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Continuous-variable Bell nonlocality with biphotons produced by spontaneous parametric
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We revisit a continuous-variable version of the Clauser-Horne-Shimony-Holt inequality with sign binning, first
proposed by Bell [J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, 1st ed. (Cambridge University,
New York, 1987); Ann. N.Y. Acad. Sci. 480, 263 (1986)]. To explore Bell nonlocality, we use a biphoton effective
wave function resulting from a type-I spontaneous parametric down-conversion process. After reviewing the
approximations involved in the production and time evolution of such biphotons, we judiciously choose a series
expansion for the sinc function part of the biphoton wave function in order to integrate the Wigner function.
We conclude that we can qualitatively achieve Bell nonlocality within a regime in which the twin photons are
described.
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I. POSITION-MOMENTUM CORRELATIONS AND BELL
NONLOCALITY OF SPONTANEOUS PARAMETRIC

DOWN-CONVERSION BIPHOTONS

Bell nonlocality indicates correlations that are incompati-
ble with local hidden variable theories. It explains quantum
correlations between spacelike separated measurement out-
comes as due exclusively to past common causes. The demon-
stration of Bell nonlocality in continuous-variable systems is
of particular interest because their high dimensionality offer
the possibility of transmitting more information than with
discrete variables such as spins or polarizations. In this sense,
Bell nonlocality in continuous observables has traditionally
used low-dimensional observables derived from the continu-
ous observables of interest such as pseudospin observables [1]
or parity observables [2]. Statistics of discrete functions such
as binning functions (quadratures) of continuous observables
have also been employed. For instance, in a root binning
process, continuous-variable measurements are transformed
into binary results which serve as input to a Bell inequality [3].
Bell himself demonstrated that the position momentum cor-
relations of maximally entangled Einstein-Podolsky-Rosen
states translated into sign binning statistics cannot violate a
Bell inequality since they admit an underlying local hidden
variable theory [4]). However, [5] verified continuous-variable
Bell nonlocality with transverse spatial statistics of entangled
photon pairs via a violation of the Clauser-Horne-Shimony-
Holt (CHSH) inequality [6]. The measurements were effected
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at different propagation distances leading to a maximum
achievable violation that is small as compared to the upper
limit 2

√
2 (for the state first considered by Bell).

Entangled photon pairs produced in spontaneous paramet-
ric down-conversion (SPDC) consist of signal and idler pho-
tons with different wavelengths, satisfying energy-momentum
conservation. The names signal and idler are historical left-
overs: in the early days of SPDC, most of the experiments
were done with nondegenerate processes. One radiation was
in the visible range (and thus easily detected, the signal),
and the other was in the IR range (usually not detected, the
idler) [7]. Photon pairs emitted from such sources have a high
degree of correlation in time and energy as well as entan-
glement in frequency, polarization, and angular momentum
[8]. Quantum properties of SPDC photons date back to 1970
[9], when simultaneous generation of SPDC photons was first
demonstrated.

In this paper we explore a continuous-variable CHSH
inequality to assess the possibility of Bell’s nonlocality with
sign binning position detection over time. The parties are the
signal and idler photons produced by type-I SPDC. We review
the derivation of the effective wave function of biphotons
produced in such a process in Sec. II. For pedagogical reasons
we exhibit some of the details of the derivation as some
crucial approximations are not clear in the literature. We
discuss the validity of the double-Gaussian approximation and
present a series expansion for the sinc function that describes
the transversal propagation of the biphotons. In Sec. III we
discuss the effective time evolution in the Fresnel approx-
imation, in consonance with the approximations that led to
the biphoton wave function. Such physical realization of the
wave function enables us to build a continuous-variable Bell
inequality with sign binning, as shown in Sec. IV, by eval-
uating the probability that a measurement of the biphoton’s
position disagrees in sign just as proposed by Bell in [4].
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Continuous-variable CHSH inequality with sign binning

When formulating a Bell inequality to test nonlocality one
should bear in mind that many current tests may rely on
how a CHSH-like inequality is constructed. Some reasonable
assumptions such as local causality,1 locality, fair sampling,
and the setting’s independence may fail in the physical real
world and it is worthwhile testing to which extent they can be
relaxed [10].

The continuous-variable sign binning CHSH inequality
described in [5] attributes a local hidden variable λ to explain
away correlations between position measurements y1 and y2 of
a pair of particles (say, a biphoton produced via SPDC). The
joint probability density for position measurement outcomes
can be generically written as

ρ(y1, y2) =
∫

dλ ρ(λ)ρ(y1|λ)ρ(y2|λ), (1)

for some general distribution law for the variable λ such that∫
ρ(λ)dλ = 1. The violation of a CHSH inequality excludes

the possibility that the joint probability density is described
as in Eq. (1), meaning that all information in the past light
cones of such particles cannot account for the correlations
between them, under the assumption of locality. Assume y a
random real variable and a function f (y) ∈ [−1, 1] and call α

and α′ (β and β ′) the measurement settings for particle 1 (2),
analogous to the directions along which spins or polarizations
are measured in a Einstein-Podolski-Rosen-Bohm situation.
For instance, measurements at different times tα,β,α′,β ′ may
serve to conceive a CHSH-like inequality [4]. Hence the
position statistics can be described by a local hidden variable
model such that

〈 f (y1) f (y2)〉α,β =
∫

dλ ρ(λ)〈 f (y1)〉α,λ〈 f (y2)〉β,λ (2)

is the correlation function for all measurement outcomes y
and f (y) ∈ [−1, 1]. This leads to a CHSH-like inequality as
described in [5]:

|〈 f (y1) f (y2)〉α,β − 〈 f (y1) f (y2)〉α,β ′ |
∓(〈 f (y1) f (y2)〉α′,β + 〈 f (y1) f (y2)〉α′,β ′

)
� 2, (3)

which holds in compliance with (1).

