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We model a collection of N two-level systems (TLSs) coupled to a multimode cavity via Meyer-Miller-Stock-
Thoss (MMST) dynamics, sampling both electronic and photonic zero-point energies (ZPEs) and propagating
independent trajectories in Wigner phase space. By investigating the ground-state stability of a single TLS, we
use MMST dynamics to separately study both electronic ZPE effects (which would naively lead to the breakdown
of the electronic ground state) and photonic ZPE effects (which would naively lead to spontaneous absorption).
By contrast, including both effects, i.e., sampling both electronic and photonic ZPEs, leads to the dynamical
stability of the electronic ground state. Therefore, MMST dynamics provides a practical way to identify the
contributions of self-interaction and vacuum fluctuations. More importantly, we find that MMST dynamics can
predict accurate quantum dynamics for both electronic populations and electromagnetic field intensity in the high
saturation limit. For a single TLS in a cavity, MMST dynamics correctly predicts the initial exponential decay of
spontaneous emission, Poincaré recurrences, and the positional dependence of a spontaneous emission rate. For
an array of N equally spaced TLSs with only one TLS excited initially, MMST dynamics correctly predicts the
modification of spontaneous emission rate as a function of the spacing between TLSs. Finally, MMST dynamics
also correctly models Dicke’s superradiance and subradiance, i.e., the dynamics when all TLSs are excited
initially, including the correct quantum statistics for the delay time (as found by counting trajectories, for which
a full quantum simulation is hard to achieve). Therefore, this work raises the possibility of simulating large-scale
collective light-matter interactions with methods beyond mean-field theory.
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I. INTRODUCTION

In confined geometries such as nanoscale cavities, the
quantum nature of photons can strongly modify the properties
of atoms and molecules, including the control of sponta-
neous emission rates [1–4], frequency splitting of the ab-
sorption spectrum due to strong light-matter coupling [5,6],
and changes in chemical reaction landscapes by forming
hybrid light-matter states (molecular polaritons) [7–12]. In the
field of cavity quantum electrodynamics (CQED), theorists
traditionally describe these phenomena by adapting simplified
quantum models, such as the Jaynes-Cummings model [13],
i.e., a two-level system (TLS) coupled to a single cavity pho-
ton mode, the Tavis-Cummings model [14,15], i.e., N TLSs
coupled to a single-photon mode, and the Weisskopf-Wigner
model [16], i.e., a TLS coupled to M-photon modes within the
context of a single-excitation manifold. With these simplified
quantum models, many exciting quantum phenomena can be
studied analytically [17].

Going beyond simplified models, due to the increasing
complexities of the full quantum light-matter Hamiltonian
when realistic atoms or molecules are considered, finding
analytical solutions becomes increasingly difficult [18]. By
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contrast, numerically propagating both electronic and pho-
tonic degrees of freedom (DOFs) together becomes a good
choice. For such a computational problem in CQED, one
approach is to keep all variables quantum mechanical and
seek approximate quantum solutions (often with the spirit of
mean-field theory); in principle, quantum-electrodynamical
density-functional theory [19,20] should be exact if one
knows the correct exchange-correlation functional. An al-
ternative is to seek a semiclassical approximation whereby
some DOFs, e.g., the electrons, are kept quantum mechanical
(and propagated exactly) but other DOFs, e.g., the photons,
are propagated classically (again exactly). The most popular
such approach today is the coupled Maxwell-Schrödinger
equations [21–25].

Now the major problem underlying the coupled Maxwell-
Schrödinger equations is that all quantum effects of the elec-
tromagnetic (EM) fields are completely ignored and thus this
method cannot be used when the quantum dynamics of the
radiation field are important, e.g., in the high saturation limit
[21,26–28] or in cavities. Recently, attempts have been made
to include quantum EM-field effects even when evolving
classical EM fields [29,30]. For example, in the recently
proposed Ehrenfest+R approach [28,31–33], our research
group included vacuum fluctuations by propagating a swarm
of augmented Maxwell-Schrödinger equations. Nevertheless,
because Ehrenfest+R was developed in free space, the per-
formance of the method in cavities is unknown. As another
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attempt, Hoffmann et al. have proposed a multitrajectory
Ehrenfest approach in cavities [34]. In this approach, the
electronic DOFs are evolved quantum mechanically and the
EM fields are propagated classically with initial conditions
that include sampling the photonic zero-point energy (ZPE)
in Wigner phase space. While this approach can predict some
quantum effects of spontaneous emission, the agreement with
quantum solutions is still far from quantitatively accurate. For
a benchmark study of semiclassical approaches applied to a
single two- or three-level system in a cavity, see the recent
work of Hoffmann et al. [35].

In this paper we analyze yet another semiclassical ap-
proach that is more rigorous than the Maxwell-Schrödinger
approach, the Meyer-Miller-Stock-Thoss (MMST) approach
[36,37], a method which was originally developed for coupled
electron-nuclear dynamics (and is also known as the Poisson
bracket mapping equation [38–42]). The basic philosophy
underlying this method is to map all electronic DOFs to
Wigner phase space as harmonic oscillators. Note that this
mapping is exact, as shown by Stock and Thoss [37]. For
instance, if there is an electronic state |k〉, one simply replaces
|k〉 by a creation operator â†

k and similarly one replaces 〈k|
by an annihilation operator âk . Then one uses the canoni-
cal relationship âk = (x̂k + i p̂k )/

√
2 to rewrite the electronic

Hamiltonian as a function of x̂k and p̂k . At this point, one
sacrifices exactness and invokes the classical ansatz of treating
x̂k and p̂k classically (with initial values sampled from a
distribution, known as the initial value representation). The
resulting independent quasiclassical trajectories can be used
to recover the total wave-packet evolution in phase space
and effectively reduce to mean-field Ehrenfest dynamics with
only one caveat: The electronic (and nuclear) degrees of
freedom are given ZPEs. Thus, for example, the electronic
wave function is not formally normalized to one. (For a more
detailed explanation of this method, see Sec. II.) This flavor of
initial-value representations has been used for many years in
theoretical chemistry, largely going back to the work of Miller
and co-workers [36,43]. Recent work by Cotton and Miller
has shown that this flavor of dynamics can perform quite well
for the spin-boson model [44–46], which is effectively the
exact same Hamiltonian as Eq. (1) when only one TLS is
considered. For coupled electron-photonic systems, because
the photonic DOFs are exactly harmonic, which is optimal for
mean-field dynamics, quasiclassical MMST dynamics should
behave quite well. Thus, altogether, quasiclassical MMST
dynamics should be advantageous relative to the traditional
coupled Maxwell-Schrödinger equations for solving coupled
electronic-photonic dynamics.

Indeed, by studying N TLSs coupled to a multimode cavity,
we will show that MMST dynamics provides an intuitive
physical interpretation for a CQED problem. Most impor-
tantly, we will show how MMST dynamics can sometimes
predict accurate collective quantum dynamics in cavities in-
cluding superradiance and subradiance phenomena.

This paper is organized as follows. In Sec. II we introduce
the quantum model and MMST dynamics. In Sec. III we pro-
vide the simulation details. In Sec. IV we present the results
for N TLSs coupled to a multimode cavity. We summarize
in Sec. V. Regarding notation, the roman character j denotes
cavity modes and the greek character α denotes TLSs.

II. METHOD

A. Quantum dynamics

For a collection of N TLSs interacting with a multimode
cavity, the full quantum Hamiltonian reads

Ĥ =
N∑

α=1

1

2
h̄ω0σ̂

(α)
z +

M∑
j=1

h̄ω j

(
â†

j â j + 1

2

)

−
N∑

α=1

M∑
j=1

h̄g(α)
j (â†

j + â j )(σ̂
(α)
+ + σ̂

(α)
− ). (1a)

Here h̄ω0 denotes the energy gap between the ground
state (|αg〉) and excited state (|αe〉) for each TLS, σ̂ (α)

z ≡
|αe〉〈αe| − |αg〉〈αg|, σ̂

(α)
+ ≡ |αe〉〈αg|, and σ̂

(α)
− ≡ |αg〉〈αe|.

In addition, â†
j and â j denote the creation and annihilation

operators for the jth photon mode with energy h̄ω j , where
ω j = jπc

L and L denotes the length of the cavity. For simplic-
ity, we assume that each photon couples to TLSs via only
a single polarization direction, so we do not sum over two
polarization vectors here. We also truncate the number of
photon modes to a finite number (M modes) to facilitate nu-
merical calculations. Finally, the position-dependent coupling
constant g(α)

j is defined as

g(α)
j =

√
ω j

h̄ε0L
μ(α)

ge sin(k jrα ), (1b)

where μ(α)
ge denotes the magnitude of the transition dipole

moment for the TLS located at rα and k j = ω j

c = jπ
L .

