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Effect of atmospheric turbulence on timing instability for partially
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In this paper we analyze the limits of optical time transfer through atmospheric turbulence and relate those
predictions to timing uncertainty analysis using the Allan timing variance (TVAR). The power spectrum of timing
uncertainty due to atmospheric turbulence is expressed with the help of Taylor’s frozen flow hypothesis, iden-
tifying a f −8/3 and f −2/3 power-law behavior for uncorrelated and partially correlated turbulence, respectively.
The scaling of each power law is related to the geometry of the link and the turbulence profile. The power-law
slopes are used to calculate two TVAR scaling coefficients relevant to turbulence timing noise, c5/3 and c−1/3,
which can be applied to time-transfer analysis of timing data affected by turbulent fluctuations. Examples of a
2-km horizontal partially overlapping two-way link estimate the atmospheric contribution to timing fluctuations
to be below 10 fs, while a two-way link to a medium-Earth-orbit satellite experiences timing fluctuations on the
order of 2 fs. Comparison of turbulence theory to a recent two-way optical time transfer experiment shows good
agreement with the expected power-law behavior and scaling factors.
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I. INTRODUCTION

Precision timing information is essential to many
applications, including high-accuracy geodesy, validation of
terrestrial reference frames, time (epoch) and frequency trans-
fer, synchronization of timescales between remote locations,
augmentation of global navigation satellite systems (GNSS),
proposed science missions to test fundamental concepts of
physics (e.g., Einstein’s relativity), and searches for new
physics [1–3]. Existing rf satellite time transfer techniques
are capable of fractional frequency uncertainties on the or-
der of 4 × 10−16 after days of averaging, limited by sig-
nal bandwidth, signal-to-noise ratio, and ionospheric correc-
tions [4]. Optical time transfer links offer higher bandwidth
and better sensitivity, enabling direct comparison of state-
of-the-art optical frequency references using dedicated fiber
networks [5]. For time transfer to remote locations, airborne
platforms, or satellites in orbit, the optical signals must propa-
gate through the turbulent atmosphere. Optical two-way time
and frequency transfer (OTWTFT) uses bidirectional signal
propagation and the principle of reciprocity of single-mode
links [6] to cancel path-length fluctuations through the atmo-
sphere. OTWTFT has been demonstrated at the femtosecond
level over up to 12 km of turbulent air [7,8].

A previous paper considered a dedicated space-time ref-
erence in orbit that would utilize two-way laser links, based
on existing satellite laser communication technologies, to pro-
vide <1-ps timing uncertainty worldwide and 1-mm ranging
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to the satellite [9]. To support this application, or even more
precise tests of clocks in space [10], satellite optical time
transfer links will be required.

When the two-way time transfer link has path asymmetry,
due to terminal separation or high velocity over long dis-
tances, the link becomes partially reciprocal. Optical signals
propagating in opposite directions will see slightly different
realizations of turbulence and will pick up additional path-
length fluctuations that do not cancel in the two-way mea-
surement. The effect of partial reciprocity on two-way time
(and frequency) transfer links has been analyzed in [11,12]
and recently measured at the National Institute of Standards
and Technology (NIST) in Colorado [13] for a horizontal
2-km path.

Here we supplement the analysis presented in [12] by con-
necting the predictions of turbulence theory to timing stability
analysis. We convert from the spatial statistical description of
index fluctuations in turbulence to a temporal timing noise
spectrum under the assumption of frozen flow. Once a tempo-
ral timing noise spectrum is identified, the power-law behavior
displayed by the turbulence is converted to an Allan timing
variance (TVAR) averaging behavior. This description of the
effect of turbulence on timing uncertainty is then consistent
with common timing noise processes [14].

The remainder of this paper is organized as follows.
Section II gives an overview of two-way time transfer through
turbulent atmosphere over partially reciprocal paths. Taylor’s
frozen flow hypothesis [15] is introduced and used to con-
vert from the spatial frequency description of turbulence to
temporal frequency. Two distinct regions of uncorrelated and
partially correlated turbulence are then identified by their
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power-law slopes. Section III uses the identified power-law
slopes to calculate the timing instability behavior using the
Allan variance TVAR. Section IV compares the predicted tur-
bulence power laws and TVAR behavior to experimental data
from a 2-km optical time transfer link at NIST. Discussions
and conclusions are presented in Sec. V.