II. EFFECTIVE WAVE FUNCTION FOR A SPDC
BIPHOTON

Because the nature of the approximations to obtain the
final form of the biphoton wave function is important in our
analysis, in this section we outline a first-principles derivation
of an effective wave function for biphotons produced via
SPDC as presented in [11–14]. Although this is a very well-
known result, its derivation is often obscure in the literature
given the many hierarchical approximations that are carried
out.

1In the sense that measurement outcomes at one detector cannot
depend on the settings or outcomes at a distant detector as well as
experimenters’ ability to select detector settings freely, independent
of any “hidden variables” that might affect the outcomes of measure-
ments [10].

Schematically speaking, SPDC occurs when a nonlinear
and usually birefringent crystal is hit by an incoming photon at
a certain (pump) frequency ωp which in turn is converted into
two new outgoing photons of lower energy ωs (signal) and ωi

(idler). The polarization properties of the photon pair define
the resulting spatial distribution and serve to characterize the
SPDC phenomenon. A type-I SPDC process happens when
the polarizations of the new pair of photons are parallel to
each other and orthogonal to the polarization of the incoming
photon. The spatial distribution of the emerging photons
forms a cone that is aligned with the pump beam propagation
with the apex at the crystal. If the signal and idler photons
share the same polarization with each other and with the
destroyed pump photon, we have a type-zero SPDC. Finally if
the emergent photons have perpendicular polarization we have
a type-II SPDC process and, created by the crystal forms, two
(not necessarily collinear) cones that are oriented along the
propagation of the pump beam and share the same apex. The
process is called a parametric process, meaning that the total
energy and total momentum are conserved (ωp = ωi + ωs and
	kp = 	ki + 	ks). Therefore, the energies and momenta of the
outgoing photons are highly correlated, and their joint quan-
tum state is entangled. Biphoton states can be produced such
that they are correlated in their spatial, temporal, spectral, or
polarization properties [15]. In a typical biphoton interference
experiment [16,17], a β-BBO (barium boron oxide or barium
borate) nonlinear crystal of volume ≈200 mm3 is pumped by
a 300–400-mW argon laser emitting at λ = 351.1 nm. In [16],
type-II down-converted degenerate biphotons of wavelength
702.2 nm were interfered in a double slit experiment in order
to measure the de Broglie wavelength of the biphoton wave
packet. The width of the slits (with its plane perpendicular
to the pump laser beam direction) measured 0.1 mm, with
their centers separated by 0.3 mm. Fourth-order interference
patterns were obtained by coincidence counts between two
detectors as a function of the two-photon detector transverse
position. The detectors were placed at 690 mm after the slit
plane, oriented parallel to the double slit.

The Hamiltonian of the electromagnetic field in the
Coulomb gauge reads

H = 1

2

∫
d3r ( 	D · 	E + 	B · 	H), (4)

with 	D = ε0 	E + 	P. SPDC is a χ (2) process in the sense that
we expand the polarization field 	P as a power series up to the
quadratic term in the electric-field strength:

	P ≈ ε0[χ (1) 	E + χ (2)(	E)2]. (5)

To this order, the Hamiltonian in the medium is a sum of
a linear and a nonlinear term which is responsible for the
conversion of the pump (p) photon into signal (subscript 1)
and idler (subscript 2) photons. The nonlinear term reads

Hχ2 = ε0

2(
√

2π )3

∫
d3r

∑
	kp,	k1,	k2

∑
i, j,l

χ̃
(2)
i jl (ωp, ω1, ω2)

× Ei(ωp)Ej (ω1)El (ω2), (6)
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where ωp,1,2 stand for ω	kp
, ω	k1

, ω	k2
and the second-order non-

linear susceptibility tensor χ̃
(2)
i jl (i, j, l ) = (x, y, z) depends on

the photon frequencies. We perform field quantization in a box
of volume V so that

Ê (	r, t ) =
∑
	k,s

E0(	k) 	ε	k,s [â	k,s(t ) ei	k·	r + H.c.]

≡ Ê+(	r, t ) + Ê−(	r, t ), (7)

where E0(	k) = √
h̄ω	k/(2ε0V ). Thus we have

Ĥ =
∑
	k,s

h̄ω	kâ†
	k,s

â	k,s + ε0

2

∫
d3r χ̃

(2)
i jl ÊiÊ j Êl , (8)

with Êi, j,l = Êi, j,l (	r, t ) and a summation over i, j, l is im-
plicit. The last term on the right-hand side in Eq. (8) contains
eight χ (2) processes, including energy nonconserving ones,
which can be neglected in rotating wave approximation just
as in the Jaynes-Cummings model [18]. Such energy noncon-
serving terms oscillate with frequency ω and are proportional
to sinc(ωT/2), which is negligible for large ω, T being
the time to traverse the crystal. On the other hand, energy
conserving processes include those with no initial output and
pump photons are annihilated whereas signal-idler biphotons
are created. It is usual to treat the pump beam source as a
classical source that is a continuous source of pump photons.
That is because the probability of generating the SPDC photon
is very small (1 in 1 × 106) and thus the pump field must be
very strong compared to the daughter signal and idler photon
field. Hence,

Ĥχ2 = ε0

2

∫
d3r

⎡⎣ ∑
	k1,s1,	k2,s2

χ̃
(2)
i jl (	r; ωp, ω1, ω2)

× Ei(	r, t ) E0( 	k1) E0( 	k2) e−i(	k1+	k2 )·	r

× â†
	k1,s1

(t ) â†
	k2,s2

(t )
(
	ε	k1,s1

)
j

(
	ε	k2,s2

)
l + H.c.