In order to capture the real-time dynamics for the coupled
electron-photonic system, one can evolve the time-dependent
Schrödinger equation

ih̄
∂

∂t
|�(t )〉 = Ĥ |�(t )〉, (2)

where |�(t )〉 denotes the wave function for the coupled
electron-photonic system. Practically, in order to numerically
propagate the Schrödinger equation, one needs to choose a
truncated basis which includes up to D excitations. If D =
1, the truncated basis is the configuration-interaction single
(CIS) basis

|�CIS(t )〉 = c0(t )|�g〉|�0〉 +
N∑

α=1

cα (t )|eα〉|�0〉 +
M∑

j=1

d j (t )|�g〉|1 j〉.

(3)

Here |�g〉 denotes a wave function for which all of the TLSs
are in the ground state and |eα〉 denotes a wave function for
which only the αth TLS is excited. Similarly, |�0〉 denotes a
wave function for which all photon modes are in the ground
state and |1 j〉 denotes a wave function for which the jth
photon mode has one photon but all other modes are in their
respective ground states (with zero photons). Note that the CIS
approximation implies that a rotating-wave approximation
is taken in Eq. (1a), i.e., (â†

j + â j )(σ̂
(α)
+ + σ̂

(α)
− ) ≈ â†

j σ̂
(α)
− +

â j σ̂
(α)
+ , and we ignore all effects due to the counterrotating-

wave terms. With this CIS approximation, the truncated wave
function has dimension 1 + N + M. Generally, for D � 2, the
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dimensionality of the truncated wave function grows uncon-
trollably with increasing D, which prohibits real-time simula-
tions for highly excited systems, e.g., Dicke’s superradiance.

Now, during a simulation, we will be interested in the
expectation values of various key operators. To that end, the
excited-state population for each TLS can be calculated by
evaluating ρ (α)

ee (t ) = 〈�(t )|ρ̂ (α)
ee |�(t )〉, where

ρ̂ (α)
ee = |αe〉〈αe|. (4)

For the photonic part, the E -field and B-field operators read

Ê (r) =
∑

j

ε j (â
†
j + â j ) sin(k jr), (5a)

B̂(r) =
∑

j

i

c
ε j (â

†
j − â j ) cos(k jr), (5b)

where ε j = √
h̄ω j/ε0L. We will also be interested in the

normal-ordered field intensity operator

Î (r) = :ε0Ê2(r) := ε0Ê2(r) − ε0

∑
j

ε2
j sin2(k jr). (6)

Here the colons indicate the normal ordering and :â†
j â j : =

:â j â
†
j : = â†

j â j . The normal-ordered intensity excludes the ef-
fect of photonic ZPEs, i.e., if the photonic field is the vacuum
field [�(t ) = |�g〉|�0〉], then 〈�(t )|Î (r)|�(t )〉 = 0 everywhere.

B. Quasiclassical Meyer-Miller-Stock-Thoss dynamics

For solving a CQED problem, much like any semiclassical
problem, it is standard to directly evolve the Schrödinger
equation for the quantum subsystem. Alternatively, we can
also take another strategy: mapping the full quantum Hamil-
tonian into phase space and then recovering the quantum dy-
namics by sampling quasiclassical trajectories in phase space.
One approach of this kind is the Meyer-Miller-Stock-Thoss
approach [36,37]. While the MMST dynamics was developed
to solve coupled electron-nuclear dynamics, this approach
can also describe the coupled electron-photonic dynamics
very well (see, e.g., the recent work by Hoffmann et al.
[35], in which they refer to this approach as the linearized
semiclassical dynamics). For the sake of clarity, we will now
provide a brief review.

1. MMST mapping

The first step of MMST dynamics is the MMST mapping
[36,37], which provides a systematic and exact way to map
a coupled electron-photonic Hamiltonian onto a set of quan-
tum harmonic oscillators. Now mapping photonic DOFs to
harmonic oscillators is trivial: One just needs to replace â†

j

and â j with Cartesian operators X̂ j and P̂j using the following
identities:

X̂ j =
√

h̄

2ω j
(â†

j + â j ), (7a)

P̂j = i

√
h̄ω j

2
(â†

j − â j ). (7b)

For the electronic DOFs, the MMST mapping states that
the electronic operators can be written as a string of

annihilation and creation operators

|αk〉〈αl| → â†
αkâαl , (8)

where k, l = e, g. By further writing âαk = 1√
2
(x̂αk + i p̂αk ),

electronic operators can also be mapped to Cartesian coordi-
nate operators such that

|αk〉〈αk| → 1
2

(
x̂2
αk + p̂2

αk − 1
)
, (9a)

|αk〉〈αl| + |αl〉〈αk| → x̂αk x̂αl + p̂αk p̂αl (k 	= l ), (9b)

i(|αk〉〈αl| − |αl〉〈αk|) → p̂αk x̂αl − x̂αk p̂αl (k 	= l ). (9c)

By substituting the Cartesian operators (7) and (9) into the full
quantum Hamiltonian (1), we arrive at the MMST mapping
Hamiltonian for the coupled electron-photonic system:

Ĥ =
N∑

α=1

∑
k=g,e

hkk

(
1

2
x̂2
αk + 1

2
p̂2

αk − γ

)

+
M∑

j=1

1

2

(
P̂2

j + ω2
j X̂

2
j

)

−
N∑

α=1

∑
k 	=l=e,g

ĥkl (x̂αk x̂αl + p̂αk p̂αl ). (10)

Here the relevant coefficients are hee = 1
2 h̄ω0, hgg = − 1

2 h̄ω0,

and ĥeg = ĥge = ∑M
j=1 g(α)

j

√
ω j

2h̄ X̂ j and γ = 1
2 denotes the elec-

tronic zero-point energy. Note that the MMST mapping
Hamiltonian (10) is equivalent to the original full quantum
Hamiltonian (1). However, the advantage of the MMST map-
ping Hamiltonian is that the Cartesian operators can be easily
connected to Wigner phase space, which will facilitate fur-
ther approximations. Henceforward, we will use the notation
X̂ = {x̂αk, X̂ j} and P̂ = { p̂αk, P̂j} to denote the set of both
electronic and photonic variables and we will refer to Eq. (10)
as Ĥ (X̂, P̂).

2. Wigner phase-space dynamics

Quantum mechanically, a quantum density operator
ρ̂(X̂, P̂, t ) exactly describes the state of a quantum system and
obeys the quantum Liouville equation

∂

∂t
ρ̂(X̂, P̂, t ) = − i

h̄
[Ĥ (X̂, P̂), ρ̂(X̂, P̂, t )], (11)

where Ĥ (X̂, P̂) is given in Eq. (10). Let us perform a Wigner
transform [47,48] of the quantum density operator ρ̂(X̂, P̂, t ),

ρW (X, P, t ) =
(

1

π h̄

)F ∫ ∞

−∞
e−2iP·Y/h̄

×〈X + Y|ρ̂(X̂, P̂, t )|X − Y〉dY, (12)

where F denotes the total number of DOFs. In this way,
the quantum density operator ρ̂(X̂, P̂, t ) is transformed to a
quasiclassical phase-space density ρW (X, P, t ), where X =
{xαk, Xj} and P = {pαk, Pj}. If the equation of motion for ρW

is cut off as first order in h̄ [47,48], one recovers the classical
Liouville equation

∂

∂t
ρW (X, P, t ) = −{ρW (X, P, t ), H (X, P)} + O(h̄2). (13)
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Here {· · · } denotes the Poisson bracket and the full classical
Hamiltonian H (X, P) reads

H (X, P) =
N∑

α=1

∑
k=g,e

hkk

(
1

2
x2
αk + 1

2
p2

αk − γ

)

+
M∑

j=1

1

2

(
P2

j + ω2
j X

2
j

)

−
N∑

α=1

∑
k 	=l=e,g

hkl (xαkxαl + pαk pαl ), (14)

where hkl = ∑M
j=1 h̄g(α)

j

√
ω j

2h̄ Xj . Within the Wigner phase

space, the expectation value of a given operator Â can be
calculated by

〈Â〉 =
∫∫

dX dP AW (X, P)ρW (X, P, t ), (15)

where AW (X, P) denotes the Wigner-Weyl transform of Â,

AW (X, P) = 2
∫ ∞

−∞
e2iP·Y/h̄〈X − Y|Â|X + Y〉dY. (16)

In Eq. (16), Â can be either an electronic, photonic, or joint
electron-photon operator.

3. Sampling-independent trajectories

While directly evolving the classical phase-space density
ρW (X, P, t ) according to Eq. (13) is computationally expen-
sive when the dimensions of phase space are large, an effi-
cient way to propagate Eq. (13) is to propagate independent
trajectories in phase space, i.e., assuming

ρW (X, P, t ) ≈ 1

Ntraj

Ntraj∑
l=1

δ(X − Xl (t ))δ(P − Pl (t )), (17)

where Ntraj denotes the total number of trajectories. At time
t = 0, Xl (0) and Pl (0) are sampled according to the initial
Wigner distribution ρW (X, P, 0). Similarly, the expectation
value of operator Â can be evaluated by averaging over
trajectories

〈Â〉 ≈ 1

Ntraj

Ntraj∑
l=1

Al (t ), (18)

where Al (t ) denotes the classical correspondence of Â for the
lth trajectory. For each classical trajectory (Xl (t ), Pl (t )), the
time evolution obeys Hamiltonian mechanics

Ẋl (t ) = ∂H (Xl , Pl )

∂Pl (t )
, (19a)

Ṗl (t ) = −∂H (Xl , Pl )

∂Xl (t )
. (19b)

Equations (17)–(19) constitute MMST dynamics, i.e., just
linearized semiclassical (LSC) dynamics using the MMST
mapping to generate the initial value representation (IVR) so
that one can sample some quantum zero-point effects through
the Wigner representation.

