I3

x (red, upper curve) and I3
p (blue, lower curve) vs the coupling strength λ, with

repulsive potential, for the |000〉 symmetric state (upper) and the |001〉 antisymmetric state (lower). The dashed vertical line bounds the range
in which the potential is real valued.
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FIG. 8. Left: Plots of the synergic S (red, upper curve [smaller Eint]) and redundancy R (blue, lower curve [smaller Eint]) components of
I3
x vs interaction energy Eint , for the |001〉 state with attractive potential. Right: Plots of the synergic S (red, upper curve [smaller |Eint|]) and

redundancy R (blue, lower curve [smaller |Eint|]) components of I3
p vs interaction energy |Eint|, for the |001〉 state with repulsive potential. The

dashed vertical line bounds the range in which the potential is real valued.

strength, from small to large, the pair correlation in momen-
tum space is actually decreasing with larger values of coupling
strength.

Interaction information in position space behaves similarly
in the spin and spin-free scenarios. However, there are marked
differences in momentum space. The measure is now positive
for a wide range of λ, before eventually turning negative in
the limit of large coupling strength. Thus, similar to position
space with the attractive potential (Fig. 6), the measure passes
through a value of λ where it is zero, and changes from a
dominance of synergic interactions to one where there are
redundancies. Thus the type of dominant interaction can be
tuned with the coupling strength. The difference here is that
this change occurs at larger coupling strength, while in the
attractive potential this occurs at smaller coupling strength.

The behaviors of the synergic (S) and redundancy (R)
components of II are presented for attractive (position-space)
and repulsive (momentum-space) potentials, corresponding to
the |001〉 state, in Fig. 8. We chose to plot the measures as a
function of Eint, which is defined as the difference in energy
from the noninteracting system (NI) (λ = 0),

Eint = E − ENI = (
√

ω2 ± 3λ2 − ω)
(
nr1 + nr2 + 1

)
. (46)

One observes that the two components have similar behaviors.
Note that R is twice the pair-mutual information. The cross-
ing points correspond to where the interaction information
changes sign, and separates the regions of dominance by one
of the components over the other. Important to note is that
both components increase with Eint. Also, the R component
(twice the pair-mutual information) dominates in both cases
at relatively larger values of Eint or pairwise interaction. The
total correlation, defined in Eq. (16), exhibited the same
behavior as R.

VI. CONCLUSIONS

Interaction information and pairwise-mutual information
correlation measures are examined in quantum systems con-
sisting of three coupled and uncoupled oscillators, in position
and momentum space. The idea here is to gauge how the
level of organization (pairwise or higher order) influences
the interpretations obtained for these systems. The magni-
tudes of the correlation measures in position and momentum
space are equal, in the case of uncoupled oscillators. For

pairwise correlations, the antisymmetric wave functions are
more correlated than the symmetric ones. In the interaction
information, it is the symmetric functions which are more
correlated. Both symmetric and antisymmetric functions yield
positive values for the interaction information. The interpreta-
tion is that indistinguishability can be thought of as provoking
a dominance of synergic interactions. With the inclusion of
coupling, the magnitudes of the correlation measures in each
space are now distinct. For symmetric wave functions and
attractive interparticle potentials, the pairwise correlation is
greater in position space, while for repulsive potentials, this
correlation is larger in momentum space. In the attractive case,
the interaction information is positive in momentum space
and grows with the coupling strength, while it is negative in
position space. However, the magnitudes are equal in both
spaces. The interpretation here for the attractive potential is
that interaction information is dominated by synergic inter-
actions in momentum space and redundant ones in position
space. With repulsive potentials, it is now the interaction in-
formation in position space which is positive valued, while the
momentum space one is negative valued. Thus, the dominant
interactions are synergic in position space and redundant in
momentum space. Hence, the type of interaction potential
(attractive or repulsive) controls the dominant contribution
(synergic or redundant) to the interaction information, in each
space. The inclusion of spin to obtain antisymmetric wave
functions is also studied. This results in the appearance of
regions in the interaction information where the sign switches
from positive to negative values. This occurs in position
space at smaller coupling strength with attractive potentials
and in momentum space at larger coupling strengths with
repulsive potentials. This suggests that the dominant influence
to the interaction information (synergic or redundant) can be
tuned with the coupling strength. The next step could be a
comparison of these results with other potentials such as the
Coulombic one [73,74] to examine similarities or differences.
The inclusion of explicit three-body terms in the Hamiltonian
in order to compare and to contrast with the present results, via
the use of variational wave functions, is also contemplated.
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