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Few-body bound states of two-dimensional bosons
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We study clusters of the type AN BM with N � M � 3 in a two-dimensional mixture of A and B bosons,
with attractive AB and equally repulsive AA and BB interactions. In order to check universal aspects of the
problem, we choose two very different models: dipolar bosons in a bilayer geometry and particles interacting
via separable Gaussian potentials. We find that all the considered clusters are bound and that their energies
are universal functions of the scattering lengths aAB and aAA = aBB, for sufficiently large attraction-to-repulsion
ratios aAB/aBB. When aAB/aBB decreases below ≈ 10, the dimer-dimer interaction changes from attractive to
repulsive and the population-balanced AABB and AAABBB clusters break into AB dimers. Calculating the
AAABBB hexamer energy just below this threshold, we find an effective three-dimer repulsion which may have
important implications for the many-body problem, particularly for observing liquid and supersolid states of
dipolar dimers in the bilayer geometry. The population-imbalanced ABB trimer, ABBB tetramer, and AABBB
pentamer remain bound beyond the dimer-dimer threshold. In the dipolar model, they break up at aAB ≈ 2aBB,
where the atom-dimer interaction switches to repulsion.
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Recent experiments on dilute quantum droplets in dipolar
bosonic gases [1–4] and in Bose-Bose mixtures [5–7] with
competing interactions have exposed the important role of
beyond-mean-field effects in weakly interacting systems. A
natural strategy to boost these effects and enhance exotic
behaviors is to make the interactions stronger while keep-
ing the attraction-repulsion balance for mechanical stability.
The most straightforward way of getting into this regime
is to increase the gas parameter na3

s . However, this leads
to enhanced three-body losses, which results in very short
lifetimes (as has been observed in experiments [1–7]). Never-
theless, this regime is achievable in reduced geometries. It has
been shown that a one-dimensional Bose-Bose mixture with
strongly attractive interspecies interaction becomes dimerized
and, by increasing the intraspecies repulsion, the dimer-dimer
interaction can be tuned from attractive to repulsive [8]. Then,
an effective three-dimer repulsion has been found in this
system and predicted to stabilize a liquid phase of attractive
dimers [9].

In two dimensions, a particularly interesting realization of
such a strongly interacting, tunable, and long-lived Bose-Bose
mixture is a system of dipolar bosons confined to a bilayer
geometry [10–12]. When the dipoles are oriented perpen-
dicularly to the plane, there is a competing effect between
repulsive intralayer and partially attractive interlayer inter-
actions, interesting from the viewpoint of liquid formation.
In addition, the quasi-long-range character of the dipolar
interaction can produce the rotonization of its spectrum and

a supersolid behavior [13–21], formation of a crystal phase
[22,23], and a pair superfluid [24–26] (see also lattice cal-
culations of Ref. [27]). A peculiar feature of bilayer model
is the vanishing Born integral for the interlayer interaction,∫

VAB(ρ)d2ρ = 0 [28], which has led to controversial claims
about the existence of a two-body bound state [29] until
it has finally been established that this bound state always
exists, although its energy can be exponentially small [30–34],
consistent with Ref. [35]. Interestingly, a similar controversy
seems to continue at the few-body level; it has been claimed
[36] that the repulsive dipolar tails will never allow for three-
or four-body bound states in this geometry.

In this Rapid Communication, we investigate few-body
bound states in a two-dimensional mass-balanced mixture of
A and B bosons with two types of interactions characterized
by the two-dimensional scattering lengths aAB and aAA = aBB.
The first case corresponds to the bilayer of dipoles discussed
above and, in the second, we model the interactions by non-
local (separable) finite-range Gaussian potentials. By using
the diffusion Monte Carlo (DMC) technique in the first case,
and the stochastic variational method (SVM) in the second,
we find that for sufficiently weak BB repulsion compared to
the AB attraction, aAB � aBB, all clusters of the type AN BM

with 1 � N � M � 3 are bound. We then locate thresholds
for their unbinding with decreasing aAB/aBB. By looking at the
AAABBB hexamer energy close to the corresponding thresh-
old, we discover an effective three-dimer repulsion, which can
stabilize interesting many-body phases.
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FIG. 1. Energies of AN BM clusters in units of the dimer energy
EAB (reported in the inset in units of h̄2/ma2

BB) for Gaussian (curves)
and dipolar (symbols) potentials as a function of the scattering length
ratio aAB/aBB. The arrows show the positions of the thresholds for
binding in the dipolar case.