⎤⎦. (9)

Next we may assume that the pump field is narrow band
around ωp, which amounts to setting

Ei(	r, t ) = e−iωpt Ei(	r). (10)

Taking the longitudinal direction along the ẑ axis, we write
	kp = 	kL

p + 	kT
p and 	k1,2 = 	kL

1,2 + 	kT
1,2 and we set (	kT

p ; 	kL
p ) ≡

(	qp; kpzẑ) and (	kT
1,2; 	kL

1,2) ≡ (	q1,2; k1z,2zẑ). A further approxi-
mation consists of factoring out the longitudinal dependence
of the pump field (the longitudinal component of its momen-
tum dominates over all others),

Ei(	r, t ) = 1

2π

∫
d2	qp Ẽi(	qp, t )ei(	qp·	r)ei(kpzz−ωpt ), (11)

as well as defining the pump polarization vector such as
Ẽi(	qp, t ) = Ẽ (	qp, t )(	ε	qp )i. Taking these approximations into

account enables us to write

Ĥχ2 = ε0

4π

∫
d3r d2	qp

⎡⎣ ∑
	k1,s1,	k2,s2

χ̃
(2)
i jl (	r; ωp, ω1, ω2)

× Ẽ (	qp, t ) E0(	k1) E0(	k2) e−i(
	q)·	re−i
kzze−iωpt

× â†
	k1,s1

(t ) â†
	k2,s2

(t )
(
	ε	k1,s1

)
j

(
	ε	k2,s2

)
l

(
	ε	qp

)
i + H.c.

⎤⎦,

(12)

where 
	q ≡ 	q1 + 	q2 − 	qp and 
kz ≡ k1z + k2z − kpz.
In order to perform some of the integrations in the ef-

fective Hamiltonian (12), let us specify the geometrical and
experimental arrangement of such experiments. Assume a
parallelepipedal isotropic crystal centered at 	r = 0 so that the
susceptibility tensor does not depend on 	r. As observed in
[11], in order to simplify the calculations one may experimen-
tally minimize and neglect multiple internal reflections. Using
that

∫ L/2
−L/2 exp (−i 
 x)dx = L sinc(L
/2) yields

Ĥχ2 = ε0

4π

∫
d2	qp

⎡⎣ ∑
	k1,s1 	k2,s2

χ̃
(2)
i jl Ẽ (	qp, t ) E0(	k1) E0(	k2)

× LxLyLzsinc

(

qxLx

2

)
sinc

(

qyLy

2

)
sinc

(

kzLz

2

)
e−iωpt

× â†
	k1,s1

(t ) â†
	k2,s2

(t )
(
	ε	k1,s1

)
j

(
	ε	k2,s2

)
l

(
	ε	qp

)
i + H.c.

⎤⎦,

(13)

where now χ̃
(2)
i jl = χ̃

(2)
i jl (ωp, ω1, ω2). The nonlinear contribu-

tion to the total Hamiltonian Ĥ = ∑
	k,s h̄ω	kâ†

	k,s
â	k,s + Ĥχ2 is

very small with respect to the linear part. In order to calculate
the biphoton state, we proceed to treat the problem in the in-
teraction picture using first-order time-dependent perturbation
theory which is accurate in most applications. The energy of
the pump field is a factor of 108 larger (for typical exper-
imental parameters) than the energy of the signal and idler
fields. For such small corrections higher-order corrections in
perturbation theory are small and may be ignored.

Moreover, considering fields with a definite polarization
we may drop the s1,2 indices (and the related sums) from (13).
If the nonlinear susceptibility is a slowly varying function
of the frequencies we can consider it as a constant. In a
natural regime in which the crystal itself is much larger than
the optical wavelengths in the experiment, it is reasonable to
substitute

∑
	k with V

∫
d3	k/(2π )3. Hence, in the interaction

picture, where operators evolve in time with the linear piece
of the Hamiltonian, e.g., â†(t ) = â†(0)eiωt , we write, for the
initial vacuum state |01, 02〉 [11],

Ĥχ2 ≈ χeff

∫∫
d3	k1d3	k2

√
ω 	k1

ω 	k2

∫
d2	qp Ẽ (	qp, t )

× sinc

(

qxLx

2

)
sinc

(

qyLy

2

)
sinc

(

kzLz

2

)
× ei
ωt â†

	k1
â†

	k2
,
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in which we redefined

χeff = h̄

8π

LxLyLzV

(2π )6
χ̃

(2)
i jl (	εp)i(	ε1) j (	ε2)l ,


ω = ω1 + ω2 − ωp.
The state of the down-converted photon pair can be for-

mally written as

|�(t )〉SPDC ≈
(

1 − i

h̄

∫ τ

0
dt ′ Ĥχ2 (t ′)

)
|01, 02〉, (14)

where the integration runs over the time it takes for light at
the pump wavelength to travel through the crystal, and it is
further assumed that the pump amplitude Ẽ (	qp, t ) does not
vary significantly over τ . We are left with∫ τ

0
dt ′ ei
ωt ′ = τei 
ωτ

2 sinc

(

ωτ

2

)
. (15)

in which the limit where 
ω = 0 (energy conservation) is
clearly τ . We may therefore write

|�〉SPDC ≈ C0|01, 02〉 + C1χeff

∫∫
d3	k1d3	k2

√
ω	k1

ω	k2

×(	k1, 	k2)â†
	k1

â†
	k2

|01, 02〉, (16)

where the biphoton wave function (	k1, 	k2) is, up to a
normalization factor,

(	k1, 	k2) =
[ ∫

d2	qp Ẽ (	qp) sinc

(

qxLx

2

)
sinc

(

qyLy

2

)]
× sinc

(

kzLz

2

)
, (17)

which is quite obvious on general grounds, but the series of
judicious approximations which have been performed were
crucial to understand the nature of the wave-function profile.