Let us now discuss how we will treat a few remaining
technical issues in our MMST calculations below: (i) how to
correctly sample the initial phase-space distribution, (ii) how
to efficiently evolve independent trajectories, and (iii) how to
calculate observables for MMST dynamics.

4. Practical implementation of MMST dynamics

a. Initial sampling of phase-space distribution. For N
TLSs coupled to a multimode cavity, we assume that at time
t = 0, the electronic and photonic Wigner distributions are
totally decoupled:

ρW (X, P, 0) =
∏
αk

ρe
W (xαk, pαk, 0) ⊗

∏
j

ρ
p
W (Xj, Pj, 0). (20)

For the photonic DOFs, we assume that ρ
p
W (Xj, Pj, 0) for each

photon mode obeys the zero-temperature vacuum distribution

ρ
p
W (Pj, Xj, 0) = 1

π
e−P2

j /ω j−ω j X 2
j . (21)

For the electronic DOFs, however, there is an interesting
twist about how to sample the initial distribution. In prin-
ciple, for TLS α, if one starts from the electronic ground
state, one should initialize ρe

W (xαe, pαe, 0) from the Wigner
distribution for the harmonic-oscillator ground state and ini-
tialize ρe

W (xαg, pαg, 0) from the Wigner distribution for the
harmonic-oscillator first excited state, which can be negative.
In principle, we avoid this question here by using the simplest
square distribution, i.e., we will first write xαk and pαk in
action-angle coordinates

xαk =
√

2nαk cos θαk, (22a)

pαk =
√

2nαk sin θαk (22b)

and then sample the action nαk = 1
2 (x2

αk + p2
αk ) and angle

θαk = arctan( pαk

xαk
) [36,43–46] by

nαk ∈ [
n(α)

k , n(α)
k + 2γ

]
, (23a)

θαk ∈ [0, 2π ). (23b)

Equation (23a) implies that the action nαk obeys a uniform
distribution in the interval [n(α)

k , n(α)
k + 2γ ], where n(α)

g = 1
and n(α)

e = 0 if the TLS is in the ground state and n(α)
g = 0

and n(α)
e = 1 if the TLS is in the excited state. Equation (23b)

implies that the angle θαk is a random angle in the inter-
val [0, 2π ). After sampling the action-angle coordinates as
Eq. (23), we transform nαk and θαk to xαk and pαk using
Eq. (22). Note that in sampling nαk , we set γ = 0.45 rather
than γ = 1/2.

A few words are now in order regarding the choice of γ .
Strictly speaking, according to the MMST mapping, the cor-
rect electronic ZPE should be γ = 1/2. However, in practice,
the situation is far more complicated. First, by now, there is
ample evidence that suggests choosing γ different from 1/2
can yield far better results [44,49]. Second, from a theoret-
ical point of view, we know that propagating independent
trajectories can be dangerous and lead to more or less ZPE
leakage [49]. Third, when sampling trajectories, one should in
principle sample from a Wigner distribution of the harmonic
oscillators, but this distribution can be negative (which can
lead to complications). As such, it is common nowadays
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to sample trajectories from phase space in square or other
distributions (rather than just a Wigner transform). Moreover,
given that one is not going to use a Wigner distribution, one
must be all the more tempted to use a different value of γ

as well. The rationale would be as follows: In contrast to a
truly quantum theory, where ZPE is an intrinsic property of
the photon or electron itself, classical mechanics has no such
intrinsic property; therefore, because MMST dynamics treats
the ZPE classically, the correct electronic ZPE in MMST
should also depend on the correlation between the electron
and the photonic bath. Unfortunately, a general theory to
determine the value of the ZPE in MMST dynamics has not
been developed. Altogether, this leads to the notion of treating
γ as an optimization parameter and there is indeed extensive
literature discussing how to choose γ so as to minimize
zero-point-energy leakage without compromising short-time
dynamics [49,50]. For coupled electron-nuclear dynamics,
Cotton and Miller suggest that γ = 0.366 is a good choice
[44]. For our part, by investigating the electronic dynamics
for a TLS starting from the ground state (see Figs. 2 and 3),
we find that γ = 0.45 leads to the stability of the electronic
ground state exactly. In practice, we also find that changing
γ = 0.45 to other values (say, 0.5) does not significantly alter
our results below.

b. Efficient propagation of independent trajectories: Cou-
pled Maxwell-Schrödinger equations. For a given trajectory,
after sampling the initial conditions of X = {xαk, Xj} and
P = {pαk, Pj} as in Eqs. (21)–(23), one can directly propagate
X and P using the Hamiltonian equations of motion (19).
However, for the coupled electron-photonic system, directly
propagating Eq. (19) is more computationally expensive than
necessary; after all, in the coupling term of the classical
Hamiltonian [the hkl term in Eq. (14)], each TLS is coupled to

all photonic modes through hkl = ∑M
j=1 h̄g(α)

j

√
ω j

2h̄ Xj , which
implies that for any TLS α, propagating xαk and pαk requires
a summation over all photon modes at each time step. This
additional summation loop becomes computationally more
and more expensive when the number of TLSs is large. To
avoid this summation, instead of propagating Xj and Pj , one
can propagate the collective variables E(r, t ) and B(r, t ), i.e.,
the classical EM fields

E(r, t ) =
M∑

j=1

√
2

ε0L
ω jXj (t ) sin(k jr)eE , (24a)

B(r, t ) =
M∑

j=1

√
2μ0

L
Pj (t ) cos(k jr)eB, (24b)

where eE (eB) denotes the the direction of the electric (mag-
netic) field.

For the electronic DOFs, since we regard the photonic
degrees of freedom as classical objects, propagation of the
classical Hamiltonian equations for the electronic (xαk and
pαk) degrees of freedom [Eq. (19)] can be replaced ex-
actly by propagation of the complex variables cαk , which is
defined as

cαk = 1√
2

(xαk + ipαk ) = √
nαkeiθαk . (25)

Thus, effectively, one can propagate the electronic wave func-
tion |ψα〉 for a TLS

|ψα〉 = cαg|αg〉 + cαe|αe〉 (26)

instead of {xαg, xαe, pαg, pαe}. More generally, it is worth
emphasizing that propagating a quantum Schrödinger equa-
tion [see Eq. (27c) below] with a one-body Hamiltonian
in an N-dimensional vector space is entirely equivalent to
propagating classical mechanics with N harmonic oscillators,
which is the very essence of the MMST mapping. In prac-
tice, from our perspective, we have chosen to propagate the
quantum electronic Schrödinger equation here (rather than
classical Hamiltonian equations of motion) so that the reader
can more easily compare and digest the present work with
existing work in the area of semiclassical electrodynamics
[21–25,29].

To that end, for each trajectory, one can equivalently solve
the coupled Maxwell-Schrödinger equations

∂

∂t
B(r, t ) = −∇ × E(r, t ), (27a)

∂

∂t
E(r, t ) = c2∇ × B(r, t ) − J(r, t )

ε0
, (27b)

ih̄
d

dt
|ψα (t )〉 =

[
1

2
h̄ω0σ̂

(α)
z −

∫
dr E⊥(r) · P̂ (α)

(r)

]
|ψα (t )〉.

(27c)

Here the classical current density J(r, t ) is calculated in a
mean-field way

J(r, t ) =
N∑

α=1

∂

∂t
Tr[ρ̂ (α)(t )P̂ (α)

(r)], (28)

where ρ̂ (α)(t ) = |ψα (t )〉〈ψα (t )|. The atomic polarization den-

sity operator P̂ (α)
(r) is defined as

P̂ (α)
(r) = μ(α)

ge e(α)
d δ(r − rα )(σ̂ (α)

+ + σ̂
(α)
− ), (29)

where e(α)
d denotes the unit vector along the polarization. In

one dimension we can simply assume that e(α)
d is parallel

to the direction of the E field. Note that in Eq. (27c) for
one-dimensional (1D) problems, one can simply replace∫

dr E⊥(r) · P̂ (α)
(r) by

∫
dr E(r) · P̂ (α)

(r) in numerical
calculations and ignore the distinction between the total and
transverse E field. Note that, by applying Eqs. (1b), (24a), and

(29),
∫

dr E(r) · P̂ (α)
(r)=∑M

j=1

√
2h̄ω jg

(α)
j Xj (t )(σ̂ (α)

+ +σ̂
(α)
− ).