II. OPTICAL TWO-WAY TIME TRANSFER THROUGH
TURBULENT ATMOSPHERE

A. Two-way time transfer

The goal of a time transfer system is to produce accurate
timing offset measurements between clock A with time TA

and clock B with time TB. The stability of the two clocks
relative to each other can then be estimated from the time
difference measurements �TAB = TA − TB. In a two-way link,
each end records the transmission time of a timing marker
signal and the reception time of the corresponding signal from
the opposite clock. The time differences measured at each end,
�TA and �TB, are given by

�TA = Tpath,A→B + �TAB,

�TB = Tpath,B→A − �TAB. (1)

Both �TA and �TB in (1) include the time of flight along
the propagation path Tpath and the clock timing difference
�TAB, which shows up at each end with opposite sign. To
cancel Tpath, the difference between the measurements at each
end are taken as

�TA − �TB

2
= �TAB + Tpath,A→B − Tpath,B→A

2
. (2)

Any random difference in path lengths due to turbulence
Tpath,A→B − Tpath,B→A = �Tatmo will be indistinguishable from
the clock difference �TAB and appear as additional timing
uncertainty. These simplified time transfer equations do not
include any nonreciprocal effects due to platform motion,
relativity, or asymmetries in the transmit and receive terminals
in order to focus on the effect of path-length fluctuations due
to turbulence.

Figure 1 shows an example of an optical two-way time
transfer system with partial reciprocity along a horizontal
path. This is the experimental layout from [13], which will
be used for comparison between theoretical predictions and
experimental results. Clocks A and B each have their own
transmit and receive apertures that are physically separated by
some distance d . The optical signals from each transmit ter-
minal travel a slightly different path through the atmosphere
on their way to the opposite receivers, leading to �Tatmo �= 0
and increasing the uncertainty of the time transfer link. The
amount of extra path-length fluctuations that appear in (2) will
depend on the separation distance along the propagation path
and the spatial correlation of the turbulence, which will be
covered in Sec. II B.

The geometry in Fig. 1 is unlikely to be realized in a
real time transfer system, but it allows experimental evalu-
ations of partial reciprocity that can be scaled to match the
expected effect on a satellite or high-altitude platform link,
as described in Sec. II D. In a satellite time transfer system,
the lack of symmetry between uplink and downlink is shown

FIG. 1. Two-way optical time transfer setup through turbulent
atmosphere along a folded path. The timing offsets �TA and �TB

include slightly different turbulent path-length fluctuations due to the
Tx and Rx separation d . The incomplete cancellation of path-length
fluctuations will show up in the clock difference measurement �TAB.

in Fig. 2. The high orbital velocity and long propagation
time to the satellite requires the uplink beam to be launched
at a point-ahead angle θpa ≈ 2vorbit/c. The path separation
between uplink and downlink in the plane perpendicular to the
optical propagation, along the propagation distance z, is given
by d (z) = X + θpaz + V (z)td , which includes the transmitter
and receiver ground separation X , increasing separation with
altitude due to the point-ahead angle θpaz, and the effect of
wind speed and slew rate V (z) displacing turbulence over
any time delay between the uplink and downlink td . For this
analysis we assume the uplink and downlink timing signals
are offset to pass through the atmosphere at nearly the same
time, and the effective displacement V (z)td is negligible. In
certain link geometries this may not be valid, and the time
delay between uplink and downlink will increase the effective
path separation.

X

pa Vwind

d(z)

d(z)

Sat Tx

Sat Rx

Gnd RX Gnd TX

Vorbit

FIG. 2. Two-way optical time transfer to a satellite in orbit. The
long distance from ground to the satellite and high orbital velocity
means the ground-to-satellite beam must be transmitted at point-
ahead angle θpa, which causes the uplink and downlink beams to
sample different turbulence through the atmosphere.
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B. Timing fluctuations through turbulent atmosphere

1. Spatial power spectrum description of turbulence

Optical signals propagating through the turbulent atmo-
sphere experience phase fluctuations due to random changes
in the index of refraction n along the propagation path [16].
These fluctuations cause the optical path length to vary ran-
domly about an average value, adding additional uncertainty
in timing measurements.

Kolmogorov’s theory of turbulence is used to describe the
statistics of turbulent eddies in the atmosphere that cause
index fluctuations [17]. A review of Kolmogorov theory, and
its application to optical propagation [18], is beyond the scope
of this work, but the reader is directed to [19] Chap. 3 for a
well-presented discussion.

This work assumes that the turbulent atmosphere is sta-
tistically described by a spatial power spectrum of index
fluctuations �n(κ ), where κ is spatial frequency in units of
rad/m, using common models from turbulence theory. The
simplest model for �n(κ ) is the Kolmogorov spectrum [19]

�n(κ, z)K = 0.033C2
n (z)κ−11/3, (3)

where C2
n (z) is the index of refraction structure constant along

the propagation path, which can range from 10−17 m−2/3 in
weak turbulence to 10−13 m−2/3 for strong turbulence. Equa-
tion (3) shows a κ−11/3 power law and is valid for spatial fre-
quencies within the range 2π/L0 � κ � 2π/l0. Kolmogorov
theory applies to turbulent eddies in the inertial subrange,
between the outer scale L0 where energy is injected into the
system, to the inner scale l0 where eddies dissipate [17,20].
Typical scale sizes are L0 = 10 m for the outer scale and
l0 = 1 mm for the inner scale. The Kolmogorov spectrum has
infinite energy if extended to κ = 0, or it predicts that there is
no limit to the spatial scale of correlation of turbulence.