The Hamiltonian of our system is given by

Ĥ = − h̄2

2m

N∑
i=1

∇2
i − h̄2

2m

M∑
α=1

∇2
α

+
∑
i< j

V̂AA(ri j ) +
∑
α<β

V̂BB(rαβ ) +
∑
i,α

V̂AB(riα ), (1)

where the two-dimensional vectors ri and rα denote particle
positions of species A and B containing, respectively, N and M
atoms, V̂AB and V̂AA = V̂BB are the interspecies and intraspecies
interaction potentials, and m is the mass of each particle.
For the bilayer setup, we have VAA(r) = VBB(r) = d2/r3 and
VAB(r) = d2(r2 − 2h2)/(r2 + h2)5/2, where d is the dipole
moment and h is the distance between the layers. Dipoles are
aligned perpendicularly to the layers and there is no interlayer
tunneling. The potential VBB(r) is purely repulsive and is
characterized by the h-independent scattering length aBB =
e2γ r0 [37], where γ ≈ 0.577 is the Euler constant and r0 =
md2/h̄2 is the dipolar length. The interlayer potential VAB(r)
always supports at least one dimer state. Its energy reported
in the inset of Fig. 1 diverges for h → 0 and exponentially
vanishes in the opposite limit [30–33]. The scattering length
aAB, which is a function of r0 and h, is ∼aBB ∼ r0 for h ∼
r0, and exponentially large for h � r0. In the following, we
parametrize the system by specifying aBB and aAB rather than
h and r0.

In the more academic case of Gaussian interactions, we use
V̂AB(riα )ψ (riα ) = ∫

VAB(riα, r′
iα )ψ (r′

iα )d2r′
iα and similarly for

VAA and VBB, where Vσσ ′ (r, r′) = Cσσ ′Gξ (r)Gξ (r′), Gξ (r) =
(2πξ 2)−1 exp(−r2/2ξ 2), and ξ is the characteristic range
of the potential. An advantage of this nonlocal potential is
that the two-body problem can be solved analytically, giving

C−1
σσ ′ = m

4π h̄2 [2 ln 2ξ

aσσ ′ − γ ]. In the following, we vary the ratio
aAB/aBB, with aBB = 1.4ξ fixed. Note that the available ratio
is limited to aAB/aBB > 1.1.

In order to calculate the energies of the different few-body
clusters, we employ two numerical techniques. In the dipolar
case, we use the diffusion Monte Carlo (DMC) method [38],
which leads to the exact ground-state energy of the system,
within a statistical error. This stochastic technique solves the
Schrödinger equation in imaginary time using a trial wave
function for importance sampling. We choose it to be


T (r1, . . . , rN+M ) =
N∏

i< j

fAA(ri j )
M∏

α<β

fBB(rαβ )

×
[

N∏
i=1

M∑
α=1

fAB(riα ) +
M∏

α=1

N∑
i=1

fAB(riα )

]
.

The interspecies correlations are described by the dimer wave
function fAB(r), calculated numerically, and the intraspecies
Jastrow factors are chosen as the zero-energy two-body scat-
tering solution, fAA(r) = fBB(r) = K0(2

√
r0/r), with K0 be-

ing the modified Bessel function.
In the Gaussian model, we use the stochastic variational

method (SVM) [39], where the wave function is expanded in
a correlated Gaussian basis 
(η) = ∑

i ci Ŝ exp (− 1
2ηT Aiη),

where η is the vector of N + M − 1 particle coordinates in
the center-of-mass reference frame and the matrices Ai are
real, symmetric, and positive definite. Ŝ is the symmetrization
operator, relevant for our Bose-Bose mixture, and the index
i sums over the basis functions (with ≈ 3000 functions).
The Schrödinger equation is then reduced to a generalized
eigenvalue problem, giving the expansion coefficients {ci} and
the corresponding energy. The basis is optimized to the system
at hand in a stochastic way, where elements of the matrices Ai

are chosen randomly taking at each step the element that gives
the lowest energy. Our SVM implementation closely follows
Ref. [40].

