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Correspondence imaging can achieve positive-negative ghost images by just conditional averaging of partial
patterns, without treating bucket intensities as weights. To explain its imaging mechanism, we develop a
probability theory assuming the targets are of grayscale and the thermal reference speckles obey an arbitrary
independent and identical distribution. By both simulation and experiments, we find that the recovered values
in each region of the same original gray value conditionally obey a Gaussian distribution. A cross-point–to–
standard-deviation ratio is used as the figure of merit to prove that the patterns with respect to larger bucket
values generate a positive image with a higher quality and vice versa for a negative one. This work complements
the theory of ghost imaging.
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I. INTRODUCTION

Ghost imaging (GI) provides a way to recover object im-
ages via intensity correlation between reference patterns and
bucket intensity signals. It was primitively demonstrated by
using entangled light [1] and then was also experimentally re-
alized with thermal or pseudothermal (a laser passing through
a rotating ground glass) light [2–4] as well as x-ray light [5,6].
As long as the light field of the reference arm and the object
arm are conjugated, the lenses in GI with thermal light can
be removed [7,8], which makes the imaging setup simpler.
Thus, the thermal light GI has been widely used in many fields
such as optical encryption [9,10] and lidar [11]. To solve two
key problems existing in GI, i.e., the image quality and mea-
surement number, various GI methods have sprung up, such
as background-removal GI [12], differential GI (DGI) [13],
adaptive GI [14], iterative denoising GI [15], blind GI [16],
super sub-Nyquist GI [17]. Among these methods, the bucket
values serve as the weights, reflecting the total intensity from
the modulated object. Recently, an interesting experimental
study found that one could generate the positive and negative
ghost images by only conditionally averaging partial reference
patterns. This method was named correspondence imaging
(CI) [18–20]. It has sparked an upsurge of interest in studying
the topic of positive-negative ghost imaging and spawned
diverse variants [21–26] and CI-based applications [27,28].
It seemed that the bucket weights no longer participated in
the correlation calculations involved in the second- or higher-
order correlation functions, but actually they were completely
binarized. Confusing questions were raised: Why could CI
generate positive-negative images using only a few reference
patterns and why could CI work without involving bucket
weights in the calculations? Their theoretical explanations
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have been topics of study in this field for a long time, but
after several attempts [29–31], research is ongoing. Recently,
a strict explantation based on a probability theory [32] was
provided, which regarded the light intensities as stochastic
variables and deduced a joint probability density function
between the bucket and reference signals, giving us some
inspiration. However, this theory was based on a fundamen-
tal assumption of the simplified model that consists of the
negative exponential distributed light field and binary objects;
thus it still had its limitations, especially in universality. The
imaging mechanism of CI deserves further research.

In this paper we assume a general model in which the
targets are of grayscale (each gray value has a large enough
number of pixels), any two thermal speckles in the light
field are independent of each other, all following an arbitrary
identical distribution, and all the reference speckles constitute
a set of independent stochastic variables. The bucket values
can be treated as many linear combinations of all pixels, also
constituting a random variable. With the above assumptions,
we can deduce the joint probability density function between
the bucket variable and each reference thermal speckle vari-
able. We then provide the forming formulas of the positive and
negative images. Both simulation and experimental results
demonstrate the correctness of our derivation. Furthermore,
we use this theoretical model to investigate how image quality
varies with specific selection intervals used to average refer-
ence patterns.

II. PROBABILITY THEORY

A. Statistical model of ghost imaging

As we know, for a continuous random variable X , the
probability of X < x, i.e., the distribution function, can be
written as FX (x) = P{X < x}; then we have FX (−∞) = 0
and FX (+∞) = 1. Suppose the probability density function
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fX (x) of X is the derivative of FX (x), i.e., fX (x) = F ′
X (x), then∫ +∞

−∞ fX (x)dx = FX (+∞) − FX (−∞) = 1. Next we will use
its two typical mathematical properties of the random variable
X : One is the mathematical expectation (also known as the
mean) E (X ), defined as

E (X ) =
∫ +∞

−∞
x fX (x)dx, (1)

and the other is the variance D(X ), defined as

D(X ) =
∫ +∞

−∞
[x − E (X )]2 fX (x)dx

= E (X 2) − E (X )2. (2)