Crystal dimensions are significantly larger than the typical
photon wavelengths that cross such crystals (by a factor
of 103–104 for visible wavelengths and a crystal of a few
millimeters thick). Hence the sinc function factors depend-
ing on transverse coordinates act like delta functions (the
only significant contributions coming from, e.g., qx = 0, or
when the sum of the transverse signal and idler momenta is
about the same as transverse pump momentum 	qp = 	q1 + 	q2).
Therefore,

(	k1, 	k2) = N δ(ω1 + ω2 − ωp)δ2(	q1 + 	q2 − 	qp)

× sinc

(

kzLz

2

)
Ẽ (	q1 + 	q2), (18)

where N is a normalization constant.

A. Type-I SPDC e → oo twin-photon generation

We proceed to express kz in terms of the transverse compo-
nents 	q. To fulfill the matching conditions (energy momentum
conservation) in SPDC, we need to have differences in re-
fractive indices for idler, signal, and pump photons. With the
help of birefringence crystals, where photons with different
polarizations have different refractive indices, this task can be
accomplished.

z

y = y’

x

x’

z’ = Optic axis

θ

Laser

FIG. 1. Birefringence crystal. Ordinary rays have polarization in
a direction perpendicular to the plane z − z′ defined by the propaga-
tion direction z and the optic axis z′.

In anisotropic materials the speed of light depends on the
propagation direction. Such a dependence can be very compli-
cated in general, except for uniaxial crystals. In the study of
correlation properties of two-photon states, the photon pairs
are generated by spontaneous parametric down-conversion in
uniaxial crystals. In this case, the crystal has one axis (optical
axis or extraordinary axis) along which a ray of transmitted
light suffers no birefringence. Light propagates along that axis
with a speed independent of its polarization. If the light beam
is not parallel to the optic axis, the beam is split into two rays
(the ordinary and extraordinary) when passing through the
crystal. These rays will be mutually orthogonally polarized.
Ordinary rays have polarization in a direction perpendicular
to the plane z − z′ defined by the propagation direction z and
the optic axis z′ (Fig. 1). Such light experiences the ordinary
refractive index no. Extraordinary rays have polarization on
the plane z − z′ and experience a refractive index ne(θ ) that
depends on the angle θ between the optical axes and z accord-
ing to the relation

1

ne(θ )2
= cos2 θ

n2
o

+ sin2 θ

n2
e

. (19)

Notice that for ne(θ = 90◦) = ne its principal value and
ne(θ = 0) = no. In type-I SPDC (Fig.2) the pump photon has
an orthogonal polarization (either ordinary or extraordinary)
with respect to idler and signal photons which are equally
polarized. Due to the fact that the two photons have the
same polarization they will have the same refractive index

TABLE I. SPDC type I: matching conditions.

Positive uniaxial Negative uniaxial
SPDC (ne > no) (ne < no)

Type I no
pωp = ne

1ω1 + ne
2ω2 ne

pωp = no
1ω1 + no

2ω2

Type II no
pωp = ne

1ω1 + ne
2ω2 ne

pωp = no
1ω1 + no

2ω2
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FIG. 2. Type-I SPDC process. The signal and idler photons are
mutually incoherent, and thus they exhibit no second-order inter-
ference when brought together at detectors D1 and D2. However
fourth-order interference occurs, by the coincidence counting rate
between D1 and D2.

and thus lie on the same cone.2 The pair exits the crystal
either noncollinearly (propagating to different directions) or
collinearly (aligned with the pump).

Uniaxial crystals are characterized by a refractive index of
an ordinary ray no, and a refractive index of an extraordinary
ray ne. β − BBO is a negative uniaxial crystal (ne < no). For
a list of matching conditions, please see Table I

Consider the case of a type-I SPDC from a negative uni-
axial crystal with an e-ray pump going to two rays (e → oo)
just as depicted in Fig. 1. Let us define the longitudinal phase
mismatch as3


kz ≡ k1z + k2z − kpz

=
√

|	k1|2 − |	q1|2 +
√

|	k2|2 − |	q2|2 −
√

|	kp|2 − |	qp|2.
(20)

In the Fresnel (paraxial) approximation where the longitudinal
and transversal components of the momenta are such that
|	q|2 � |	k|2, Eq. (20) reads, to first order in |	q|2/|	k|,


kz ≈ |	k1|2 + |	k2|2 − |	kp|2 + |	qp|2
2|	kp|

− |	q1|2
2|	k1|

− |	q2|2
2|	k2|

.

(21)
The anisotropic crystals used for SPDC are such that the
longitudinal components of the wave vector will get modified
by a different amount as they will realize a different refrac-
tive index inside the anisotropic medium. Phase matching is
achieved by adjusting the angle θ to obtain the value ne(θ )
for which the condition 
kz = 0 is satisfied. For this purpose,

2Light travels with a higher phase velocity through an axis that
has the smallest refractive index and this axis is called the fast axis.
Similarly, an axis which has the highest refractive index is called a
slow axis since the phase velocity of light is the lowest along this
axis. The optic axis can be the fast or the slow axis for the crystal
depending on the material.

3In principle, 
kz ≡ n1ω1
c + n2ω2

c − n3ωp

c = 0 cannot be satisfied
for most materials as, for “normal” dispersions, n1(ω1) � n2(ω2) <

n3(ωp) for ω1 � ω2 < ωp.

consider again the geometrical configuration represented by
the coordinate systems in Fig. 1. The primed system is ob-
tained by a rotation of θ around the y axis such that z′ is
parallel to the optical axis, 	r′ = Ry(θ )	r. For uniaxial crystals,
the dielectric tensor ε in the primed system 	D′ = ε 	E′ is diag-
onal, namely, ε = diag(n2

o, n2
o, n2

e ), with n2
o ≡ εx′/ε0 = εy′/ε0

and n2
e ≡ εz′/ε0. It is easy to see that in the primed system we

have

q2
x′ + q2

y′ + k2
z′

n2
o

= ω2

c2
, (22)