We first discuss the limit of very large aAB (large dimer
size) when the interaction range and the intraspecies in-
teractions can be neglected. In this case, the problem can
be treated in the zero-range approximation giving for the
ABB trimer EaBB=0

ABB = 2.39EAB [41–43] and for the tetramers
EaBB=0

ABBB = 4.1EAB and EaBB=0
AABB = 10.6EAB [41]. Here, we find

that the other AN BM clusters (with 1 � N � M � 3) are
also bound in absence of the intraspecies repulsion. Using
the method of Ref. [44], we calculate their binding en-
ergies (and also update the energies of smaller clusters):
EaBB=0

ABB /EAB = 2.3896(1), EaBB=0
ABBB /EAB = 4.1364(2), EaBB=0

AABB /

EAB = 10.690(2), EaBB=0
AABBB/EAB = 28.282(5), and EaBB=0

AAABBB/

EAB = 104.01(5).
The intraspecies repulsion shifts the cluster energies up-

ward as has been seen for the ABB trimer [45,46] and the
ABBB tetramer [46]. In Fig. 1, we report the energies of these
and bigger clusters for both the dipolar and Gaussian inter-
actions. Note that even for the weakest BB repulsion shown
in this figure (aAB/aBB = 200), the clusters are significantly
less bound compared to the case of no BB repulsion. This
happens since the small parameter that controls the weakness
of the intraspecies interaction relative to the interspecies one
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FIG. 2. Binding energies of the few-body clusters EAN BM −
NEAB, in units of h̄2/ma2

BB, vs aAB/aBB, for Gaussian (curves) and
dipolar (symbols) potentials.

is actually λ = 1/ ln(aAB/aBB) 	 1. By contrast, effective-
range corrections contain powers of r0

√
mE/h̄ or ξ

√
mE/h̄

for dipolar or Gaussian interactions, respectively, which are
exponentially small in terms of λ. This explains why the two
interaction models lead to almost indistinguishable results for
large aAB/aBB.

We find that for sufficiently strong intraspecies repulsion
(smaller aAB/aBB) the trimer and all higher clusters get un-
bound. In Fig. 1, the thresholds for binding in the dipolar
model are shown by arrows. We find that the tetramer thresh-
old is located at aAB/aBB ≈ 10 (h/r0 ≈ 1.1) and the trimer
threshold, corresponding to the atom-dimer zero crossing,
occurs in the regime where all relevant length scales (scatter-
ing lengths, dimer sizes, interaction ranges) are comparable
to one another; aAB/aBB ≈ 2 (h/r0 ≈ 0.8) for the dipolar
model. The positions of the threshold and differences between
the results of the two models are better visible in Fig. 2,
where we plot the cluster energies in units of h̄2/ma2

BB. The
threshold values are obtained by fitting the energy results to

the function EAN BM − NEAB = E0 exp{−1/[c1(aAB − ac
AB) +

c2(aAB − ac
AB)2]}, for aAB > ac

AB, where ac
AB, E0, c1, c2 are free

parameters.
Our numerical calculations for larger clusters indicate that,

depending on whether they are balanced (M = N) or not, their
unbinding thresholds coincide, respectively, with the tetramer
or with the trimer ones. To understand these results, note that
close to these thresholds the clusters are much larger than the
dimer. Treating there the latter as an elementary boson D, the
AABBB pentamer and the ABBB tetramer can be thought of
as weakly bound DDB or DBB “trimers” characterized by a
large aDB value and repulsive DD and BB interactions (the
DD interaction is repulsive since we are above the tetramer
AABB threshold). In the limit aDB → ∞, the DD and BB
interactions can be neglected and the binding energies of the
DDB and DBB composite trimers are asymptotically frac-
tions of EABB − EAB [42]. The ABB trimer, ABBB tetramer,
and AABBB pentamer thresholds are therefore the same
[see Figs. 2(a)–2(c)]. In the same reasoning, close to the
AABB tetramer crossing, the hexamer AAABBB is a weakly
bound DDD state which splits into three dimers when the
dimer-dimer attraction changes to repulsion, resulting in the
same threshold value.