Theodore von Kármán proposed a modified spectrum ex-
tending to low spatial frequencies 0 � κ � 2π/l0, assuming
the correlation function of turbulence depends on L0, and the
turbulent power should not be infinite [21]:

�n(κ, z)V K = 0.033C2
n (z)(

κ2 + κ2
0

)11/6 . (4)

Here κ0 = 2π/L0 is the corner frequency of the outer scale,
below which the power spectrum flattens to a constant. The
von Kármán spectrum is used in many turbulence theory
investigations since it is mathematically tractable, and it fits
with the idea that turbulent fluctuations should have some
limit to their spatial scale. Greenwood and Tarazano con-
ducted measurements of temperature fluctuations in turbu-
lence and arrived at a slightly different spectral shape that
better fit their data [22],

�n(κ, z)GT = 0.033C2
n (z)

(κ2 + κκ0)11/6
, (5)

which also shows a reduction in spectral power for κ0 �
2π/L0, but with a slope of κ−11/6 as opposed to κ0 in (4).

Figure 3 shows the different spatial power spectral models
described, along with the effect of increasing the outer scale
L0 from 10 to 100 m. The choice of spectral model and
outer scale value affects the predicted turbulence variance.

10-2 10-1 100 101 102

Spatial Frequency  (rad/m)

10-20

10-15

10-10

n(
)

FIG. 3. Turbulence spatial power spectra �n(κ ) using the Kol-
mogorov model [(3) orange solid], von Kármán model [(4) blue
dotted], and Greenwood-Tarazano model [(5) red dash-dot]. Upper
lines are L0 = 10 m, and lower lines are L0 = 100 m for the VK and
GT models.

For the same turbulence parameters the Greenwood-Tarazano
model (5) predicts 9 times higher variance than the von
Kármán model (4) due to the steeper low-wave-number slope.
Increasing the outer scale from L0 = 10 m to L0 = 100 m in
either model adds 45 times more total spectral power.

The low spatial frequency spectrum maps to timing un-
certainty over long observation times, as will be discussed in
Sec. II C. Measurements of the spatial structure of turbulence
show evidence of the existence of an outer scale; however,
there is no well-motivated physical theory describing the
spectral shape of turbulence for κ � 2π/L0 [23,24]. Since the
Greenwood-Tarazano model showed better fit to long-time-
series data, it is the most suitable for our timing stability
investigation and is preferred over the von Kármán model.

2. Timing fluctuations

The timing variance of an optical signal propagating
through turbulent atmosphere is calculated from the spatial
power spectrum �n(κ ) as ([19] 8.6.1)

σ 2
τ,1Way = 4π2

c2

∫ L

0

∫ ∞

0
κ�n(κ, z)dκdz, (6)

where c is the speed of light. The residual timing variance on
a two-way measurement (2) through the atmosphere depends
on the correlation of index fluctuations over the separation
distance d (z). The mean-squared timing difference between
two separate paths through atmosphere can be expressed as

σ 2
τ,2Way = 2π2

c2

∫ L

0

∫ ∞

0
κ�n(κ, z)[1 − J0(κd (z))]dκdz, (7)

where d (z) is the perpendicular distance between paths along
the propagation direction z (Fig. 2). This was the main result
used in [12] to connect the spatiotemporal displacement of
two optical paths through the atmosphere to a residual two-
way timing variance. It is a recasting of the phase structure
function of the atmosphere ([19] 8.6.2), which describes
the mean-squared phase difference between two points. The
[1 − J0(κd (z))] factor in (7), where J0(κd (z)) is a Bessel
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function of the first kind, acts as a high-pass filter that passes
the uncorrelated portion of �n(κ ) for the given separation
distance. Turbulent eddies smaller than the separation distance
(high spatial frequencies) will be uncorrelated and show up in
the two-way measurement, while large-scale turbulent eddies
will remain correlated and cancel.