(noqx′ )2 + (noqy′ )2 + (nekz′ )2 = ω2

c2
(none)2 (23)

for the ordinary and extraordinary rays, respectively. Trans-
forming back to the unprimed system and isolating kz, we
obtain, within the Fresnel approximation, that (22) yields

kz ≈ noω

c
− c

2noω

(
q2

x + q2
y

)
, (24)

whereas (23) becomes

kz ≈ αqx + ne(θ )ω

c
− c

2ne(θ )ω

(
β2q2

x + γ 2q2
y

)
, (25)

where

α = sin 2θ

2
n2

e (θ )

(
1

n2
e

− 1

n2
o

)
, β = n2

e (θ )

none
, γ = ne(θ )

ne
,

(26)
with ne(θ ) given by (19). The parameter α is responsible
for the walk-off, namely, the different refractive indices for
signal and idler photons cause a separation of the idler and
the signal beam (transversal walk-off). The terms β and γ

cause a slight astigmatism in beams propagating through the
uniaxial medium. Their effects are marginals and they can be
approximated by 1 (see [12]). Thus, the argument of the sinc
function in (18) reads

Lz
kz

2
= lt (qix + qsx ) + Lz

2
(koi + kos − kep)

− Lz

4

( |	qi|2
koi

+ |	qs|2
kos

− |	qi + 	qs|2
kep

)
, (27)

where lt ≡ αpLz/2 is the transverse walk-off length, koi ≡
noiωi/c, kos ≡ nosωs/c, and kep ≡ ne(θ )ωp/c. In the e → oo
degenerate case, where ωi = ωs = ωp/2 and koi = kos, we
have

Lz
kz

2
= lt (qix + qsx ) + Lzkep

2

(1 − δ)

(1 + δ)

− Lzδ

4kep
|	qi − 	qs|2 + Lz(1 − δ)

2kep
	qi · 	qs, (28)

with

δ ≡ 2
ne(θ )

no
− 1 ≈ 1, (29)

consistently with β ≈ γ ≈ 1 and α ≈ 0.
It is usual to assume that the transverse pump momentum

profile is Gaussian:

Ẽ (	qi + 	qs) = Ñ e−|	qi+	qs|2/σ 2
⊥ . (30)
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Finally, we can write (18) as

(	qi, 	qs) = Ns sinc(b2|	qi − 	qs|2)e−|	qi+	qs|2/σ 2
⊥ , (31)

in which b2 ≡ Lz

4kep
, Ns is the normalization, and we have left

out the delta functions for shortness. The minus sign in the
sinc function is immaterial as it is an even function. The wave
function in Eq. (31) is also obtained in the nearly collinear
approximation [11,12], meaning that the approximations we
have performed reflect such a hypothesis. The Gaussian with
the argument 	qi + 	qs is nothing but a statement of the uncer-
tainty in transverse momentum conservation, whereas 	qi −
	qs in the sinc function expresses energy and (longitudinal)
momentum conservation. Moreover, the momentum space
amplitude (	qi, 	qs) is not separable into factors depending
only on 	qi and 	qs and therefore it is entangled (not factorable).

B. Double-Gaussian approximation

In [19] it is shown that the degree of entanglement is
governed by the product σ⊥b. High entanglement is achieved
when either σ⊥b � 1 or σ⊥b � 1, the minimum occurring for
σ⊥b ≈ 1. Moreover the sinc representation of the biphoton
wave function is more entangled than its Gaussian approxi-
mation for the same values of σ⊥b [19]. In order to study the
transversal correlations of the biphotons we need to Fourier
transform the wave function into coordinate space. Following
[11,12,16,19–22] we can approximate the sinc function by a
Gaussian:

(	qi, 	qs) = NG e−b2|	qi−	qs|2 e−|	qi+	qs|2/σ 2
⊥ . (32)

As discussed in [11], this biphoton wave function is approxi-
mately separable (subject to the paraxial approximation) into
a product of functions, one dependent on only x coordinates
and the other dependent on only y coordinates).4 Let us take
the y component and write qi y, qs y simply as qi, qs. Thus,

S (qi, qs) = ÑS sinc[b2(qi − qs)2]e−(qi+qs )2/σ 2
⊥ , (33)

and

G(qi, qs) = ÑGe−b2(qi−qs )2
e−(qi+qs )2/σ 2

⊥ . (34)

The Fourier transforms of Eqs. (33) and (34) read, respec-
tively,

�S (y−, y+) = Ns

{
2
√

πy−

[
S

(
y−√
2πσ−

)
− C

(
y−√
2πσ−

)]

+ 2
√

2σ−

[
cos

(
y2
−

4σ 2−

)
+ sin

(
y2
−

4σ 2−

)]}
e
− y2+

4σ2+

≡ �−
S (y−)�+

S (y+), (35)

4That is because for small values of x and y sinc(x + y) ∼
sinc(x)sinc(y). For typical experimental parameters, the argument of
the sinc function is of the order 10−3, even for transverse momenta
as large as the pump momentum. Taking the paraxial approximation,
the transverse momenta are much smaller than the pump momentum,
and so the arguments of the sinc functions are very small [11].

y

y

FIG. 3. Normalized �−
S (y−) and Gaussian approximation

�−
G (y−) represented by Gaussian A, both for σ− = 1/(2

√
2).

Gaussian B is the normalized Gaussian of width σ B
− such that it

yields the same value for the second moment as if one had used
�−

S (y−).

where S (x) and C(x) are the sine and cosine Fresnel integrals
and

�G(y−, y+) = 1√
2πσ−σ+

e
− y2−

4σ2− e
− y2+

4σ2+

≡ �−
G (y−)�+

G (y+), (36)

where σ− ≡ b/
√

2, σ+ ≡ √
2σ⊥, and

y± ≡ (yi ± ys)√
2

.