In the above discussion, we have integrated out the internal
degrees of freedom of the dimers, replacing them by elemen-
tary pointlike bosons. In fact, the DD zero crossing that we
observe for aAB ≈ 10aBB is a nonperturbative phenomenon
resulting from a competition between strong repulsive and
attractive interatomic forces among four individual atoms.
These interactions are strong since the corresponding scatter-
ing lengths are comparable to the typical atomic de Broglie
wavelengths ∼1/aAB. We emphasize that this cancellation is
achieved only for two dimers. For three dimers, it is incom-
plete and there is a residual effective three-dimer force of
range ∼aAB (distance where the dimers start touching one
another). In the many-body problem, this higher order force
may compete with the dimer-dimer interaction (if it is not
completely zero) or even become dominant. In principle,
one can also discuss higher order effects of this type at the
DB zero crossing in a DB mixture, but they are expected
to be subleading since the DD and BB interactions remain
finite. In the remainder of this Rapid Communication, we thus
concentrate on the population-balanced case.

In order to characterize the effective three-dimer inter-
action, we follow the method developed previously in one
dimension [9]. Namely, we analyze the behavior of the hex-
amer energy just below the tetramer threshold. If the tetramer
binding energy EDD = EAABB − 2EAB is much smaller than
EAB, the dimer-dimer interaction can be considered pointlike
and the relative DD wave function can be approximated by
φ(r) ∝ K0(κr), where κ =

√
−2mEDD/h̄2 is the inverse size

of the tetramer. Similarly, the AAABBB hexamer under these
conditions reduces to the well-studied problem of three point-
like bosons [41,47–52], according to which the ground-state
hexamer binding energy EDDD = EAAABBB − 3EAB should sat-
isfy [51,52]

EDDD/|EDD| = −16.5226874. (2)

We expect the ratio EDDD/|EDD| to reach the zero-range limit
(2) as we approach the dimer-dimer zero crossing, i.e., as
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FIG. 3. The hexamer-to-tetramer binding energy ratio
EDDD/|EDD| as a function of κaAB. The solid line is the result
of the zero-range model with the hard-core hyper-radius constraint
at ρ0 = 0.13aAB.

κaAB → 0. In Fig. 3, we plot EDDD/|EDD| versus κaAB and
indeed see a tendency toward the value (2) although the effects
of the finite size of the dimers and their internal degrees of
freedom, that we have neglected in the zero-range model, are
obviously important. The fact that the hexamer energy lies
above the limit (2) points to an effective three-dimer repulsive
force. We note again that the values of the ratio EDDD/|EDD|
obtained for Gaussian and dipolar potentials are quite close
to each other for all values of aAB, suggesting a certain
universality of this problem and a relative unimportance of
the long-range interaction tails.

In order to quantify the three-dimer interaction observed
in Fig. 3, we extend the model of three pointlike dimers by
requiring that the three-dimer wave function vanishes at a
hyper-radius ρ0. For three dimers, with coordinates r1, r2,
and r3, the hyper-radius is defined as ρ =

√
x2 + y2, where

x = (2r3 − r1 − r2)/
√

3 and y = r1 − r2 are the Jacobi co-
ordinates. Clearly, for this minimalistic model EDDD/|EDD| is
a function of the ratio κρ0, relating the three- and two-dimer
interaction strengths. Given the isotropic form of the three-
body constraint in the hyper-radial space, a natural way of
solving this problem is to use the adiabatic hyperspherical
method. Kartavtsev and Malykh [52] discussed this method
in detail and applied it to the ρ0 = 0 limit of our problem, i.e.,
the case of no three-body interaction. The only modification
of their procedure, to account for finite ρ0, is to set the hyper-
radial channel functions to zero at ρ = ρ0. In this way, we
obtain the ratio EDDD/|EDD| as a function of κρ0. We then
treat ρ0 as a constant (independent of EDD) determined by
fitting the DMC and SVM data in the κaAB < 0.4 range. By
minimizing χ2, we obtain ρ0 = 0.13aAB.