We assume that the grayscale object has a total of M pixels,
with d representing the gray value of a pixel. The gray value
of the mth point (pixel) is denoted by dm, ranging from 0 to
1, with 0 being completely opaque and 1 being completely
transparent. Accordingly, each reference pattern can also be
divided into M pixels, each of which has a light intensity
expressed by Im. This intensity value can be regarded as a ran-
dom variable, which obeys an arbitrary identical probability
distribution I . For simplicity of mathematics, it is assumed
that the intensities of any two thermal speckles (pixels) in
the reference spatial light field are statistically independent of
each other. Then the distribution function of the mth random
variable Im can be written as FIm (im) and its probability density
function can be denoted by fIm (im), where im ∈ [0,∞). The
mth pixel of the object is illumined by the corresponding
thermal speckle. On the plane after the thermal light passes
through the grayscale object, the mth point will have the value
dmIm. In addition, since there is still a certain distance between
the object plane and the bucket detector, along with some
existing influence factors such as diffraction and refraction,
a certain loss of light intensity should be considered here,
expressed by the coefficient factor a. Thus, when the light
reaches the sensing surface of the bucket detector, the intensity
becomes Ym = admIm. Then we have the relationship between
the mth point in the object arm and the nth point in the
reference arm,

E (YmIn) = admE (ImIn)

=
{

adnE (I2), m = n
admE (I )2, m �= n,

(3)

which we call the independence discrimination separated
formula. Now the bucket light intensity can be written as

S =
M∑
m

Ym = a
M∑
m

dmIm, (4)

whose distribution function and probability density function
are denoted by FS (s) and fS (s) (s ∈ [0,∞)), respectively.

For convenience of calculation, suppose the subscript of
the point of our interest is n; then we define a physical quantity
Sn that is very similar to the bucket value S, but excluding the
bucket intensity with the subscript n:

Sn =
M∑

m �=n

Ym = a
M∑

m �=n

dmIm. (5)

Obviously, Sn is independent of In. According to the definition
of Sn, we can immediately have

S = Sn + Yn. (6)

We let FSn (sn) and fSn (sn) (sn ∈ [0,∞)) denote the distribution
function and the probability density function of Sn, respec-
tively.

With the definitions given above, let us recall the second-
order correlation formula of traditional GI

G(2)
n = 〈SIn〉, (7)

where 〈·〉 denotes the average operation. Using this second-
order correlation function, the reconstructed gray value of
the nth pixel can be calculated. It is known from a large
number of experimental conclusions that although GI results
are accompanied by large fluctuations, we can still visually
distinguish the morphological characteristics of the object
from ghost images, i.e., the reconstructed pixels in the posi-
tions where the original gray value is large are also of large
values. Here we will build a statistical model to strictly explain
this phenomenon. First, we will calculate the mean E (SIn) of
the GI formula

E (SIn) = E [(Sn + Yn)In]

= E (SnIn) + E (YnIn)

= E

⎡
⎣

⎛
⎝ M∑

m �=n

Ym

⎞
⎠In

⎤
⎦ + E (YnIn)

=
M∑

m �=n

E (YmIn) + E (YnIn)

=
M∑

m �=n

admE (I )2 + adnE (I2)

= a
M∑
m

dmE (I )2 + a[E (I2) − E (I )2]dn

= γ1 + γ2dn, (8)

where both γ1 and γ2 are constants. Since dn is the gray value
of any object point, the physical meaning of the second-order
correlation function is to perform the same linear transfor-
mation on the gray value of each object point. This is the
essential reason why the second-order correlation algorithm
can recover the object images. Here Eq. (3) plays a decisive
role. Next we will further study the relationship between the
CI mean and original grayscale values in a similar way.

B. Approximation of the model

In this section we begin by proving the following theorem
to deduce the approximate distribution expressions of S and
Sn, which are only related to the mean E (I ) and the variance
D(I ) of the light intensity I , independently of the specific
distribution of I .

Theorem 1. When each gray value in the object image has
infinite points (pixels), the bucket value S in GI with thermal
light strictly obeys a normal distribution.
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Proof. Let the arbitrary gray value of the object be d (k) (k ∈
{1, 2, . . . , K}) and its number of points (pixels) be l (k), which
tends to infinity. We define the variable S(k) as the sum of all
the points with the same gray value d (k) in the object arm as

S(k) =
l (k)∑

m=1|{dm=d (k)}
Ym =

l (k)∑
m=1|{dm=d (k)}

admIm

= ad (k)
l (k)∑

m=1

Im. (9)