Taking the horizontal path in Fig. 1 as an example, the
displacement d (z) starts at the Tx A and Rx A separation
d , goes to zero at the mirror halfway along the path, then
increases to the separation between Tx B and Rx B, which
is also d . Using the parameters from the experiment in [13],
L = 2 km, d = 0.5 m, C2

n = 5.5 × 10−15, L0 = 100 m, l0 =
1 mm, V = 0.55 m/s, and the Greenwood-Tarazano model
(5) for �n(κ, z) in (6) gives a one-way time-of-flight deviation
στ,1Way = 300 fs. The two-way measurement (7) has residual
timing variance στ,2Way = 3 fs. The separated two-way link
maintains sufficient partial reciprocity to cancel turbulent
path-length fluctuations at the level of a few femtoseconds.

C. Temporal frequency spectrum of atmospheric turbulence

1. Taylor’s frozen flow hypothesis

To connect turbulence theory to methods of timing stability
analysis, it is necessary to convert from the spatial frequency
power spectrum of index fluctuations �n(κ ) to a temporal
frequency timing noise spectrum Sx( f ). This is accomplished
with the help of Taylor’s frozen flow hypothesis [15]. Taylor’s
hypothesis states that temporal variations of turbulence seen at
a measurement point are due to spatial variations being trans-
ported by the wind and not the time evolution of the turbulence
itself. For a turbulent quantity u(r, t ) with spatial and temporal
dependence, Taylor’s hypothesis can be expressed as

u(r, t + τ ) = u(r − Vτ, t ), (8)

which states that a shift in time is equivalent to the displace-
ment in position over that time due to the wind velocity V .
This leads to a direct connection between spatial frequency κ

and temporal frequency f as

κ = 2π f /V, (9)

which allows the spatial models of Sec. II B to be converted
to temporal models.

Taylor’s hypothesis is valid for short timescales, where
the motion of turbulence due to the wind is much faster
than the temporal evolution of the turbulent eddies (see [25],
Appendix B). Measurements taken at the Mt. Wilson ob-
servatory suggested that Taylor’s hypothesis was valid for
timescales shorter than 10–15 s [26]. For observations longer
than ∼10 s Taylor’s hypothesis breaks down, and measure-
ments of timing fluctuations will include contributions from
both the spatial structure of the turbulence and its temporal
evolution. The conversion from �n(κ ) to Sx( f ) is then most
valid for high temporal frequencies f � 0.1 Hz and for pre-
dictions of timing uncertainty over short times τ � 10 s.

For predictions of timing uncertainty beyond τ � 10 s,
further investigation into the spectral behavior of turbulence
is required, both at long timescales and large spatial scales.
Greenwood and Tarazano’s model (5) showed a good fit to the
temporal spectra of temperature measurements down to below
0.01 Hz [22], which was further supported by measurements

at Mt. Wilson [25]. However the temperature difference spec-
trum, which corresponds to the two-way spectrum discussed
here, showed deviation from the model at low frequencies (see
[22], Fig. 9). Sinclair et al. were surprised to find no evidence
of an outer scale roll-off in the power spectrum of their
experimental data down to 100 μHz [27]. Similar behavior
was also observed on the Mt. Wilson stellar interferometer,
where the unbounded Kolmogorov model gave a better fit to
the low-temporal-frequency fringe motion [23].

2. Temporal spectrum of atmospheric turbulence

Using (9) to express the one-way timing fluctuations (6)
in terms of temporal frequency, assuming a horizontal path of
length L gives

σ 2
τ,1Way =

∫ ∞

0
Sx( f )df

= 4π2

c2
L

∫ ∞

0

2π f

V
�n

(
2π f

V

)
2π

V
df , (10)

which when evaluated using the Kolmogorov spectrum (3)
gives

σ 2
τ,1Way =

∫ ∞

0

(2π )1/3

c2
LV 5/30.033C2

n f −8/3df . (11)

Equation (11) is a power-law spectrum with an f −8/3 slope
for the nonreciprocal (NR) turbulence or one-way spectrum,
given by

Sx( f )K,NR = h−8/3 f −8/3,

h−8/3 = (2π )1/3

c2
LV 5/30.033C2

n . (12)

Applying the same technique to the two-way timing uncer-
tainty (7), assuming the separation distance between counter-
propagating paths is a constant d meters, reveals the effect
of partial reciprocity on Sx( f ). First the two-way timing
uncertainty (7) is brought to temporal frequency using (9)
giving

σ 2
τ,2Way = 2π2

c2
L

∫ ∞

0

2π f

V
�n

(
2π f

V

)[
1− J0

(
2π f

V
d

)]
df .