Compared with the quantum light-matter coupling term
[Eq. (1a)]

∑M
j=1 h̄g(α)

j (â†
j + â j )(σ̂

(α)
+ + σ̂

(α)
− ) = ∑M

j=1 g(α)
j√

2h̄ω j X̂ j (σ̂
(α)
+ + σ̂

(α)
− ), one can ascertain the equivalence of

these two quantities by assuming that X̂ j is classical [Xj (t )].
In the end, to efficiently evolve the MMST dynamics

for the coupled electron-photonic dynamics, one needs to
first sample the initial distribution of Xj and Pj according
to Eq. (21) and second transform all initial coordinates into
EM fields according to Eq. (24). Similarly, for the electronic
DOFs, after sampling the initial condition using the action-
angle coordinates [Eq. (23)], one transforms coordinates to
the wave-function picture using Eq. (25). Finally, for each
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trajectory, one evolves the coupled Maxwell-Schrödinger
equations (27).

c. Calculating observables. Finally, within MMST dy-
namics, because we explicitly take both the electronic and
photonic ZPEs into account, when calculating observables, we
need to exclude all ZPE effects.

For example, because we initialize the electronic DOFs
by a square distribution [see Eqs. (22) and (23)], after trans-
forming to the wave-function representation [using cαk =

1√
2
(xαk + ipαk )], this implies that our initial wave function

(for each TLS α) will on average be normalized as |cαg|2 +
|cαe|2 = 1 + 2γ , i.e., on average each electronic level contains
an additional γ . We call this extra normalization electronic
ZPE. In practice, this ZPE is essential for recovering many
electrodynamical phenomena, e.g., spontaneous emission (see
Sec. IV). Nevertheless, when calculating the electronic popu-
lation for the excited state, one must subtract the electronic
ZPE from the raw average to obtain a reasonable answer

ρ (α)
ee (t ) = 〈|cαe(t )|2〉l − γ , (30)

where 〈· · · 〉l denotes taking the ensemble average over tra-
jectories. Of course, if we were to sample only the photonic
ZPE and not the electronic ZPE, we could calculate the
excited-state population by ρ (α)

ee (t ) = 〈|cαe(t )|2〉l . Note that
Cotton and Miller have used more sophisticated approaches,
i.e., using symmetric windowing functions, with strong results
for evaluating electronic populations [44–46], but we find that
using Eq. (30) is good enough for our simulations below.

Similarly, when calculating the E -field intensity, the cor-
rect expression must be

I (r, t ) = ε0
〈
E2

z (r, t )
〉
l − ε0

∑
j

ε2
j sin2(k jr). (31)

Again, if we were to sample only the electronic ZPE and
not the photonic ZPE, we would calculate the intensity to
be I (r, t ) = ε0〈E2

z (r, t )〉l . Finally, note that when calculating
observables, Eq. (30) may predict negative populations or
negative forces due to the subtraction of ZPEs [51–55]. So
far, in our calculations with harmonic photonic fields coupled
linearly to electronic DOFs, we have found empirically that
such side effects can be minimized by optimizing the value of
electronic ZPE γ .

5. Comments on MMST dynamics.

After reviewing MMST dynamics, we can summarize the
relationship between MMST dynamics and other approaches
in Fig. 1, where (from left to right) different methods are
arranged in descending order of computational cost. Work-
ing from the full QED Hamiltonian, one can propagate the
light-matter dynamics by working under a truncated Hilbert
space, e.g., by applying a CIS or a configuration interaction
singles and doubles (CISD) approximation, or by applying
Dicke’s model [56,57], i.e., only symmetric wave functions
are considered. By contrast, as we showed above, one can also
transform the QED Hamiltonian to Wigner phase-space dy-
namics through an MMST mapping. Exact Wigner dynamics
will yield exact quantum dynamics; however, one usually per-
forms MMST dynamics by assuming independent trajectories
(which leads to enormous computational savings). If the ZPEs

CISD

Wigner dynamics

QED

CIS

Dicke’s
model

MMST dynamics
(independent trajs)

Conventional coupled 
Maxwell-Schrödinger 
Eqs (single traj)

Reducing computational cost

FIG. 1. Relationship between MMST dynamics and other quan-
tum and semiclassical approaches. From left to right, approaches are
arranged in descending order of computational cost.

are further neglected, MMST dynamics can be reduced to the
conventional Maxwell-Schrödinger equations, where only a
single trajectory is needed for a given simulation.

Note that MMST dynamics does not invoke a rotating-
wave approximation (unlike the CIS approximation). Instead,
for MMST dynamics, the major approximation is to propagate
independent trajectories, which originates from truncating all
O(h̄2) terms in Eq. (13).1 According to the Wigner expansion,
the leading term dropped is − h̄2

24
∂3H
∂X3

∂3ρW

∂P3 , and given the form
of H in Eq. (14), whereby the only cubic term is proportional
to the light-matter coupling strength g(α)

j , it is clear that (i)
MMST dynamics will be less accurate when the light-matter
coupling strength g(α)

j is extremely large and (ii) of course
MMST dynamics become less accurate for longer and longer
times. By contrast, if the light-matter coupling is not very
large (g(α)

j � ω0, ω j) and the simulation time is not very long,
MMST dynamics should predict promising results, which will
be shown in Sec. IV.

III. SIMULATION DETAILS

A. Quantum simulation

For our reference quantum simulations below, we will
largely adapt the parameters in Ref. [3]. Using natural units
([c] = [h̄] = [ε0] = 1), we consider the case that each TLS
has the same energy (ω0 = 100) and the same transition dipole
moment (μge = √

π/10) and the cavity length is L = 2π .
Note that for the field Hamiltonian, a hard cutoff for the max-
imum photon energy is taken such that ωmax

j = 2ω0 = 200. In
total, M = 400 photon modes are used, so neighboring photon
modes have an energy difference �ω of 0.5. For a TLS α

1There is an interesting nuance when assessing the error of the
Wigner dynamics. If one were to Wignerize both the electronic
and photonic degrees of freedom, the resulting error appears to be
∼O(h̄2). However, if we were to Wignerize only the photonic degree
of freedom, the so-called resulting quantum-classical Liouville equa-
tion [38] would appear to have error ∼O(h̄). Obviously, measuring
error as a power of h̄ can be an unpredictable proposition.
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located at the middle of the cavity (rα = L/2 = π ), given the
above parameters, according to Eq. (1b), the light-matter cou-

pling strength with mode j is g(α)
j =

√
ω j

h̄ε0L μ(α)
ge sin(k jrα ) =

√
j

20 sin( jπ
2 ). After constructing the full quantum Hamiltonian

in Eq. (1) using the CIS basis, the wave function at any
given time is directly evaluated by calculating |�CIS(t )〉 =
exp(− i

h̄ Ĥt )|�CIS(0)〉. We calculate expectation values using
Eqs. (4)–(6).

B. MMST simulation

For MMST dynamics, we propagate Maxwell equations
using the finite-difference time-domain (FDTD) technique
[58], according to which the E field and B field are prop-
agated in a staggered grid, as suggested by Yee [59]. In a
1D cavity, if we assume that the E field orients along the
z axis and the B field orients along the y axis, according to
the FDTD technique, Maxwell equations can be numerically
discretized as

Em+1/2
z (k) = Em−1/2

z (k) + �t

�x

[
Bm

y

(
k + 1

2

)

−Bm
y

(
k − 1

2

)]
, (32a)

Em+1/2
z (k) = 1

ε0

[
Em+1/2

z (k) − Pm+1/2
z (k)

]
, (32b)

Em+1/2
z (0) = Em+1/2

z (Ngrids − 1) = 0, (32c)

Bm+1
y

(
k + 1

2

)
= Bm

y

(
k + 1

2

)
− �t

�x

[
Em+1/2

z (k + 1)

−Em−1/2
z (k)

]
, (32d)

where m = 0, 1, . . . denotes the index for the time step,
k = 0, 1, . . . , Ngrids − 1 denotes the index for the 1D spatial
grids, and �x denotes the grid spacing. In Eq. (32b), Pz(r, t ) =
Jz(r, t )�t , with Jz(r, t ) = ∑N

α=1 −2ω0Im[ρ (α)
ge (t )]ξα (r),

where ξα (r) denotes the spatial distribution of the ith atomic
polarization density. To represent a collection of TLSs, we
would like to follow Eq. (29) and set ξα (r) = μgeδ(r − rα ).
However, in practice, for numerical stability, we use a
Gaussian form instead, ξα (r) = μge

√
2πσe−(r−rα )2/2σ 2

,
where σ denotes the width of each TLS. Equation (32c)
defines the boundary conditions for the cavity: The E -field
values at the boundaries are forced to be exactly zero.
As the other parameters we set Ngrids = 5001 grid points
with �x = L/(Ngrids − 1) = 2π/5000, �t = �x/2c, and
σ = 10−3.