Since l (k) tends to infinity, according to the central-limit theo-
rem for independently and identically distributed variables in
the probability theory, S(k) follows a normal (Gaussian) distri-
bution with a mean of μ(k) = l (k)ad (k)E (I ) and a variance of
(σ (k) )2 = l (k)a2(d (k) )2D(I ). Therefore, according to the gray
value, we can rewrite the definition S = ∑M

m Ym of S as

S =
M∑
m

Ym =
K∑
k

⎛
⎝ l (k)∑

m=1|{dm=d (k)}
Ym

⎞
⎠ =

K∑
k

S(k). (10)

Then S is the sum of k Gaussian distributions. According to
the probability theory, S obeys a Gaussian distribution

FS (s) ≈ φ

(
s − μ

σ

)
, (11)

fS (s) ≈ 1√
2πσ

e−(s−μ)2/2σ 2
, (12)

with a mean of

μ =
K∑
k

μ(k) =
K∑
k

l (k)ad (k)E (I ) = a
M∑
m

dmE (I ) (13)

and a variance of

σ 2 =
K∑
k

(σ (k) )2 =
K∑
k

l (k)a2(d (k) )2D(I )

= a2
M∑
m

d2
mD(I ). (14)

�
Thus, if we suppose each gray value has sufficient points

(pixels), the requirements of the above theorem can be sat-
isfied. Then we will have that S approximately follows a
normal distribution with a mean of μ = a

∑M
m dmE (I ) and a

variance of σ 2 = a2 ∑M
m d2

mD(I ). Similarly, Sn also approx-
imately fulfills a normal distribution with a mean of μn =
a

∑M
m �=n dmE (I ) and a variance of σ 2

n = a2 ∑M
m �=n d2

mD(I ).

C. Explanation for correspondence imaging

With the obtained distributions of S and Sn, we will start
the calculation for CI. The joint probability density function
between S and Yn can be deduced as

fS,Yn (s, yn) = fSn (sn) ⊗ fYn (yn)

= fSn (s − yn) fYn (yn). (15)

To average the patterns corresponding to the bucket value
above or below its ensemble average, we define

s+ =
{

1, s � μ

0, s < μ,
(16)

s− = 1 − s+. (17)

Obviously, there are

lim
smax→∞

∫ smax

0
s+ fS (s)ds =

∫ ∞

μ

fS (s)ds = 1

2
, (18)

lim
smax→∞

∫ smax

0
s− fS (s)ds

= lim
smax→∞

∫ smax

0
(1 − s+) fS (s)ds = 1 − 1

2
= 1

2
. (19)

To obtain the average of the patterns that correspond to the
bucket values above the ensemble average, i.e., E (s+In), we
should first compute

E (s+Yn) =
lim

smax→∞
∫ smax

0

[∫ s
0 s+yn fS,Yn (s, yn)dyn

]
ds

lim
smax→∞

∫ smax

0 s+ fS (s)ds

= 2
∫ ∞

μ

[∫ s

0
fSn (s − yn)yn fYn (yn)dyn

]
ds. (20)

Since E (Y ) � μ, we can treat yn in the above integral as
a very small amount fSn (s − yn) ≈ fSn (s) − f ′

Sn
(s)yn, where

f ′
Sn

(s) represents the derivative of fSn (s). Since any pixel value
in the spatial light field of the object arm will not be greater
than the bucket value, i.e., yn � s, we set the upper and lower
limits of the integral of the independent variable yn to s and 0,
respectively. Actually, in the term

∫ s
0 fSn (s − yn)yn fYn (yn)dyn,

given the fact that the value s is much larger than the upper
limit of the independent variable yn, the upper limit of this
integral can be equivalent to infinity, i.e.,

∫ s
0 dyn ≈ ∫ ∞

0 dyn.
Then we have

E (s+Yn) ≈ 2
∫ ∞

μ

{∫ ∞

0
[ fSn (s) − f ′

Sn
(s)yn]yn fYn (yn)dyn

}
ds

= 2E (Yn)
∫ ∞

μ

fSn (s)ds − 2E
(
Y 2

n

) ∫ ∞

μ

f ′
Sn

(s)ds

= 2E (Yn)[1 − FSn (μ)] − 2E
(
Y 2

n

)
[0 − fSn (μ)]

= 2E (Yn){1 − FSn [μn + E (Yn)]}
+ 2E

(
Y 2

n

)
fSn [μn + E (Yn)]

≈ 2E (Yn)[1 − FSn (μn) − F ′
Sn

(μn)E (Yn)]

+ 2E
(
Y 2

n

)
[ fSn (μn) + f ′

Sn
(μn)E (Yn)]. (21)

Since

FSn (μn) = 1

2
, (22)