(13)

Then the first two terms of the small argument expansion
of J0(κd ) = 1 − (κd )2

4 + · · · are used in (13) to analyze the
asymptotic small frequency behavior for κd � 1. At low
frequencies, the two-way timing noise spectrum for the Kol-
mogorov model becomes

σ 2
τ,2Way =

∫ ∞

0
Sx( f )df

≈
∫ ∞

0

(2π )7/3

8c2
LV −1/30.033C2

n d2 f −2/3df . (14)

The power-law slope in (14) is f −2/3 for the partially
reciprocal (PR) region with scaling coefficient

Sx( f )K,PR = h−2/3 f −2/3,

h−2/3 = (2π )7/3

8c2
LV −1/30.033C2

n d2. (15)
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FIG. 4. Temporal power spectrum Sx ( f ) of a two-way link
computed for the Kolmogorov spectrum (orange solid), von Kármán
spectrum (blue dotted), and Greenwood-Tarazano spectrum (red
dash-dot). The transition from f −8/3 uncorrelated turbulence [(12)
purple dashed] to f −2/3 partially reciprocal turbulence [(15) green
dashed] can be seen just below f = 1 Hz. The outer scale roll-off
in the VK and GT models is around f = 0.1 Hz for L0 = 10 m and
f = 0.01 Hz for L0 = 100 m.

In the case where the displacement d (z) changes along the
propagation direction, the mean-square displacement along
the propagation path d2 should be used in (15). The inter-
section of (12) and (15) is the transition from f −2/3 to f −8/3

power laws at corner frequency

fc = 0.318V√
d2

. (16)

If not obscured by other effects, the outer scale roll-off is
expected to appear for very low frequencies below

fL0 = V

L0
. (17)

In the outer scale roll-off region κ � 2π/L0, the power-law
slope for the GT model (5) is κ−11/6. This maps to a f 7/6

behavior in (13) for f � fL0 :

Sx( f )GT,L0 = h7/6 f 7/6,

h7/6 = (2π )−7/3

8c2

L

L11/6
0

V −13/60.033C2
n d2. (18)

Figure 4 shows the timing noise power spectrum evaluated
numerically from (13) for the horizontal link example in
Sec. II. The Kolmogorov turbulence model shows a clear
transition from f −8/3 uncorrelated turbulence (purple dashed)
to f −2/3 partially reciprocal turbulence (green dashed) at cor-
ner frequency fc. The von Kármán and Greenwood-Tarazano
turbulence models show their low-frequency outer scale roll-
off below f < V/L0, with the GT model having a shallower
f 7/6 slope.

D. Ground-to-satellite geometry

For a vertical time transfer link from a ground station to
an orbiting satellite, the link geometry is shown in Fig. 2. The
displacement between uplink and downlink beam paths d (z)
changes with distance along the path, as does the C2

n (z) profile.

A common model for the index of refraction structure constant
variation with altitude h in meters is the Hufnagel-Valley
model [28]:

C2
n (h) = 0.00594

(
VRMS

27

)2

(10−5h)10 exp
−h

1000

+2.7 × 10−16 exp
−h

1500
+ C2

n (0) exp
−h

100
. (19)

In (19) VRMS is usually taken as 21 m/s. The Bufton wind
model is used to describe the effective wind speed with
altitude:

V (h) = ωsh + Vg + 30 exp

[
−

(
h − 9800

4800

)2]
. (20)

The Bufton model includes the effective wind speed due to
the satellite tracking angular slew rate ωs, the ground wind
speed Vg, and models an exponential wind velocity profile
with height. The mapping from spatial to temporal frequency
becomes κ = 2π f /V (h), which pushes higher altitude tur-
bulence to higher temporal frequencies. The satellite angle
relative to zenith ζ is used to translate from altitude to path
length as z = h × sec (ζ ), where h is the altitude in meters.

As an example, we consider a two-way time transfer link
to a medium Earth orbit (MEO) satellite orbiting at 10 000 km
and ζ = 45◦ above the horizon. At this altitude the point-
ahead angle is approximately θpa = 35 μrad and the slew
rate is ωs = 0.5 mrad/s. The transmitter and receiver share
the same aperture so that |X | = 0 cm, and the time transfer
signals are offset to pass through the same atmosphere in
the uplink and downlink direction such that td = 0. The
Hufnagel-Valley model is used for C2

n (z) and the GT model for
�n(κ, z) with the following parameters: C2

n (0) = 1 × 10−14,
L0 = 100 m, l0 = 1 mm, Vg = 3 m/s, VRMS = 21 m/s. The
one-way time-of-flight fluctuations estimated from (6) are
στ,1Way = 126 fs. For the two-way link, evaluating (13) using
d (z) from the ground to the top of the atmosphere results in
στ,2Way = 1.9 fs. The partial correlation between uplink and
downlink is sufficient to cancel the path-length fluctuations to
the femtosecond level even with the large 35 μrad point-ahead
angle.