The inclusion of the three-body hard-core constraint, even
corresponding to numerically very small κρ0, leads to a spec-
tacular deviation from Eq. (2). This interesting effect is due
to an enhancement of the three-dimer interaction by strong
two-dimer correlations. Indeed, in the absence of two-body
interactions, the three-body scattering in two dimensions is
equivalent to the four-dimensional two-body scattering on a

short-range potential. The corresponding hyper-radial wave
function for ρ larger that the support of the potential, but
smaller than the de Broglie wave length, is proportional
to 1 − ρ2

0/ρ2. The same scattering effect in the first Born
approximation (and the same mean-field interaction shift) is
attained by using the three-body potential V3(r1, r2, r3) =
3π2(h̄2ρ2

0/m)δ(r1 − r2)δ(r2 − r3). Naively, we expect the
leading small-ρ0 correction to Eq. (2) to behave as (κρ0)2

as if the three dimers without two-body interactions were
externally confined to a surface ∼1/κ2. However, in our case
two-dimer correlations are strong and the three-dimer wave
function is logarithmically enhanced at short hyper-radii [52].
More precisely, by using arguments of Ref. [52] one can show
that the hyper-radial wave function at distances ρ 	 1/κ be-
haves as ln3(κρ) − ρ2

0 ln6(κρ0)ρ−2 ln−3(κρ) and the leading-
order correction to Eq. (2) behaves as ∼(κρ0)2 ln6(κρ0),
representing a noticeable enhancement compared to the case
of no two-body interaction.

Promising candidates for observing the predicted cluster
states are bosonic dipolar molecules characterized by large
and tunable dipolar lengths which, at large electric fields, tend
to r0 = 5 × 10−6 m for 87Rb 133Cs [53,54], r0 = 2 × 10−5 m
for 23Na 87Rb [55,56], and r0 = 6 × 10−5 m for 7Li 133Cs
[57]. Fermionic 87Rb 40K [58,59] and 23Na 40K [60–62]
molecules (r0 = 7 × 10−7 m and r0 = 7 × 10−6, respectively)
could be turned into bosons by choosing another isotope of
K. The interlayer distance, fixed by the laser wavelength, has
typical values of h ≈ (2–5) × 10−7 m, which is thus sufficient
for observing the few-body bound states that we predict for
ratios h/r0 > 0.8.

A subject of further work is to generalize these findings to
the many-body problem when a new scale (density n) comes
into play. It is important to understand how the two- and
three-body effects correlate with each other as one passes
through the dimer-dimer zero crossing. Although we find
no qualitative difference between the dipolar and Gaussian
models in our few-body results, the long-range tails will be
important when the quantity nr0 becomes comparable to the
inverse healing length (which is where the dipolar condensate
becomes rotonized). For bilayer dipoles, the relevant region of
parameters is close to the dimer-dimer zero crossing, which
we predict to be at h/r0 ≈ 1.1. Finally, it is instructive to
consider a simpler model of elementary bosons with (possibly
exotic) finite-range interactions and investigate whether finite-
range effects can be absorbed into an effective three-body
interaction. Systematic calculations of the trimer-to-dimer
binding energy ratio (see Ref. [48]) could then serve as a tool
for characterizing this effective force.

To summarize, we have studied few-body clusters AN BM

with N � M � 3 in a two-dimensional Bose-Bose mixture
using different (long-range dipolar and short-range Gaussian)
intraspecies repulsion and interspecies attraction models. In
both cases, the intraspecies scattering length aAA = aBB is of
the order of the potential ranges, whereas we tune aAB by
adjusting the AB attractive potential (or the interlayer distance
in the bilayer setup). We find that for aAB � aBB all considered
clusters are (weakly) bound and their energies are independent
of the interaction model. As the ratio aAB/aBB decreases, the
increasing intraspecies repulsion pushes the clusters upwards
in energy and eventually breaks them up into N dimers and
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M − N free B atoms. In the population balanced case (N =
M), this happens at aAB/aBB ≈ 10, where the dimer-dimer
attraction changes to repulsion. By studying the AAABBB
hexamer near the dimer-dimer zero crossing, we find that it
very much behaves like a system of three pointlike particles
(dimers) characterized by an effective three-dimer repulsion.
A dipolar system in a bilayer geometry can thus exhibit the
tunability and mechanical stability necessary for observing
dilute liquids and supersolid phases.
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