Within the FDTD technique, because the E and B fields
are propagated in a staggered space-time grid (Yee cell), the
initial values of the E and B fields should also be set with a
Yee cell framework

E0+1/2
z (k) =

∑
j

√
2

ε0L
ω jX

0+1/2
j sin(k jrk ), (33a)

B0+1
y

(
k + 1

2

)
=

∑
j

√
2μ0

L
P0+1

j cos

[
k j

(
rk + �x

2

)]
, (33b)

where rk = k�x. Note that after sampling P0+1/2
j and X 0+1/2

j

according to Eq. (21) at the same time (0 + 1
2�t), we need

to evolve Pj for another half time step P0+1
j = P0+1/2

j −
ω2

j X
0+1/2
j

�t
2 to calculate B0+1

y .
To be compatible with the FDTD technique, we propagate

the electronic wave function via the split-operator technique
(which also uses half time steps):∣∣ψm+1/2

α

〉 = e−(i/h̄)V̂ (α) (�/t2)e−(i/h̄)Ĥ (α)
s �t

×e−(i/h̄)V̂ (α) (�t/2)|ψα〉m−1/2. (34)

Here Ĥ (α)
s = 1

2 h̄ω0σ̂
(α)
z , V̂ (α) = − ∫

dr Ez(r)P̂(α)
z (r), and

P̂(α)
z = μgeξα (r)(σ̂ (α)

+ + σ̂
(α)
− ). The initial |ψm+1/2

α 〉 is sampled
according to Eqs. (23) and (25). Equations (32) and (34) form
the split-operator-FDTD propagator.

During an MMST simulation, we calculate observables
with Eqs. (30) and (31) by averaging over a swarm of
trajectories. Unfortunately, for our simulations, in order
to eliminate random noise from sampling ZPEs (for both
electrons and photons), many trajectories are needed. In order
to calculate smooth population dynamics, we require 104

trajectories. In order to obtain a smooth distribution of the
E -field intensity, we need 106 trajectories because we sample
400 photon modes.

The simulation code (written in C++) and raw data are
available at Github [60].

IV. RESULTS

MMST dynamics provides a systematic way to evaluate
quantum dynamics for a coupled electron-photonic system. In
this section, by modeling three fundamental CQED processes,
we will show that MMST dynamics sometimes recovers very
accurate quantum dynamics. The three fundamental processes
will be as follows: (i) spontaneous emission for a TLS in a
cavity, (ii) modification of the spontaneous emission rate for
a chain of TLSs in a cavity when only the middle TLS is
excited initially, and (iii) Dicke’s superradiance and subradi-
ance when all TLSs are initially excited in a cavity. Before
addressing these processes, however, we will briefly digress
to show how MMST dynamics balances both electronic and
photonic ZPE effects to correctly achieve the stability of the
electronic ground state, which connects to notions of radia-
tive self-interaction and vacuum fluctuations suggested long
ago [61,62].

A. Stability of electronic ground state and the physical
meanings of sampling

In classical electrodynamics, the electronic ground state
is never stable. For example, for a classical model of a
hydrogen atom, i.e., a negatively charged electron oscillating
around a positively charged nucleus with a certain orbital, the
oscillating electron keeps losing energy due to the radiative
self-interaction until the electron collapses to the nucleus.
However, according to the Dalibard–Dupont-Roc–Cohen-
Tannoudji (DDC) QED calculation [61,62], the electronic
ground state is stable because the energy gain from vacuum
fluctuations exactly balances the energy loss due to radiative
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self-interaction. In their interpretation, vacuum fluctuations
denote how “the reservoir fluctuates and interacts with the
polarization induced in the small system” and self-interaction
denotes how “the small system fluctuates and polarizes the
reservoir which reacts back on the small system” [61].

Now a word of caution is in order. The words “self-
interaction” and “vacuum fluctuations” can take on different
meanings in different contexts and papers. For example, in a
different form than the DDC interpretation, Miller, Milonni,
and our group have argued that [29,31,63,64] in the context
of Maxwell-Schrödinger equations (where a classical EM
field is used), a population-dependent decay rate for a TLS
in free space can be ascribed to a “self-interaction” that
mimics the Abraham-Lorentz force, whereas all other missing
effects can be attributed to the lack of “vacuum fluctuations”.
This version of “self-interaction” is not exactly the same as
the former DDC version, but given the nonunique nature of
semiclassical dynamics, this difference is not entirely surpris-
ing. In fact, again in the context of semiclassical dynamics,
one could foster yet another meaning for “self-interaction”,

namely, the contribution of the self-polarization P̂2
term in

the dipole-gauge Hamiltonian, a contribution that is related
to the Lamb shift only. We have previously analyzed this
term in a semiclassical context; see Eq. (13) in Ref. [26].
Nevertheless, in the present paper, we will use the terms
“self-interaction” and “vacuum fluctuations” exclusively in
the DDC context, as we believe that we can assign two
quantities to match this quantum interpretation using MMST
dynamics: The sampling of photonic ZPE should represent the
effect of “vacuum fluctuations” and the sampling of electronic
ZPE should represent the effect of self-interaction. Below
we will be able to test a semiclassical version of this DDC
interpretation by modeling a single TLS in the ground state
coupled to a multimode cavity.

In Fig. 2 we show that, for a TLS in the ground state
initially, when both electronic and photonic DOFs are sam-
pled with MMST dynamics (red solid line), the electronic
excited-state population is always almost zero as a function
of time, i.e., the electronic ground state is stable. By contrast,
sampling only the photonic ZPE (green dash-dotted line) leads
to spontaneous absorption: The excited-state population goes
up due to the presence of photonic ZPE, which agrees with
the DDC view of vacuum fluctuations: Considering vacuum
fluctuations only leads to spontaneous absorption. Conversely,
sampling only the electronic ZPE (blue dashed line) leads to
the breakdown of electronic ground state. The excited-state
population goes down to negative values, which agrees with
the DDC view of self-interaction: Considering self-interaction
only leads to the instability of the electronic ground state.
Thus, MMST dynamics is in physical agreement with the
DDC interpretation of QED, which adds a further twist to
the Miller-Milonni disagreement about semiclassical electro-
dynamics [63,64]. For the readers who are not convinced, see
also the discussion surrounding Fig. 5, where again we match
MMST dynamics to the DDC interpretation of spontaneous
emission.

Even more interestingly, the phase-space evolution of elec-
tronic populations can also be evaluated by MMST dynamics.
For a TLS starting in the ground state (the same scenario
as Fig. 2), Fig. 3 plots the phase-space distribution for the
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FIG. 2. Time evolution of the excited-state population for a TLS
in a 1D cavity starting from the electronic ground state. We propagate
MMST dynamics by (i) sampling both electronic and photonic ZPEs
(red solid line), (ii) sampling only the electronic ZPE (blue dashed
line), and (iii) sampling only the photonic ZPE (green dash-dotted
line). Note that, consistent with the DDC interpretation of QED,
we identify the effect of sampling the electronic (photonic) ZPE
as corresponding to radiative self-interaction (vacuum fluctuations):
self-interaction leads to the breakdown of the electronic ground
state, while vacuum fluctuations lead to spontaneous absorption.
By contrast, considering both effects leads to the stability of the
electronic ground state. For parameters, the TLS is located at the
center of the cavity and all other parameters are the same as Sec. III.
For all cases, 12 800 trajectories are averaged.

ground- and excited-state populations at different times by
sampling trajectories. In each plot, one black dot denotes a
single trajectory, the red dot denotes the center of all of the
trajectories, and the color contour denotes the phase-space
distribution of electronic populations, which is calculated by
a Gaussian fit for the density of trajectories.

When both the electronic and photonic ZPEs are sampled,
Figs. 3(a)–3(c) plot the phase-space distribution at times t =
0, π/3, and π . Similar to Fig. 2, the averaged excited-state
population (red dot) is always zero, showing the stability
of the electronic ground state. Interestingly, the exact shape
of the distribution slightly varies from an initial square to a
triangle (from t = 0 to π/3) and the shape then stabilizes as
a triangle (from t = π/3 to π ). This finding suggests that ini-
tializing with a triangular phase-space distribution (at t = 0)
could be a better choice than a naive square distribution [as
in Eq. (23)], because the triangular phase-space distribution
seems to be time invariant under equilibrium when the TLS
interacts with the vacuum field. Indeed, a recent improve-
ment of MMST dynamics, the symmetrical quasiclassical
(SQC) windowing dynamics [44,45], suggests that an initial
triangular distribution (rather than square) can really improve
the performance of SQC dynamics in practice. Nevertheless,
because an initial square distribution can already qualitatively
predict the preservation of phase-space area and can also
predict relatively accurate quantum dynamics (which will
been shown below), we have stuck with a square distribution
for the electronic DOFs throughout this paper. By contrast,
when only the electronic ZPE is sampled [Figs. 3(d)–3(f)] or
only the photonic ZPE is sampled [Figs. 3(g)–3(i)], under time
evolution, the phase-space area of the electronic populations is
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FIG. 3. Time evolution of the phase-space distribution for the electronic ground (x-axis) and excited-state (y-axis) populations associated
with Fig. 2. In each subplot, there are 512 black dots, each representing one MMST trajectory. The red dot denotes the average of the trajectories
and the colored contour denotes the electronic phase-space distribution calculated by a Gaussian fit of the density of trajectories. From left to
right, we plot the electronic phase-space distribution at times t = 0, π/3, and π when (a)–(c) both electronic and photonic ZPEs are sampled,
(d)–(f) only the electronic ZPE is sampled, and (g)–(i) only the photonic ZPE is sampled. Note that when both electronic and photonic ZPEs
are sampled, the shape of the phase-space distribution can be roughly preserved and stabilized in a triangular shape, while sampling either the
electronic or photonic ZPE leads to the dramatic changes of shape for the phase-space distribution. In practice, sampling only the electronic
ZPE leads to a negative excited-state population, while sampling only the photonic ZPE leads to a positive excited-state population.

not preserved even qualitatively, again showing the necessity
of sampling both the electronic and photonic ZPEs.