For a satellite in low Earth orbit (LEO) such as the In-
ternational Space Station, the slew rate is much faster, up
to ωs = 20 mrad/s, which produces a higher pseudowind
and will shift the temporal spectrum to higher frequencies.
The point-ahead angle for LEO is larger at θpa = 50 μrad,
which further reduces the reciprocity between the uplink and
downlink paths. For the same turbulence conditions as the
MEO example, the one-way time-of-flight fluctuations are
still στ,1Way = 126 fs, but the two-way timing fluctuations
στ,2Way = 2.5 fs are slightly worse than the MEO case. An
LEO orbit also has a much shorter visibility window, on the
order of 100 s per pass, compared to up to 6000 s for a 6-h
MEO orbit.

The varying wind speed V (z), uplink-to-downlink dis-
placement d (z), and index structure C2

n (z) make it harder to fit
the simple power-law approximations of the horizontal case,
but the f −2/3 and f −8/3 spectral behavior still applies. The
scaling coefficient for the uncorrelated turbulence-induced
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FIG. 5. Numerical evaluation of timing noise spectrum for Earth
to MEO one-way (triangles), MEO two-way (diamonds), Earth
to LEO one-way (squares), and LEO two-way (circles) using the
Greenwood-Tarazano atmospheric model. The higher slew rate from
tracking a LEO satellite results in a shift of Sx ( f ) to higher temporal
frequencies. The one-way timing noise follows the f −8/3 slope
[(21) purple dashed/dotted] until the low-frequency roll-off from
the turbulence outer scale begins. The two-way noise shows the
change to f −2/3 power-law slope [(22) green dashed] before expe-
riencing the same outer scale roll-off.

timing fluctuations is given by

h−8/3,sat = (2π )1/3

c2
0.033

∫ ∞

0
C2

n (z)V (z)5/3dz, (21)

with the partially correlated region scaled by

h−2/3,sat = (2π )7/3

8c2
0.033

∫ ∞

0
C2

n (z)V (z)−1/3d2(z)dz. (22)

At lower frequencies any outer scale roll-off will reduce
the slope further. The power-law scaling from (21) and (22)
can be used to compare the timing noise spectrum expected
from a vertical path geometry to a horizontal path timing noise
spectrum with (12) and (15).

Figure 5 shows the timing noise spectrum for the described
MEO and LEO satellite links using the Greenwood-Tarazano
model. The f −2/3 and f −8/3 power laws are still visible but
with different scaling based on the satellite link geometry.
Sx( f ) for the LEO satellite is shifted to higher frequencies due
to the higher slew rate increasing the apparent wind speed.
The low-frequency behavior shows a more gradual roll-off
due to the mixture of scaled spectra calculated at different
wind speeds V (z), and C2

n (z) values along the path.

III. CONNECTION TO TIMING STABILITY ANALYSIS

Timing stability is usually characterized using the timing
variance TVAR, denoted by σ 2

x (τ ), which is a member of the
Allan variance family [29]. TVAR (or the square root TDEV)
is a measure of the timing uncertainty between two clocks
over an observation interval τ ,

σ 2
x (τ )

.= 1
6 < (�2x̄)2 >, (23)

where the �2x̄’s are second-difference measurements of clock
time offsets �TAB, averaged into nonoverlapping blocks of

k samples spaced τ0 apart such that the observation window
τ = kτ0. TVAR can be described in the frequency domain by
a filter function acting on the timing noise spectrum Sx( f )
[14,30]:

σ 2
x (τ ) = 8

3k2

∫ ∞

0

[
sin3 (π f τ )

sin (π f τ0)

]2

Sx( f )df . (24)

An important advantage of using TVAR is the relationship
between power-law noise processes described by Sx( f ) =
hβ f β and the time-domain averaging behavior of σ 2

x (τ ) =
cητ

η. A power-law slope of β will produce a time-averaging
behavior of TVAR as cητ

η with η = −β − 1. This relation-
ship allows different noise processes to be identified by look-
ing at the slope on log-log time stability plots. The coefficient
cη can be computed from (24) by using the power law of
interest and making a convenient substitution u = k f τ [31]:

cη = 8hβ

3πβ+1

∫ ∞

0

uβ

k2

sin6 (u)

sin2 (u/k)
du. (25)

Having identified two power-law slopes in the turbulence
timing noise spectrum in Sec. II, it is possible to estimate
the timing stability behavior of two-way optical time transfer
links. The f −8/3 power law for one-way turbulent propaga-
tion fits between white FM f −2 and flicker FM f −3 noise.
The spectral scaling coefficient h−8/3 is given by (12) for a
horizontal link or (21) for a vertical geometry. The related
time-averaging slope is σ 2

x (τ ) = c5/3τ
5/3, with c5/3 evaluated

from (25) as

c5/3 = 7.66h−8/3. (26)