F ′
Sn

(μn) = fSn (μn) = 1√
2πσn

, (23)

f ′
Sn

(μn) = 0, (24)
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then

E (s+Yn) ≈ 2E (Yn)

[
1

2
− 1√

2πσn

E (Yn)

]
+ 2E

(
Y 2

n

) 1√
2πσn

= E (Yn) + 2D(Yn)
1√

2πσn

, (25)

where

E (Yn) = E (adnIn) = adnE (I ), (26)

D(Yn) = D(adnIn) = a2d2
n D(I ), (27)

E (s+Yn) = E [s+(adnIn)] = adnE (s+In). (28)

So we will get

E (s+In) = E (I ) +
√

2

π

a

σn
D(I )dn. (29)

Replacing the standard deviation σn of Sn with the standard

deviation σ = a
√∑M

m d2
mD(I ) of S, we can acquire

E (s+In) ≈ E (I ) +
√

2D(I )

π
∑M

m d2
m

dn

= C2 + C1dn, (30)

where

C1 =
√

2D(I )

π
∑M

m d2
m

, (31)

C2 = E (I ). (32)

Similarly, to calculate the average of the patterns that
correspond to the bucket values below the ensemble average,
i.e., E (s−In), we should first compute

E (s−Yn) =
lim

smax→∞
∫ smax

0

[∫ s
0 s−yn fS,Yn (s, yn)dyn

]
ds

lim
smax→∞

∫ smax

0 s− fS (s)ds

= 2 lim
smax→∞

∫ smax

0

[∫ s

0
(1 − s+)yn fS,Yn (s, yn)dyn

]
ds

= 2E (Yn) − E (s+Yn)

≈ E (Yn) − 2D(Yn)
1√

2πσn

. (33)

With the same processing method used for E (s+Yn), we get

E (s−In) ≈ E (I ) −
√

2D(I )

π
∑M

m d2
m

dn

= C2 − C1dn. (34)

Then we can compute the formula of difference image

CI± = E (s+In) − E (s−In)

= 2C1dn. (35)

Since C1 and C2 are both constants, the positive-negative
images and CI± are all the linear transformations of the orig-
inal object. Because the coefficient C1 before dn in E (s+In)

is positive, its result presents a positive image, while the
coefficient −C1 before dn in E (s−In) is negative; the result
is rendered as a negative image.

III. VERIFICATION FOR CORRESPONDENCE IMAGING

The theoretical averages of the positive and negative im-
ages and CI± have been given above, but the gray value of
each pixel in the actual reconstructed images generally fluctu-
ates around the mean, following a certain distribution. Below
we will focus on this distribution and make a verification. Let
us suppose there is a total of T measurements, containing
T+ bucket values S � 〈S〉 and T− bucket values S < 〈S〉,
where 〈· · · 〉 denotes the ensemble average of the signal. The
operators s+ and s− still use the definitions mentioned above.
We denote the nth point in the t th speckle pattern by Int . Then
the positive and negative image formulas in the actual image
reconstruction can be written as

〈s+In〉 = 1

T+

T∑
t=1

s+Int , (36)

〈s−In〉 = 1

T−

T∑
t=1

s−Int . (37)

According to the central-limit theorem for independently and
identically distributed variables, when T+ is large enough,
〈s+In〉 approximatively obeys a Gaussian distribution with a
mean of E (s+In) and a variance of D(s+In )

T+
; similarly, when T−

is large enough, 〈s−In〉 approximatively follows a Gaussian
distribution with a mean of E (s−In) and a variance of D(s−In )

T−
.

Now we will compute the variances D(s+In) and D(s−In).
In a way similar to calculating E (s+In) and E (s−In), we first
derive E (s+I2

n ) and E (s−I2
n ):

E
(
s+I2

n

) ≈ E (I2) +
√

2

π
∑M

m d2
mD(I )

[E (I3) − E (I2)E (I )]dn,

(38)

E
(
s−I2

n

) ≈ E (I2) −
√

2

π
∑M

m d2
mD(I )

[E (I3) − E (I2)E (I )]dn.

(39)

By using the formula D(X ) = E (X 2) − E (X )2, the variances
can be calculated as

D(s+In) = E
(
s+I2

n

) − E (s+In)2, (40)

D(s−In) = E
(
s−I2

n

) − E (s−In)2. (41)

Substituting Eqs. (30), (34), (38), and (39) into Eqs. (40) and
(41) and omitting minor terms, we will get

D(s+In) = E (I2) +
√

2

π
∑M

m d2
mD(I )

[E (I3) − E (I2)E (I )]dn

−
[

E (I ) +
√

2D(I )

π
∑M

m d2
m

dn

]2

≈ E (I2) − E (I )2 = D(I ), (42)
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FIG. 1. Simulation results: (a) original image, a modified head
phantom image; (b) chosen probability density function curve; and
reconstructions of (c) the positive image, (d) the negative image, and
(e) their difference image.