B. Spontaneous emission for a TLS

After illustrating the physical meaning of sampling ZPE,
we will now show that MMST dynamics can capture very
accurate quantum dynamics for certain coupled electron-
photonic systems. To begin with, we investigate the simplest
scenario: spontaneous emission for a single TLS in a cavity.

For a TLS in a free vacuum (L → ∞), the excited-state
population for the TLS decays exponentially with the Fermi
golden rule rate

k1D
FGR = ω0μ

2
ge

ε0h̄c
. (35)

In the cavity with finite L, the process is different. Before the
EM field emitted by the TLS hits the cavity mirror, the TLS

decays as in the free vacuum.2 However, due to the existence
of the cavity mirror, the emitted EM field can reflect back and
reexcite the TLS, known as a Poincaré recurrence.

Figure 4 plots the time evolution of the electronic popula-
tions for spontaneous emission of a single TLS in a 1D cavity
with length L = 2π . The solid lines denote the excited-state
population and the dashed lines denote the ground-state popu-
lation. In general, MMST dynamics (red lines) predicts almost
the same population dynamics as QED (black lines): Initially,
because the TLS is located at the center of the cavity, when
t < π , the excited-state population of the TLS exponentially
decays with rate k1D

FGR; later, at t = 2π , Poincaré recurrence

2Note that in our simulations the cavity is large enough that early
radiative decay is very similar to the corresponding process in free
space with deviations occurring only after the emitted light hits the
cavity mirrors. In smaller cavities the cavity size affects also the early
time dynamics as is evident, for example, in the Purcell effect.
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FIG. 4. Time evolution of the electronic population for a TLS in
a 1D cavity when the TLS starts from the electronic excited state.
All other parameters are the same as in Fig. 2. The solid (dashed)
lines denote the excited- (ground-) state population. Note that, com-
pared with the QED calculation (black line), MMST dynamics (red
line) describes both the initial exponential decay and the Poincaré
recurrence very well.

occurs and the TLS is reexcited. One interesting finding in
Fig. 4 is that although MMST dynamics predicts the initial
population decay relatively well, this approach considerably
underestimates the height of the Poincaré recurrence. Such an
underestimation must come from the independent-trajectory
assumption in MMST dynamics. MMST dynamics cannot
capture all coherence effects and, for long times, such errors
will necessarily be amplified. Throughout this paper, because
we are interested in the dynamics for not very long times,
MMST dynamics performs relatively well.

Having identified the physical meanings of the ZPEs in
MMST dynamics, we can now use MMST dynamics to inves-
tigate the respective contribution of self-interaction (vacuum
fluctuations) to both the initial decay and the Poincaré recur-
rence. As shown in Fig. 5, at the initial stages of spontaneous
emission (t ≈ 0), both self-interaction (blue dashed line)
and vacuum fluctuations (green dash-dotted line) contribute
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FIG. 5. Contributions of self-interaction and vacuum fluctuations
for Fig. 4 as predicted by MMST dynamics. Note that at the initial
stages (t ≈ 0), self-interaction and vacuum fluctuations contribute
to exponential decay almost equally. By contrast, at later times
(t = 2π ), self-interaction is mostly responsible for the Poincaré
recurrence.

0 0.5π 1.0π 1.5π 2.0π
Cavity position

0

2

4

6

8

10

12

E
-fi

el
d

In
te

ns
it
y

(a
rb

.
un

it
s)

ti
m

e
in

cr
em

en
t

MMST

QM

coarse-grained MMST

FIG. 6. Real-space distribution of the E -field intensity from time
0 to 3π (from bottom to top) associated with Fig. 4. Here we average
over 1.28×106 trajectories and all other parameters are the same
as in Fig. 4. Note that MMST dynamics (red solid line) is quite
accurate here, except that MMST predicts nonvanishing intensity os-
cillations (ranging from negative to positive values) at r = L/2 = π .
Averaging over the 50 neighboring grid points (cyan dash-dotted
line) eliminates such oscillations and the final coarse-grained MMST
results agree very well with the QED calculation (black dashed line);
see the Appendix for a detailed discussion of the middle oscillations.

to spontaneous emission almost equally, which agrees with
the DDC calculation of spontaneous emission in free space
[61,62]. After the initial exponential decay (t = π ), just as
in Fig. 2, consideration of only self-interaction leads to the
breakdown of the electronic ground state and consideration
of only vacuum fluctuations leads to spontaneous absorption.
Finally and very interestingly, the MMST dynamics in Fig. 5
informs us that a Poincaré recurrence (t = 2π ) is caused
mostly by self-interaction rather than vacuum fluctuations.

Apart from electronic population dynamics, MMST dy-
namics can also capture accurately the evolution of the real-
space distribution for the E -field intensity. In Fig. 6 we plot
the real-space distribution of the E -field intensity from time
t = 0 to t = 3π (from bottom to top) with a time interval
of 0.3π . When 1.28×106 trajectories are averaged, MMST
dynamics (red solid line) agrees with QED (black dashed line)
very well: Initially, the EM field is generated from the cavity
center (where the TLS is located); at t = π , the emitted EM
field reaches the cavity mirror; at t = 2π , the emitted EM field
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FIG. 7. Time evolution of the excited-state population when the TLS is near the cavity mirror. The TLS is close to the cavity mirror with
distance (a) r = λ/2 and (b) r = λ/4, where λ = 2π/ω0. All other parameters are the same as in Fig. 4. Compared with the free-space decay
for a single TLS (gray solid line), MMST dynamics (red solid line) predicts the (a) inhibition or (b) enhancement of the spontaneous emission
rate when r = λ/2 or r = λ/4, respectively; these results agree relatively well with the exact QED calculations (black dashed line).

propagates back to the cavity center and reexcites the TLS; at
later times, the excited TLS emits another small EM bump
after the wavefront. The only difference between MMST
dynamics and exact dynamics, however, is the nonvanishing
intensity oscillations at the cavity center ranging from nega-
tive to positive values. On the one hand, from our perspective,
the negative values of the MMST intensity oscillations in
Fig. 6 appear to be the result of numerical errors in the FDTD
simulations. In practice, if we take a coarse-grained average
(cyan dash-dotted line) of the MMST results (red solid line)
by averaging over the 50 neighboring grids points (where we
use 5001 grids points for the cavity), the negative-value fea-
ture is completely smoothed away. As shown in the Appendix,
this negative feature also vanishes if the FDTD propagator
is replaced by propagating Xj and Pj directly. On the other
hand, by including the doubly excited state (while we use
only the CIS approximation), quantum calculations actually
predict a putatively similar nonvanishing middle peak [20],
which would almost imply that the MMST results may contain
more information than the CIS quantum results (which do
not have a middle peak). However, because the size of these
MMST middle oscillations can depend sensitively on the size
of basis we use for propagating MMST dynamics, our overall
conclusion is that we should be very hesitant to attribute too
much to these MMST oscillations. See the Appendix for a
detailed discussion of the middle oscillations.

Next, note that, for all of results above, the TLS has been
set at the center of the cavity (r = L/2). In QED, because
the light-matter coupling term g(α)

j is proportional to sin(k jrα )
[see Eq. (1b)], the spontaneous emission rate will be strongly
modified by changing the location of the TLS. For example, if
the TLS is close to the cavity mirror with distance r = λ/2
(where λ = 2π/ω0 denotes the wavelength of the emitted
EM field by the TLS), because the resonant cavity mode
(k0 = ω0/c) completely decouples to the TLS [sin(k0r) = 0],
the spontaneous emission rate should be strongly inhibited.
Encouragingly, this scenario is correctly predicted by MMST
dynamics. In Fig. 7(a) we plot the excited-state population for
a TLS when this TLS is initially set reasonably close to the left
mirror with distance λ/2, where λ = 2π/ω0 is the intrinsic
wavelength for the TLS. When time t < λ/2c, the EM field

emitted by the TLS has not yet hit the left mirror and so the
TLS must evolve as in the free space, i.e., spontaneous decay
with a Fermi golden rule rate, which corresponds to the short
quick decay in Fig. 7(a). However, when t > λ/c, because the
reflected EM field returns to engage the TLS, the EM field
experienced by the TLS is actually an interference between
the reflected EM field at an earlier time (t − λ/c) and the
emitted EM field at the current time (t). Due to the distance
to the mirror, such interference can be either constructive or
destructive. For destructive interference, as shown in Fig. 7(a),
the excited-state population decays much slower after t =
λ/c. When the distance to the mirror is changed from λ/2 to
λ/4, as shown in the Fig. 7(b), the interference is constructive
and a faster-than-free-space decay can be observed.