Also we have normalized �G so that
∫∫

dy− dy+|�G|2 = 1.
The transverse pump profile is assumed to be a Gaussian of

width ∝ σ⊥. The sinc-based function and its Fourier transform
�−

S (y−) may be approximated by a Gaussian by assuming the
sinc argument to be the same as the one in the exponential of
the Gaussian �−

G (y−) as displayed in (33) and (34) [19]. How-
ever, a more accurate description would be to choose a Gaus-
sian of a certain width such that it reproduces numerically the
same value for the first and second moments as calculated
from �S − (y−). Taking, for instance, σ− = 1/(2

√
2) yields

〈�−
s |y2

−|�−
s 〉 = 0.449, which was calculated using numerical

integration with the MATHEMATICA local adaptive method. The
width σ B

− of the corresponding Gaussian that yields the same
value is just

√
0.449 (see Fig. 3).

A double-Gaussian wave function is very amenable to cal-
culations and makes both transverse position and transverse
momentum statistics easy to calculate. Moreover, as we shall
see, the double-Gaussian wave function is easy to propagate
in the paraxial regime (the same regime we used in the
approximations of our biphoton state to start with). Moreover
it fits well experimental data [23]. On the other hand, the sinc
function is an orthogonal wave function, which is in L2(R)
and is of interest in the study of continuous-variable quantum
algorithms [24].
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C. Wigner function

The Wigner function can be defined using (33) as

W (yi, ys, qi, qs) = 1

(2π )2

∫
d pi

∫
d ps e−ipiyi e−ipsys

×∗
S

(
qi + pi

2
; qs + ps

2

)
×S

(
qi − pi

2
; qs − ps

2

)
. (37)

If we redefine q± = (qi ± qs)/
√

2 and p± = (pi ± ps)/
√

2,
then

W (yi, ys, qi, qs) = W (y+, y−, q+, q−)

≡ WS (y−, q−)WG(y+, q+), (38)

where

WS (y−, q−) = 1

2π

∫
d p− e−ip−y− sinc

[
4σ 2

−

(
q− + p−

2

)2
]

× sinc

[
4σ 2

−

(
q− − p−

2

)2
]

(39)

and

WG(y+, q+) = 1

2π

∫
d p+ e−ip+y+ e

− 4
σ2+

(q++ p+
2 )2

× e
− 4

σ2+
(q+− p+

2 )2

. (40)

Following [4] we are interested in evaluating the integral
WS (y−, q−) in Eq. (39). We can set σ 2

− = 1/4 for convenience.
Changing to a new variable ρ = p−/2 and using that

sinc (t) =
∞∏

m=1

cos

(
t

2m

)
(41)

yields

WS (y−, q−) = 2

2π

∫
dρ e−2iρy−

M∏
m=1

cos

[
(q− − ρ)2

2m

]

×
M∏

n=1

cos

[
(q− + ρ)2

2n

]
. (42)

In the equation above it will be useful to replace the product
with a summation sign using the cosine product-to-sum iden-
tity [25]

M∏
m=1

cos

(
t

2m

)
= 1

2M−1

2M−1∑
m=1

cos

(
2m − 1

2M
t

)

= 21−M cos
(

t
2

)
sin

(
t
2

)
sin(2−Mt )

. (43)

FIG. 4. Wigner function WS (y−, q−) for σ 2
− = 1/4. M = 4 in the

series in Eq. (43) already provides a very good approximation. Notice
that WS (y−, q−) has negative values as opposite to its Gaussian
approximation WG(y−, q−) which is always positive.

This enables us to write

WS (y−, q−) = NS
2(2M−2)π

2M−1∑
m=1

2M−1∑
n=1

∫
dρ e−2iρy−

× cos

[
2m − 1

2M
(q− − ρ)2

]
× cos

[
2n − 1

2M
(q− + ρ)2

]
, (44)

which we evaluate in the Appendix, NS being a suitable nor-
malization so that

∫∫
dy−dq− WS (y−, q−) = 1. On the other

hand,

WG(y+, q+) = 1

π
e
− σ2+y2+

8 − 8q2+
σ2+ . (45)

In Fig. 4 we show the plot of the Wigner function
WS (y−, q−) for σ 2

− = 1/4. We consider M = 6 in the series in
Eq. (43) which already provides a very good approximation.
As we can observe WS (y−, q−) has negative values as opposite
to its Gaussian approximation WG(y−, q−) which is always
positive. This negativity is important to observe entanglement.

III. FREE PROPAGATOR FOR THE BIPHOTON WAVE
FUNCTION IN THE FRESNEL APPROXIMATION

Whichever effective model one uses to describe a pho-
ton, it is important to take into account the process which
generates it [26–28]. In [29] was presented a wave-function
description of a photon in a Young double slit experiment in
which the photon source is a single excited atom (see also
[30]). Moreover, in [31] a second quantized version of the
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Bialynicki-Birula-Sipe photon wave-function [32] formalism
was extended to include the interaction between photons
and continuous (nonabsorptive) media. As an application, the
quantum state of the twin photons generated by SPDC was
derived. That being said, an effective wave-function treatment
of photon states is possible and tools from Schrödinger wave
mechanics may provide insights on various aspects of quan-
tum light.

In constructing the down-converted biphoton wave func-
tion we have used the Fresnel approximation. Consistently,
under the conditions of validity of the Fresnel approximation,
the diffraction and interference of a wave traveling in the z
direction can be described in terms of its spreading in time
of the wave-packet transversal (x, y) section [33]. In the case
of de Broglie waves for massive particles, the wave-packet
spreading is due to the nature of the dispersion relation ωk =
h̄k2/(2m) and the free evolution is simply given by the Fourier
transform

ψ (	r, t ) =
∫

d3k e(i	k.	r−iωkt ) ψ̃ (	k, 0), (46)

where ψ̃ (	k, 0) is the Fourier transform of the initial condition.
Consider a biphoton wave traveling in the z direction.