D(s−In) = E (I2) −
√

2

π
∑M

m d2
mD(I )

[E (I3) − E (I2)E (I )]dn

−
[

E (I ) −
√

2D(I )

π
∑M

m d2
m

dn

]2

≈ E (I2) − E (I )2 = D(I ). (43)

So far, we can theoretically compute the distribution curve
of a certain gray value d (k) (occupying a region that consists of
several pixels) after image reconstruction. For the positive im-
age, it follows a Gaussian distribution with a mean of E (s+In)
and a variance of D(s+In )

T+
, while for the negative image, it obeys

a Gaussian distribution with a mean of E (s−In) and a variance
of D(s−In )

T−
. In both simulation and experiments, we calculate

the probability of the recovered pixel values falling in each
pixel region where the gray value of the original image equals
d (k) and plot the corresponding probability density curves,
compared with the Gaussian theoretical curves (obtained from
the computed theoretical means and variances) to demonstrate
the correctness of the theory.

A. Simulation

Here we choose an object image of 200×200 pixels, as
shown in Fig. 1(a); its statistical data of the gray values
are given in Table I. We take the speckle variables of the
patterns which obey an identical � distribution as an example,
parameterized in terms of a shape parameter α = 3.57 and a
scale parameter θ = 1.4. Its probability density function can
be expressed as

fI (i) = iα−1e−i/θ

θα�(α)
for i > 0, (44)

TABLE I. Statistical data of gray values in the original image.

Gray value Total number of pixels Proportion

0 23353 58.38%
0.5 13147 32.87%
0.7 1733 4.33%
1 1767 4.42%

as plotted in Fig. 1(b). The positive and negative images with
a total of 50 000 frames and their difference image CI± are
given in Figs. 1(c)–1(e).

For both positive and negative images, we separately com-
pute the probability of reconstructed pixel values falling in
each pixel region corresponding to the one that consists of
pixel positions with the same gray value d (k) of the original
image and draw their probability density curves to compare
with the Gaussian theoretical curves, as shown in Figs. 2(a)
and 2(b). From the graphs, we can clearly see that the recov-
ered pixel value data are highly consistent with presupposed
Gaussian distribution.

B. Experiment

For a practical measurement environment, there are many
kinds of noise with different distributions, but their super-
position will result in a Gaussian distribution with a large

FIG. 2. Probability density function curves for the recovered
pixel values, compared with the Gaussian theoretical curves. The
probability density distributions and Gaussian theoretical curves of
reconstructed pixel values falling in each pixel region where the gray
value of the original image equals d (k) are shown for (a) positive and
(b) negative images. The abscissa is the reconstructed pixel value and
the ordinate indicates the probability of occurrence of these values.
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probability. Thus, we may assume that the measurement noise
is a random Gaussian variable e with a mean of E (e) = 0 and
an unknown variance D(e). Then

S = Sn + Yn + e. (45)

In previous calculations, we only need to replace Sn with Sn +
e; Sn + e also satisfies a Gaussian distribution with a mean
μn + E (e) and a variance σ 2

n + D(e). Here we directly present
the results:

E (s+In) ≈ E (I ) +
√

2

π

√
1∑M

m d2
mD(I ) + D(e)

a2

D(I )dn

= C2 + C3dn, (46)

E (s−In) ≈ E (I ) −
√

2

π

√
1∑M

m d2
mD(I ) + D(e)

a2

D(I )dn

= C2 − C3dn, (47)

E (s+I2
n ) ≈ E (I2) +

√
2

π

√
1∑M

m d2
mD(I ) + D(e)

a2

× [E (I3) − E (I2)E (I )]dn, (48)

E (s−I2
n ) ≈ E (I2) −

√
2

π

√
1∑M

m d2
mD(I ) + D(e)

a2

× [E (I3) − E (I2)E (I )]dn, (49)

where C3 =
√

2
π

√
1∑M

m d2
mD(I )+ D(e)

a2
D(I ). Then we have

D(s+In) = E (s+I2
n ) − E (s+In)2

= E (I2) +
√

2

π

√
1∑M

m d2
mD(I ) + D(e)

a2

× [E (I3) − E (I2)E (I )]dn

−
[

E (I ) +
√

2

π

√
1∑M

m d2
mD(I ) + D(e)

a2

D(I )dn

]2

≈ E (I2) − E (I )2 = D(I ), (50)