C. Modification of spontaneous emission for an array of TLSs

After investigating spontaneous emission for a single TLS
in the cavity, we now move to a more complicated case, an
array of N = 101 equally spaced TLSs in the cavity, but we
assume that only the middle TLS (which is located at the
cavity center) is excited initially; this scenario can be solved
quantum mechanically within the CIS ansatz. By changing
the spacing a between the TLSs, the population decay for the
middle TLS can be significantly modified due to constructive
or destructive interference between the emitted EM
fields by TLSs.

Figure 8 plots the population decay for the middle TLS
with different spacing a. Overall, MMST dynamics (red line)
predicts almost the same results as QED (black line): When
a = λ/2 [Fig. 8(a)], the spontaneous emission of the middle
TLS is inhibited and the decay rate is smaller than k1D

FGR (gray
line). By contrast, when a = λ/4 [Fig. 8(b)], the spontaneous
emission of the middle TLS is enhanced and the decay rate
is larger than k1D

FGR. Finally, when a = 0 [Fig. 8(c)], the
spontaneous emission of the middle TLS is strongly inhibited.
Interestingly, the decay behavior in Figs. 8(a) and 8(b) is very
close to Fig. 7, suggesting that the effect of the surrounding
TLSs is very similar to the effect of a cavity mirror [65].
However, the intrinsic quantum mechanism for modifying the
spontaneous emission rate in Fig. 8 is different from Fig. 7:
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FIG. 8. Time evolution of the excited-state population for the excited TLS in the 1D cavity. As parameters, we set N = 101 identical TLSs
equally spaced at the center of the cavity and only the middle TLS is excited. From left to right, the spacing between the neighboring TLSs is
a = λ/2, λ/4, and 0, where λ = 2π/ω0. All other parameters are the same as in Fig. 4. Compared with the free-space decay for a single TLS
(gray line), MMST dynamics (red line) predicts both enhancement and inhibition of the spontaneous emission rate when changing spacing a
in a similar way as the QED calculation (black line).

The rate modification in Fig. 8 comes from the different decay
rates of the bright or the dark states formed by N TLSs, while
the rate modification in Fig. 7 comes from the interference
with the reflected EM field.

D. Dicke’s superradiance for a collection of excited TLSs

In the two preceding sections, only one TLS was excited
initially, which can be easily propagated quantum mechani-
cally even when N is large. By contrast, if we assume that all
TLSs are excited initially, propagating the full (both electronic
and photonic) quantum dynamics becomes impossible for
more than a few TLSs. One specific example of this scenario is
Dicke’s superradiance [56], where all TLSs are located within
one wavelength in the free vacuum. For Dicke’s superradiance
problem, due to the coherence between TLSs, the spontaneous
emission rate for a single TLS is proportional to the number
of total TLSs N .

Even though a full quantum simulation cannot be per-
formed here, MMST dynamics can be easily propagated. To
model Dicke’s superradiance, here we assume that all TLSs
are located at the center of the cavity and start in excited state.
As shown in Fig. 9(a), with an increasing number of TLSs,
the initial exponential decay is accelerated. Quantitatively
speaking, by fitting the initial exponential decay to obtain an
effective rate, i.e., supposing ρ̄ee(t ) = exp(−k f it t ), we find
that MMST dynamics can capture the linear scaling of the
decay rate as a function of N correctly [see Fig. 9(b)]. More
interestingly, because this simulation is performed in cavities,
MMST dynamics also predicts a change in the Poincaré
recurrence as a function of the number of TLSs N , i.e., when
N increases, the peak of the Poincaré recurrence is enhanced
and the recurrence narrows.

Going beyond a simple rate expression, one might ask
whether MMST dynamics predicts the correct population
dynamics during the initial population decay. For example,
according to a mean-field treatment of Dicke’s superradiance,
the time derivative of the averaged excited-state population
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FIG. 9. MMST dynamics for Dicke’s superradiance: (a) time
evolution of the averaged excited-state population [ρ̄ee(t )] for the
TLSs with N = 1 (red dashed), 7 (cyan solid), and 35 (blue solid)
TLSs and (b) the fitted initial decay rate as a function of number of
TLSs, where the red circles are simulation data points. Here all N
TLSs are located at the center of the cavity (r = L/2) and start in the
excited state. For each simulation, the simulation time step is set to
�t = �x/10c and all other parameters are the same as in Fig. 4. Note
that the linear scaling of the fitted decay rate (kfit ∝ N) agrees with
Dicke’s prediction [56]. More interestingly, MMST dynamics also
predicts that when N increases, the peak of the Poincaré recurrence
is enhanced and the recurrence narrows in time.
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FIG. 10. Time derivative of the averaged excited-state population
[d ρ̄ee(t )/dt] associated with Fig. 9(a) during the initial population
decay. Note that MMST dynamics (with classical EM fields) pre-
dicts values for d ρ̄ee(t )/dt which are consistent with the mean-field
solution in Eq. (36) (black lines).

d ρ̄ee(t )/dt for N TLSs obeys [57]

d ρ̄ee(t )

dt
= k1D

FGRN

4

[
cosh

(
k1D

FGRN

2
(t − tD)

)]−2

, (36)

where tD denotes the delay time, at which d ρ̄ee(t )/dt takes the
maximum value. Equation (36) not only shows that the spon-
taneous emission rate is proportional to N , but also implies
that d ρ̄ee(t )

dt has a burst at the delayed time tD (instead of at time
zero). Can this feature be captured by MMST dynamics?

We answer this question in Fig. 10. By plotting the time
derivative of the averaged population dynamics [d ρ̄ee(t )/dt],
we show that MMST dynamics does capture almost the same
d ρ̄ee(t )/dt as the mean-field expression in Eq. (36) during the
initial population decay, where the delay time tD in Eq. (36) is
taken from the MMST results.

We note that Fig. 10 already characterizes the basic fea-
tures of superradiance, showing the usefulness of MMST
dynamics. However, due to the quantum fluctuations of the
initial phase of the superradiance process, the observed de-
lay time exhibits some uncertainties from one experimental
realization to another, which cannot be predicted by the
mean-field expression in Eq. (36). A quantum estimation
suggests that the statistics of the delay time should obey [57]

〈tD〉 ∼ 1

Nk1D
FGR

N∑
s=1

1

s
, (37a)

�tD =
√〈

t2
D

〉 − 〈tD〉2 ∼ 1

Nk1D
FGR

√√√√ N∑
s=1

1

s2
. (37b)

At this point, keen readers might ask whether MMST
dynamics also predicts such statistics of the delay time for
superradiance. Indeed, by further investigating the dynamics
of d ρ̄ee(t )/dt for different MMST trajectories, in Fig. 11(a)
we show that the delay times for different MMST trajectories
(thin gray lines) exhibit strong fluctuations. The fluctuations
of the delay time of MMST trajectories reflect dynamics
beyond the mean-field description in Eq. (36). Most inter-
estingly, as shown in Fig. 11(b), by plotting the statistics of
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FIG. 11. Delay time statistics for Dicke’s superradiance.
(a) Time evolution of d ρ̄ee(t )/dt for different MMST trajectories
when N = 35. There are five thin gray lines, each representing one
MMST trajectory, and the bold blue line denotes the averaged MMST
trajectory as shown in Fig. 10. Note that the delay times for MMST
trajectories exhibits strong fluctuations. (b) Statistics of the delay
time for different number of TLSs. For MMST dynamics, when
taking the statistics over 1000 trajectories, the expectation value (red
circles) and standard deviation (red error bars) of the delay time
agree surprisingly well with the quantum estimate (black) as shown
in Eq. (37).

the delay times for 1000 MMST trajectories, we find that the
expectation value (red circles) and the standard deviation (red
error bars) of the delay time agrees surprisingly well with the
quantum estimation (black) [see Eq. (37)].

After demonstrating Dicke’s superradiance for a sample of
TLSs at a single point in space, we now consider a different
limit: when the separation a between TLSs is comparable to
the emitted wavelength λ. In this limit, because the dark states
can also couple to the environment, the collective emission
behavior is no longer superradiant. For an array of N equally
spaced TLSs with separation a = λ/4, for example, Fig. 12(a)
shows the MMST results for the averaged excited-state pop-
ulation ρ̄ee(t ) as a function of time. For N > 1, the decay
behavior is indeed no longer exponential: After a fast initial
decay, ρ̄ee(t ) demonstrates a slow decay in the long times.
By further fitting ρ̄ee(t ) with a biexponential function, i.e.,
A exp(−kst ) + (1 − A) exp(−k f t ), where ks and k f denote the
slow and fast decay rates, we extract the slow decay rate ks

for different N . As shown in Fig. 12(b), the subradiant decay
lifetime 1/ks exhibits near linear scaling as a function of N ,
which agrees with recent cold-atom experiments [66,67].
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FIG. 12. Dicke’s subradiance for an array of equally spaced
TLSs with separation a = λ/4; all other parameters are the same
as in Fig. 9. The system starts with all N TLSs excited. (a) Time
evolution of the averaged excited-state population [ρ̄ee(t )] for the
TLSs with N = 1 (red dashed line), 7 (cyan solid line), and 35 (blue
solid line) TLSs. The dash-dotted lines denote the biexponential
fit, i.e., ρ̄ee(t ) = A exp(−kst ) + (1 − A) exp(−k f t ), where ks and k f

denote the slow and fast decay rates. (b) Fitted slow decay lifetime
(1/ks) as a function of N . Note that the subradiant lifetime displays a
linear scaling as a function of N (1/ks ∝ N).