Because the sinc function factorizes in the transversal (x, y)
directions for typical experimental parameters, we may dis-
regard the x direction. In the case of a multislit diffraction,
we could consider such waves impinging on a screen with
slits along the x axis and study the spreading along the y axis.
Thus assuming symmetry along the x axis, we may disregard
the x coordinate. Now, for the sake of clarity, we follow [33]
and consider a monochromatic wave function traveling in the
positive z direction,

�(y, z, t ) = ψ (y, z)e−iω0t , (47)

in which ψ satisfies the Helmholtz equation �ψ = −k2
0ψ and

ω0 =
{

ck0, e.m. waves,
h̄k2

0
2m de Broglie waves.

Performing the one-dimensional Fourier transform,

ψ (y, z) = 1√
2π

∫
ψ̃ (ky, z)eikyy dky, (48)

and using that ψ (y, z) satisfies the Helmholtz equation yields,
for progressive waves in the z direction,

ψ̃ (ky, z) = ψ̃ (ky, 0)ei
√

k2
0−k2

y z. (49)

Therefore,

ψ (y, z) = 1√
2π

∫
ψ̃ (ky, 0)ei(

√
k2

0−k2
y z+kyy) dky, (50)

which, in the Fresnel approximation
√

k2
0 − k2

y ≈ k0 −
k2

y /(2k0), yields [33]

ψ (y, z) = eik0z k0√
2π iz

∫
ei k0

2z (y−y′ )2
ψ (y′, 0)dy′. (51)

Identifying ψ (y, t = 0) ≡ ψ (y, z = 0) leads to
|ψ (y, t )|2 ≡ |ψ (y, z)|2 provided z = t/c. This is based on
the analogy between the paraxial Helmholtz equation and

the Schrödinger equation for a free particle in two transverse
dimensions:

∂2A

∂x2
+ ∂2A

∂y2
= ik0

∂A

∂z
∼ ∂2�

∂x2
+ ∂2�

∂y2
= i

2m

h̄

∂�

∂z
, (52)

which allows us to relate the time evolution to the field’s
propagation [11]; in Eq. (52), A = A(x, y, z) corresponds to,
for example, a wave’s amplitude and k0 is characteristic of the
pump. That said, we are led to a nonrelativisticlike propagator:

G(y, t ; y′, t ′) = e−i m̃c2

h̄ (t−t ′ )

√
m̃

2π ih̄(t − t ′)
ei m̃(y−y′ )2

2h̄(t−t ′ ) , (53)

where

m̃ ≡ k0 h̄

c
. (54)

The propagator (53) was used in [21] in a double slit experi-
ment to demonstrate that a degenerate biphoton of wavelength
λ produced via SPDC can behave as a single quantum of
wavelength λ

2 as seen in [16]. Thus, we write the free prop-
agation of a biphoton SPDC wave function as

�(yi, ys, t ) =
∫∫

dy′
i dy′

s G(yi, t ; y′
i, 0)G(ys, t ; y′

s, 0)

×�(y′
i, y′

s, 0). (55)

The Wigner function propagator can be defined as [34]

W (yi, qi; ti ) =
∫∫

dy0
i dq0

i K
(
yi, qi, ti; y0

i , q0
i , 0

)
×W

(
y0

i , q0
i ; 0

)
, (56)

where

K
(
yi, qi, ti; y0

i , q0
i , 0

) = 1

2π

∫∫
dzi dz0

i ei(z0
i q0

i −ziqi )

× G∗
(

yi − zi

2
, t ; y0

i − z0
i

2
, 0

)
× G

(
yi + zi

2
, t ; y0

i + z0
i

2
, 0

)
, (57)

which, for a free evolution, simplifies to

K0
(
yi, qi, ti; y0

i , q0
i , 0

) = δ

(
yi − y0

i − qi

k0
c t

)
δ
(
qi − q0

i

)
≡ c

k0
δ
(
yi − y0

i − vi t
)
δ
(
vi − v0

i

)
with vi ≡ (cqi )/k0. Hence

W (yi, ys, qi, qs, ti, ts) = W (yi − viti, ys − vsts, qi, qs, 0, 0),
(58)

which in the variables expressed by Eq. (38) reads

W (y+, y−, q+, q−, τ1, τ2)

= WS (y− − (v−τ1 + v+τ2), q−)

× WG(y+ − (v−τ2 + v+τ1), q+), (59)

where τ1 = (ti + ts)/2 and τ2 = (ti − ts)/2 and v± ≡
(cq±)/k0. Finally, the biphoton two-time transversal position
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amplitude is obtained by integrating over momenta:

W (y+, y−, τ1, τ2) =
∫∫

dq− dq+ W (y+, y−, q+, q−, τ1, τ2).

(60)
Following [4,5] we can write a continuous-variable Bell in-
equality with sign binning by defining the probability that
measurements of qi and qs disagree in sign, namely, P(+−) ∪
P(−+). This is obtained by evaluating

D(ti, ts) =
∫ ∞

0
dyi

∫ 0

−∞
dys W (yi, ys, ti, ts)

+
∫ 0

−∞
dyi

∫ ∞

0
dys W (yi, ys, ti, ts), (61)

which in y± variables reads

D(ti, ts) =
∫ ∞

0
dy−

∫ y−

−y−
dy+ W (y+, y−, τ1, τ2)

+
∫ 0

−∞
dy−

∫ −y−

y−
dy+ W (y+, y−, τ1, τ2). (62)

Following [4], consider the CHSH Bell inequality:

E (ti, ts) + E (ti, t ′
s ) + E (t ′

i , ts) − E (t ′
i , t ′

s ) � 2 , (63)

where

E (ti, ts) = P(++) + P(−−) − P(+−) − P(−+)

= 1 − 2[P(+−) + P(−+)]

= 1 − 2 D(ti, ts). (64)

Hence (63) becomes

D(ti, ts) + D(ti, t ′
s ) + D(t ′

i , ts) − D(t ′
i , t ′

s ) � 0. (65)

Equations (60) to (62) can be integrated using that∫ +∞

−∞
eax2+bx dx =

√
π

−a
e− b2

4a , (66)

if Re(a) < 0 and divergent otherwise, with a, b ∈ C.