D(s−In) = E (s−I2
n ) − E (s−In)2

= E (I2) −
√

2

π

√
1∑M

m d2
mD(I ) + D(e)

a2

× [E (I3) − E (I2)E (I )]dn

−
[

E (I ) −
√

2

π

√
1∑M

m d2
mD(I ) + D(e)

a2

D(I )dn

]2

≈ E (I2) − E (I )2 = D(I ). (51)

There is only one pending term introduced by noise and light
intensity attenuation, i.e., D(e)

a2 . It is hard for us to know its
specific value. This can only be obtained empirically in order
to match the experimental data to the theoretical curve as
much as possible.

FIG. 3. Optical setup for CI. The thermal light emitted from a
halogen lamp passes through an aperture diaphragm and a beam
expander and illuminates a DMD. Then the modulated light is
projected onto a black-and-white film (the object). The total intensity
is recorded by a bucket detector.

Our experiment was based on a widely used computational
GI [33,34] setup, as shown in Fig. 3. Unlike double-arm GI,
it could modulate the illumination light via a programmable
spatial light modulator (SLM) according to the preset patterns
without the help of an array detector with spatial resolution.
Since the reference patterns could be programmatically en-
coded onto the SLM, without the need to be experimentally
acquired by the pixelated array detector, computational GI
could remove the reference arm and simplify the imaging
configuration. In our experimental setup, a digital micromirror
device (DMD), which consists of 1024×768 micromirrors,
each of size 13.68×13.68 μm2, is used as one kind of SLM
here to perform light intensity modulation. Since each of
its micromirrors could be oriented either +12◦ and −12◦
with respect to the normal of the DMD work plane, corre-
sponding to the bright pixel 1 or the dark pixel 0, the light
would be reflected into two directions. In our experiment,
the light from a halogen lamp illuminates the DMD through
an aperture diaphragm and a beam expander and then the
modulated patterns are projected onto an object, which is a
black-and-white film printed with “A,” as shown in Fig. 4(a).
Its statistical data of binary values are provided in Table II.
The 0-1 random patterns used occupy the central 160×160
micromirrors (pixels) of the DMD. In each pattern, 0 and 1
have the same probability of occurrence. A 1/1.8-in. charge-
coupled device is used as a bucket detector to integrate the
gray values of all pixels in one frame. The recovered images
with 7761 frames are presented in Figs. 4(b)–4(d). From the
curves shown in Fig. 5 it can be seen that the experimental data
are in good agreement with the theoretical Gaussian curves.

FIG. 4. Experimental results: (a) binarized image obtained by a
camera and recovered (b) positive image, (c) negative image, and
(d) their difference image.
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TABLE II. Statistical data of binary values in the binarized image
taken by a camera.

Gray value Total number of pixels Proportion

0 24847 97.06%
1 753 2.94%

IV. EXTENSION:
CROSS-POINT–TO–STANDARD-DEVIATION RATIO

As mentioned before, the statistical curve of each gray
value within a certain pixel region in the positive or negative
image corresponds to a Gaussian curve. Figure 6 shows two
Gaussian curves obtained from two pixel regions correspond-
ing to two gray values. Obviously, the farther the Gaussian
curves of two gray values are separated, the bigger the differ-
ence is between the two recovered gray values and the better
the image quality is of the reconstruction. We can choose
an appropriate measure to describe this distance, e.g., the
overlapping area of two curves, denoted by 	, which can be
treated as a criterion for the reconstruction quality.

Analogously, it is easy to find that for the reconstructed
images using the correlation functions, such as G2 = 〈SIn〉,
g2 = 〈SIn〉

〈S〉〈In〉 , and DGI = 〈SIn〉 − 〈S〉
〈SR〉 〈SRIn〉, the conclusion that

FIG. 5. Probability density function curves for the recovered
pixel values, compared with theoretical Gaussian function curves.
The probability density distributions and theoretical Gaussian curves
of recovered pixel values falling in each pixel region where the
original gray value equals 0 or 1 are shown for (a) positive and
(b) negative images. Here the value of the pending term D(e)

a2 is set
equal to 120.

FIG. 6. Schematic diagram of two Gaussian curves correspond-
ing to two gray values.

the reconstructed pixels in each pixel region obey a Gaussian
or Gaussian-like distribution is still valid. Thereby, these
functions can also use this overlapping area as the image
quality measure.