The f −2/3 power law for partially reciprocal two-way
propagation fits between white PM f 0 and flicker PM f −1

noise. The spectral scaling coefficient h−2/3 is given by (15)
for a horizontal link and (22) for a vertical path. The asso-
ciated time average slope is σ 2

x (τ ) = c−1/3τ
−1/3, with c−1/3

evaluated from (25) as

c−1/3 = 0.83h−2/3. (27)

Since the f −2/3 power-law slope is a knee in the timing
noise spectrum and does not continue to infinity, the use
of σ 2

x (τ ) = c−1/3τ
−1/3 is valid for averaging times longer

than the reciprocal of the corner frequency τ > 1/ fc. The
Kolmogorov f −2/3 slope continues to f = 0 Hz and can be
used as a conservative estimate of the timing uncertainty due
to turbulence in the absence of any outer scale roll-off.

Equation (27) can be used with (22) to estimate the timing
uncertainty limit due to turbulence on a MEO two-way link.
For the same turbulence parameters used in the example
in Sec. II D, h−2/3,sat = 3 × 10−31 and the timing deviation
TDEV is σx(τ ) = 5 × 10−16τ−1/3. A cold atom cesium clock
or hydrogen maser might show a timing stability of 2 ×
10−13τ 1/2. The timing uncertainty due to turbulence on the
two-way link will be below the stability of the clock past
a few milliseconds. However a state-of-the-art optical clock
can have a timing stability of 4 × 10−17τ 1/2, which crosses
the atmosphere timing stability floor at around τ � 30 s. The
atmosphere can still limit short-time comparisons of the best
ground clocks.
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FIG. 6. Timing fluctuation power spectrum from 2-km partially
reciprocal link with 0.5-m Tx Rx separation. Data from [13]. The
one-way timing data (yellow) follows a f −8/3 power-law slope (pur-
ple dashed-dot), while the two-way data (blue) shows the transition
to larger scale correlated turbulence f −2/3 (green dashed) near fc =
0.6 Hz. The broken power-law [(28) orange solid] fit to the two-way
data gives the C2

n and wind speed V values shown.

IV. COMPARISON TO TIME TRANSFER
EXPERIMENTAL MEASUREMENTS

NIST in Colorado has demonstrated optical frequency
comb-based two-way time transfer with subfemtosecond tim-
ing uncertainty over turbulent free-space paths up to 12 km
[7,8]. The same group has also investigated the effects of par-
tial reciprocity by separating the terminal transmit and receive
paths, as depicted in Fig. 1. The mean-square displacement for
this folded crossover geometry is approximately d2 = 0.33d2.

Figure 6 shows the power spectrum for one- and two-way
timing fluctuations measured over a 2-km folded path geome-
try with d = 0.5 m separation between Tx and Rx terminals.
This is the same experimental data analyzed in [13]. The
one-way timing uncertainty spectrum shows a continuation of
the f −8/3 slope down to very low frequencies, which suggests
an extremely large outer scale. This was discussed briefly in
Sec. II C 1 as likely being due to a breakdown of Taylor’s
hypothesis on long timescales. The low-frequency spectrum
is capturing power from other temporally evolving processes
in the atmosphere, as well as potential thermally induced
path-length changes in the measurement apparatus. The f −8/3

power-law slope is clearly visible on the one-way data, while
the f −2/3 slope is seen in the two-way timing noise spectrum
at low frequencies. The one-way data lies above the f −8/3

portion of the two-way data by a factor of 2 due to (7) being
an average of two measurements.

A broken power-law function was chosen to fit between
Sx( f )K,PR = h−2/3 f −2/3 at low frequencies and Sx( f )K,NR =
h−8/3 f −8/3 at high frequencies, giving a simplified continuous
representation of the Kolmogorov timing uncertainty spec-
trum. The function is given by

Sx( f ) = A

[(
f

fc

) 2
3 m

+
(

f

fc

) 8
3 m]−1/m

+ h0, (28)

which merges the asymptotic behavior of (15) to (12). The
smoothness parameter m = 1.5 in (28) was chosen separately

10-3 10-2 10-1 100 101 102 103

Averaging Time  (s)

10-16
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TD
EV

x(
) (

s)

FIG. 7. Atmospheric contribution to timing deviation (TDEV) in
seconds, from 2-km horizontal experiment, including one-way time-
of-flight uncertainty (yellow diamonds), two-way link uncertainty
(blue squares), broken power-law fit using the Kolmogorov model
(orange solid), Greenwood-Tarazano model (red dotted), and theo-
retical TDEV slopes from (26) (purple dashed dot) and (27) (green
dashed). The total time transfer uncertainty stays below 10 fs out to
1000 s of averaging time where mechanical drift in the experimental
terminals masks the contribution from turbulence.

from the data to match the shape of the transition region
in Sx( f ) around f = fc by numerically evaluating (13) with
d (z) for the experimental geometry. Equation (28) is easier to
use in (24) than numerically integrating (7) inside the TVAR
integral, and it gives a straightforward equation to compare to
the timing noise spectrum data.