IV. RESULTS

The study of the Bell-like inequality (65) for a biphoton
wave function is possible beyond double-Gaussian approxi-
mation. The problem becomes analytically tractable due to the
expansion represented by Eq. (44) which can be integrated
as shown in the Appendix. The summations can be easily
performed using MATHEMATICA. In order to further simplify
the analysis, we shall assume that the idler and signal photons
emerge with momentum components such that qi + qs = 0.
We further assume that we may neglect the Gaussian part
of the total Wigner function (38), which makes sense in
the limit σ 2

+ � σ 2
− (experimentally one has typical values of

σ+ = 1 mm and σ− = 0.01 mm [5] but we chose σ 2
+ = 8 and

σ 2
− = 1/4). Such hypotheses greatly simplify the expression

for D(ti, ts) in (62), which becomes a function of τ1 ≡ (ti +
ts)/2 only. Numerically it turns out that taking M = 6 is good
enough to establish convergence. Thus D(ti, ts) = D(τ1). Just
as in [4] we may choose

t ′
i = 0, ts = τ1, ti = −2τ1, t ′

s = 3τ1 (67)

×10−2

τ1

F (τ1)

FIG. 5. F (τ1) vs τ1. We notice a violation of Eq. (68) for τ1 just
over 3 × 10−2. Because τ1 is the average of the signal’s and idler’s
propagation times (ts and ti, respectively), this means the violation
happens only after a certain time, τ1 � 3 × 10−2, and stabilizes
after it.

in (65). In addition, we also have D(ti, ts) = f (|τ1|). Hence
we are led to express Eq. (65) as

F (τ1) ≡ 3 f (τ1) − f (3τ1) � 0, (68)

the graph of which is depicted in Fig. 5.

V. CONCLUSIONS

Bell nonlocality in continuous variables is hard to ver-
ify because continuous-variable quantum states usually have
positive-definite Wigner functions that give support to local
hidden variable models. In [5] Bell’s approach was adapted
to photon pairs. The authors of that study showed that the
transverse positions and momenta of entangled photon pairs
measured at different propagation distances can be used to
find a maximum achievable violation for the state that Bell
considers. It turns out it is very small relative to the upper
limit of 2

√
2.

In this paper, we aimed at qualitatively analyzing the
possibility of continuous-variable Bell violation using a phys-
ical description in terms of biphoton wave functions. After
carefully exposing the approximations that led to the effective
biphoton wave function (produced by SPDC type-I processes)
as well as its time evolution, we proposed a way of analyti-
cally treating the sinc function which represents the transverse
propagation of the biphoton. We concluded that this more
physical realization of the biphoton wave function leaves
room for a continuous-variable Bell inequality violation as
one can see in Fig. 5. A more realistic quantitative prediction
of the violation can in principle be inferred using experimental
input of SPDC processes and some numerical computation.
Of course the parameters should be adjusted so as to guarantee
local causality (that is to say, a spacelike separation for
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the spacetime coordinates of the biphotons |y−| > c|τ2| as
discussed in [4]).

As we have shown in Sec. II B, a high degree of entan-
glement is maintained in the limit where σ− is small (as
compared with σ+), which is the approximation we have used
to study the violation of positiveness of the function F (τ1).
We will address this matter in a future contribution.
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APPENDIX

Consider the integral

I =
∫

dρ e−2iρy cos[m′(q − ρ)2] cos[n′(q + ρ)2] (A1)

with m′ = 2m−1
2M and n′ = 2n−1

2M . Assume m′ �= n′(that is m �=
n) and m′, n′ > 0. Thus,

I =
∫

dρ e−2iρy eim′(q−ρ)2 + e−im′(q−ρ)2

2

× ein′(q+ρ)2 + e−in′(q+ρ)2

2
, (A2)

which in turn may be cast as

Im′ �=n′ = 1
4 (I1 + I2 + I3 + I4), (A3)

with

I1 =
∫

dρ ei [m′(q−ρ)2+n′(q+ρ)2−2ρy], (A4)

I2 = I1(n′ → −n′), I3 = I1(m′ → −m′), and I4 = I1(n′ →
−n′ and m′ → −m′). Completing squares we get

I1 = e−i (m′q−n′q+y)2

(m′+n′ )
+ i (m′+n′ )q2

×
∫

dρ e
i (

√
m′+n′ρ− (m′q−n′q+y)√

m′+n′ )2

. (A5)

This evaluates to

I1 = e−i (m′q−n′q+y)2

(m′+n′ )
+ i (m′+n′ )q2

√
π
2 (1 + i)√
m′ + n′ .

Likewise

I2 = e−i (m′q+n′q+y)2

(m′−n′ )
+ i (m′−n′ )q2

⎧⎪⎨⎪⎩
√

π
2 (1+i)√
m′−n′ , m′ > n′

√
π
2 (1−i)√
n′−m′ , m′ < n′,

I3 = e−i (−m′q−n′q+y)2

(−m′+n′ )
+ i (−m′+n′ )q2

⎧⎪⎨⎪⎩
√

π
2 (1−i)√
m′−n′ , m′ > n′

√
π
2 (1+i)√
n′−m′ , m′ < n′,

and

I4 = e−i (−m′q+n′q+y)2

(−m′−n′ )
+ i (−m′−n′ )q2

√
π
2 (1 − i)√
m′ + n′

for m′ �= n′. On the other hand, for m′ = n′,

Im′=n′ = 2

4
Re

[
e−i y2

2m′ + 2i m′q2

√
π
2 (1 + i)√

2m′

]
. (A6)

For this result we have chosen σ 2
− = 1/4 but for arbitrary σ−

it suffices to multiply the overall result by (2σ−)−1 and rescale
y → y

2σ−
and q → 2σ−q.
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