Now let us calculate this overlapping area 	. In Fig. 6 the
two curves that correspond to any two original gray values ς

and τ have two means, i.e., μ1 and μ2. Generally, as long as
the algorithm can reconstruct the object image, it is obvious
that there must be a linear relationship between the recon-
structed image and the original image, which will be at most
affected by noise. For simplicity of mathematics, we suppose
the standard deviations are approximately equal, i.e., σ1 ≈
σ2 = σ . Actually, in both simulation and experiments, we also
observe that the standard deviations of the Gaussian curves for
all different original gray values are very close to each other.
Because the original speckle intensities are independent and
identically distributed, when the number of pixels contained
in each pixel region is large enough, the standard deviations
of the average values of the reference patterns inside these
pixel regions will also tend to the same value. Without loss
of generality, we can set μ1 < μ2. It is easy to calculate
the abscissa of the intersection of two curves, i.e., μ1+μ2

2 .
The shaded area in Fig. 6 is 	 = 2φ(−μ2−μ1

2σ
), where φ(x)

is the standard Gaussian distribution function (the integral
of the standard Gaussian probability density function). Note
that the area is negatively correlated with μ2−μ1

2σ
, which is

a term related to the original gray values ς and τ . If the
standard deviations are assumed to be approximately equal,
then the well-known formula of the contrast-to-noise ratio
(CNR) [35] differs from this term μ2−μ1

2σ
only by a constant

factor
√

2. To some extent, for binary objects, the CNR is a
special case of the overlapping area and can be derived from
the latter; thus the physical meaning of the CNR is manifested
here. However, μ2−μ1

2σ
is not very suitable as an assessment

metric of reconstruction quality for the following reasons. For
the same reconstruction image, the value of μ2−μ1

2σ
calculated

from two distant original grayscale values (such as 0 and 1)
is much larger than that of two original gray values which
are close to each other (e.g., 0.4 and 0.6), but it does not
mean that the former result is much better than the latter.
Because they are all obtained from the same recovered image,
the former get a larger value since they are calculated from
two original grayscale values that are much easier to resolve.
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To provide a fair comparison, we will introduce an imaging
quality factor named the cross-point–to–standard-deviation
ratio (CSR), which is defined as

CSR = (μ2 − μ1)/2

σ
δ, (52)

where δ = 1
τ−ς

. Since an identical linear relationship is asso-
ciated with the original gray values and the means, the product
between the terms 1

τ−ς
and μ2 − μ1 eliminates the effects of

the specific gray values so that the CSR values obtained by
choosing any two original gray values for the reconstructed
images are the same. For any two given original gray values,
the larger the CSR value is, the smaller the overlapping area
is, and the more obviously the two gray values are separated,
the better the imaging quality is.

Next we will further consider the effect of detection noise
on the imaging quality of CI in the CSR analysis. For sim-
plicity, here we will only discuss the effect of detection noise
on the positive image. The effect of detection noise on the
negative image is the same. Based on Eq. (46), for two original
gray values ς and τ , we have

μ1 = C2 + C3ς,

μ2 = C2 + C3τ. (53)

Then μ2 − μ1 = C3(τ − ς ), i.e., (μ2 − μ1)δ = C3. In addi-
tion, there is

σ =
√

D(s+In)

T+
. (54)

According to Eq. (50), we will obtain

σ =
√

D(I )

T+
. (55)

Substituting σ into the CSR formula, we will have

CSR = C3

2

√
T+

D(I )
. (56)

Since C3 =
√

2
π

√
1∑M

m d2
mD(I )+ D(e)

a2
D(I ), obviously, the larger the

variance D(e) of the noise is, the smaller the CSR value is and
the larger the overlapping area is, and the less the two gray
values are separated, the poorer the imaging quality is. Since
the above formula does not include the parameters ς and τ ,
i.e., any two original gray values, the same conclusion will be
obtained by choosing any two original gray values ς and τ .