V. CONCLUSION

In summary, we have used MMST dynamics to solve a spe-
cific coupled electron-photonic system in CQED: a collection
of N TLSs coupled to a multimode cavity. The spirit of MMST
dynamics is to approximate quantum dynamics by sampling
independent quasiclassical trajectories in Wigner phase space,
the initial conditions of which are determined by sampling
both the electronic and photonic ZPEs. MMST dynamics
is ideal for electron-photonic systems, because photons are
intrinsically harmonic. Because propagating Cartesian co-
ordinates is unnecessarily cumbersome, we have chosen to
propagate the coupled Maxwell-Schrödinger equations via a
split-operator-FDTD propagator in order to reduce the com-
putational cost for each trajectory.

Armed with the appropriate subroutine for MMST dy-
namics, we find that this algorithm can provide an intuitive
and practical way to identify the respective contributions of
self-interaction and vacuum fluctuations: Sampling electronic
ZPE reflects radiative self-interaction and sampling photonic
ZPE reflects vacuum fluctuations. Near the ground state, these
two effects balance each other, and so it is perhaps not

surprising that traditional mean-field (Ehrenfest) dynamics
(without any ZPE) becomes accurate in this limit [21,26–28].
By contrast, at high saturation limit, while traditional mean-
field (Ehrenfest) dynamics usually fails, MMST dynamics can
still recover accurate quantum dynamics, at least for the test
cases studied here. (i) MMST dynamics accurately captures
the initial exponential decay, the Poincaré recurrence, and the
position dependence of the spontaneous emission rate for a
TLS in a cavity. (ii) For an array of N = 101 equally spaced
TLSs in a 1D cavity and with only the middle TLS excited
initially, MMST dynamics predicts the modification of expo-
nential decay, i.e., enhancement and inhibition, accurately as a
function of the spacing between TLSs. (iii) MMST dynamics
can model Dicke’s superradiance and subradiance, i.e., when
all TLSs are excited and located within one wavelength, and
correctly predict the quantum statistics of the delay time.

With these exciting findings of MMST dynamics in mind,
we end this paper with several questions, which need to be
answered for future improvement.

(i) First, note that the computational cost of MMST dynam-
ics is relative expensive: It usually requires 104–106 trajec-
tories for convergent results, thus preventing the application
of MMST dynamics to more realistic systems, e.g., a three-
dimensional cavity. Therefore, the following is our first ques-
tion: Are there enhanced sampling techniques for recovering
the same-level MMST results with fewer trajectories?

(ii) Second, currently MMST dynamics requires sampling
many cavity photon modes. When considering a free-space
problem, however, in principle we need to sample infinitely
many modes, i.e., a continuous number of photon modes to
avoid any potential Poincaré recurrences, and sampling so
many modes will be difficult in practice. Is there a better way
to generalize MMST dynamics to free space?

(iii) Third, in general, quasiclassical MMST (or LSC-
IVR) dynamics is known not to recover the correct equi-
librium distribution or even obtain detailed balance for a
given quantum subsystem [50]. In general, ZPE leakage is
a big problem [49,50]. However, the electron-photonic case
is potentially special because the photon bath is exclusively
harmonic, whereas ZPE leakage is normally associated with
anharmonic modes. Moreover, with harmonic surfaces, one
never encounters negative forces [55] that can also lead to un-
stable MMST trajectories. Nevertheless, Hoffmann et al. have
recently shown that ZPE leakage does become a problem with
three-state electronic models (rather than two-state models)
[35]. Thus, one must put forth the following inquiry: Might
SQC dynamics [44–46] and similar approaches provide better
results in this limit?

(v) Fourth, MMST dynamics has (to date) usually been
applied to coupled electron-nuclear systems. Can we directly
apply MMST dynamics to coupled electron-nuclear-photonic
systems for simulating realistic systems [68]?

There is a great deal of work to be done at the intersection
of semiclassical dynamics and quantum electrodynamics.
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APPENDIX: THE MIDDLE OSCILLATIONS IN FIG. 6:
NUMERICAL ERROR OR POLARITON?

When considering Fig. 6, note that a few references have
reported a similarly nonvanishing peak in the E field located at
the middle of a 1D cavity (rather than the oscillations in Fig. 6)
when modeling spontaneous emission and the claim has been
made that this peak represents a polariton [20,34]. Now,
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FIG. 13. Real-space distribution of the E -field intensity as predicted by four different numerical treatments: (a) a replot of Fig. 6, i.e.,
initializing the EM field with 400 photon modes and propagating the EM field with the FDTD technique; (b) same as in (a) but the initialization
is with only 100 photon modes (centered at ω0); (c) initializing 400 photon modes and propagating {Xj, Pj} directly; (d) same as in (c) but
initializing only 100 photon modes. (e)–(h) Close-up near the cavity center corresponding to the plots in (a)–(f). Note that the negative-value
feature of the middle oscillations in (a) and (b) appears to be the result of numerical error with the FDTD algorithm and the middle MMST
peak in (c) disappears with fewer photon modes.
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guided by causality, one would presume that before the emit-
ted EM field hits the cavity mirrors, the TLS should behave
in a cavity the same as in free space [17]. Therefore, the exis-
tence of a middle peak in Refs. [20,34] (or the middle oscilla-
tions in Fig. 6) raises two obvious questions. (i) Is the middle
peak in Refs. [20,34] real or the result of numerical errors in a
quantum calculation? (ii) Are the middle oscillations in Fig. 6
real or numerical errors in MMST dynamics? Our current be-
lief is that these two questions need not be linked. For the first
question, our quantum simulation cannot (unfortunately) pro-
vide a definite answer. In our simulations, the use of the CIS
basis implies that all counterrotating-wave terms for the light-
matter coupling have been ignored. In order to investigate
whether the middle peak is real or not, however, one would
need to consider the effect of such counterrotating-wave terms
and use (at least) the two-photon states, i.e., the CISD ap-
proximation. For the results presented in Refs. [20,34], the
CISD approximation is used and the middle peak is observed.
Hence, one must presume that the middle peak is real and
comes from the effect of counterrotating-wave terms. For the
second question, because MMST dynamics does not invoke
the rotating-wave approximation, this approach has the po-
tential to predict the middle peak correctly, and the putative
similarity between the quantum middle peak and the MMST
middle oscillations might even indicate that MMST dynamics
can also predict this interesting quantum feature. However, as
shown in Fig. 6, the middle oscillations in MMST dynamics
contain negative values, which is not encouraging. To that end,
let us now investigate the origin of this negative-value feature
in more detail. For all results presented above, we initialized

the EM field with M = 400 photon modes and propagated the
EM field by the FDTD algorithm (see Sec. III for details). This
numerical treatment leads to the E -field distribution shown in
Fig. 6. To facilitate our discussion, here we will replot Fig. 6
in Fig. 13(a); in Fig. 13(e) we zoom in near the cavity center.
In order to understand the origin of the middle oscillations, we
have now run the following additional simulations. (i) We ini-
tialize the EM field with fewer photon modes (say, M = 100
modes centered at ω0 with frequency spacing �ω = 0.5) but
still propagate the EM field with FDTD algorithm; in this case,
the middle oscillations do not disappear [see Figs. 13(b) and
13(f)]. (ii) As reported in Refs. [34,35], if we directly propa-
gate M = 400 photon modes, i.e., propagating {Xj, Pj}, rather
than running the FDTD algorithm, the middle oscillations are
replaced by a nonvanishing middle peak, which is close to the
quantum result with a CISD basis [see Figs. 13(c) and 13(g)].
(iii) Finally, if only M = 100 photon modes (centered at ω0)
are propagated directly, i.e., not with the FDTD algorithm,
the middle peak almost completely disappears [see Figs. 13(d)
and 13(h)].

From the simulations above, we must conclude that the
negative-value feature of the middle oscillations in Fig. 6
arises from the numerical errors with the FDTD algorithm.
Because reducing the number of the off-resonant photon
modes leads to the disappearance of the middle peak when
propagating Xj and Pj , it appears that MMST dynamics
cannot predict the middle peak in a reliable and consistent
fashion. As an alternative, the peak may arise from the ZPE
leakage from MMST dynamics [49,50]. More analysis of this
feature will be needed in the future.
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