Equation (28) was fit to the two-way timing noise spectrum
data between 0.01 and 6 Hz. The two parameters fit were
the scaling factor A = 6.7 × 10−30 and the corner frequency
fc = 0.63 Hz. The noise floor h0 = 6.6 × 10−33 s2/Hz was
estimated separately from the high-frequency noise spectrum
and added after performing the broken power-law fit. The
model fit fc can be used in (16), with the root-mean-square
path separation d2 = 8.4 cm2 to estimate the wind velocity as
V̂ = 0.60 m/s, which agrees with the measured wind speed
during the experiment of 0.55 m/s. Using V̂ and fc, Ĉ2

n can be
estimated from (15) as

Ĉ2
n = A f 2/3

c 8c2

(2π )7/3LV̂ −1/30.033d2
. (29)

The value of Ĉ2
n = 7.8 × 10−15 from using (29) is larger

than the value C2
n = 5.6 × 10−15 reported in [13], which was

extracted from amplitude scintillation data. The uncertainties
on the reported values were ±0.4 m/s for wind speed and
±2.6 × 10−15 m−2/3 for C2

n . Since Eq. (28) is meant to capture
the behavior of Sx( f ) and not precisely reproduce it, we
consider the estimated values acceptable given the variability
in turbulence parameters and approximate nature of the theo-
retical model.

Figure 7 shows the link timing uncertainty TDEV calcu-
lated from the 2-km experimental data overlaid with the bro-
ken power-law fit and asymptotic TDEV slopes. The c5/3τ

5/3

behavior is visible after τ = 0.2 s on the one-way data after
averaging down the receiver white noise floor. Again, the
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one-way TDEV slope sits above the fit to the two-way data
since it does not have the one-half scaling of the two-way
measurement (2). The peaking at around τ = 0.04 s is due
to extra phase noise in optical fibers, as mentioned in [13].
This can also be seen as the peaks at around 20 Hz in
Fig. 6. The two-way data quickly transitions to partially recip-
rocal turbulence with c−1/3τ

−1/3 behavior. Equation (28) fits
the shape of the two-way data well out to τ = 20 s. There is no
evidence of the turbulence outer scale at long averaging times;
instead, the timing uncertainty turns upwards as other sources
of error take over past τ = 100 s. This “uptick” in TDEV is
not as obvious looking at the timing noise spectrum plot Fig. 6
but may be related to a similar behavior noted by Greenwood
and Tarazano in the temperature structure function spectrum
[22] Fig. 9. The peak timing uncertainty due to the spatial
structure of atmospheric turbulence is 2 fs at averaging times
near 1/ fc = 1 s.

V. DISCUSSION AND CONCLUSIONS

We have described the effect of atmospheric turbulence on
optical two-way time transfer by connecting the turbulence-
induced timing noise power spectrum to timing uncertainty
expressed using TVAR. The scaling factors h−8/3 for one-way
f −8/3 power-law timing noise and h−2/3 for two-way par-
tially reciprocal f −2/3 power-law timing noise were derived
from turbulence theory along with their corresponding TVAR
time-averaging coefficients c5/3 and c−1/3. These scaling fac-
tors and TVAR coefficients can be used to estimate the ex-
pected contribution of turbulence timing uncertainty for paths
through the atmosphere, and as another method of estimating
turbulence parameters from power spectral measurements.

The experimental data from [13] showed a good fit to
the theoretically predicted f −8/3 and f −2/3 power-law slopes,
though there is more work needed to understand the low-
frequency behavior of turbulence beyond Taylor’s frozen flow
model. Using a broken power-law fit produced estimates of C2

n
and wind speed in agreement with those measured during the
experiment. The resulting atmospheric contribution to time
transfer uncertainty was below 10 fs out to 1000 s of averaging
time for their two-way link.

Over a 2-km link geometry the one-way time-of-flight
uncertainty due to turbulence was calculated as 300 fs, re-
ducing to 3 fs for a partially reciprocal two-way link. For
a potential MEO satellite time transfer system the one-way
timing uncertainty was calculated as 126 fs, reducing to 1.9 fs
using a two-way link despite the large 35-μrad point-ahead
angle and high slew rate. The TDEV floor due to turbulence
was estimated as σx(τ ) = 5 × 10−16τ−1/3, which can limit
comparisons at optical clock levels of performance. It is
important to mention that this is the limit due to the turbulence
only, and there are many other factors that will also impact
the timing uncertainty in a two-way satellite link at this
level.
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