As mentioned above, the positive or negative image is
obtained by just averaging partial reference patterns whose
bucket values are above or below a threshold. The effect of
using different intervals of partial reference patterns on the re-
construction quality has been reported in previous experimen-
tal studies [18,19], but without any theoretical explanation.
Recently, Yang et al. [32] attempted to formulate the visibili-
ties of positive and negative images with the threshold change
under a basic assumption of using binary objects and patterns
that fulfill Gaussian statistics. Here we will use the CSR to
give a more rigorous theoretical explanation based on a more
general basic assumption that the objects are of grayscale and

the reference speckles obey an arbitrary distribution. For the
positive image, we define a logic signal

sβ =
{

1, s � βμ

0, s < βμ.
(57)

The number of patterns that correspond to the bucket val-
ues larger than βμ is Tβ = T [

∫ ∞
βμ

fS (s)ds] = T [1 − FS (βμ)],
where T is the total number of measurements. Then we can
acquire

E (sβYn) =
lim

smax→∞
∫ smax

0

[∫ s
0 sβyn fS,Yn (s, yn)dyn

]
ds

lim
smax→∞

∫ smax

0 sβ fS (s)ds

=
∫ ∞
βμ

[∫ s
0 fSn (s − yn)yn fYn (yn)dyn

]
ds∫ ∞

βμ
fS (s)ds

≈
∫ ∞
βμ

{∫ ∞
0 [ fSn (s) − f ′

Sn
(s)yn]yn fYn (yn)dyn

}
ds

1 − FS (βμ)

= E (Yn)[1 − FSn (βμ)] − E
(
Y 2

n

)[
0 − fSn (βμ)

]
1 − FS (βμ)

= E (Yn)[1 − FSn (βμ)] + E
(
Y 2

n

)
fSn (βμ)

1 − FS (βμ)
. (58)

In a similar way, we acquire the formula of E (sβY 2
n ):

E (sβY 2
n ) = E

(
Y 2

n

)
[1 − FSn (βμ)] + E (Y 3

n ) fSn (βμ)

1 − FS (βμ)
. (59)

Then there are

E (sβIn) = E (I )[1 − FSn (βμ)] + aE (I2) fSn (βμ)dn

1 − FS (βμ)
, (60)

E (sβI2
n ) = E (I2)[1 − FSn (βμ)] + aE (I3) fSn (βμ)dn

1 − FS (βμ)
. (61)

Thus, the CSR can be written as

CSR = |E (sβIn)|dn=ς − E (sβIn)|dn=τ |
2
√ |E (sβ I2

n )|dn=τ −E (sβ In )2|dn=τ |
Tβ

1

|ς − τ | . (62)

Now we will discuss the generality of the CSR to obtain
the trend of the CSR changing with β without pursuing its
specific values. In Eq. (62), since each gray value has little
effect on the standard deviation, we set τ in the denominator
equal to 0; because E (I ) � μ, the distributions of S and Sn

can be considered to be approximately the same and βμ is
not much different from μ. Then the CSR formula can be
simplified to

CSR = aE (I2) fS (βμ)
√

T

2[1 − FS (βμ)]1/2
√

D(I )
. (63)

Obviously, the larger the total number of measurements is,
the higher the CSR value is and the better the reconstruction
quality is. Apart from this, the CSR value also depends on the
factor

g(βμ) = fS (βμ)

[1 − FS (βμ)]1/2
. (64)
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We take the derivative of this factor with respect to βμ [there
is f ′

S (βμ) = 0 under a first-order approximation]:

g′(βμ) =
1
2 f 2

S (βμ)

[1 − FS (βμ)]3/2
> 0. (65)

It can be concluded that g(βμ) is an increasing function
and the CSR value increases gradually as β increases. This
means that the patterns which correspond to much larger
bucket values (above the mean) will undoubtedly generate a
positive image with a much higher quality, and vice versa
for the negative image formation, which explains well the
phenomenon found in previous experimental work [18,19].
It also helps to explain the inner mechanism of the previous
work in super sub-Nyquist single-pixel imaging [17].

V. CONCLUSION

In summary, we have developed a probability theory to
explain the formation mechanism of CI whose bucket values
are binarized, based on a general model in which the targets
are of grayscale, and any two thermal reference speckles
are independent of each other, all following an arbitrary
identical distribution. By building the joint probability den-
sity function between the bucket variable and each reference
thermal speckle variable and deducing the related means and
variances, we found that the positive-negative images and
their difference image are all linear transformations of the

object image. Provided each original grayscale value has a
large enough number of pixels, then the reconstructed values
falling in every pixel region of the same original gray value
will obey a Gaussian distribution, no matter what kind of
distribution the speckles obey. The measurement noise was
also considered in analysis. We have demonstrated the validity
of derived formulas through both simulation and experiments.
Based on our theory, we introduced an image quality metric,
the CSR, which is independent of the two original gray
values chosen arbitrarily and takes into account the effect of
detection noise. By using the CSR, we have provided a strict
theoretical explanation for the experimental phenomenon that
the patterns with much larger bucket values (above the mean)
will help generate a positive image of much higher quality,
and vice versa for the negative one.
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