
PHYSICAL REVIEW A 101, 033828 (2020)

Stopping light using a transient Bragg grating
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We employ a recently developed optical pulse propagation formulation suitable for slow and stopped light
regimes to demonstrate light stopping by a (transient) grating coupling in a toy system, which is, however,
applicable to a range of wave systems. We study the complete spatiotemporal dynamics, the characteristic
timescales, the coupling efficiencies, and the spectral contents of the stopped pulse. Finally, we demonstrate
numerically a delay line which surpasses the delay-bandwidth limit.
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I. INTRODUCTION

Light has the maximal possible speed. In recent decades,
efforts have been made to slow down the speed of light and
even to bring it to a complete standstill [1–5]. In addition to
being a fundamentally intriguing challenge, slow and stopped
light may find practical use for information storage in optical
communication systems [6–9], thresholdless lasing [10,11],
and quantum optics applications [4,12–17].

Attempts to slow and stop light were based on two generic
schemes [5]. First, atomic and molecular media were used
for the effective reduction of light speed. Specifically, upon
photon absorption, the electromagnetic energy is transferred
to electrons excited above their ground state; when the energy
is reemitted, the electromagnetic wave seems to propagate
at a slower velocity [2,3,18–22]. This approach was overall
successful, but its practicality was limited by the narrowness
of the atomic resonances [5]. Additional difficulty in this
context is the delay-bandwidth limitation that arises from the
need to store multiple pulses in a length-limited structure.
Specifically, to ensure that the signal does not spill over into
the adjacent bit interval, one requires that the broadening
due to dispersion should be less than one-half of the bit
interval. This leads to a limitation over the bandwidth of
the pulse which depends on the group velocity dispersion
(GVD) and the length of the structure [5]. These issues can be
somewhat mediated using two closely spaced resonances and
the concept of electromagnetic-induced transparency. This
causes a reduction of the GVD, thus enabling the reduction
of the time delay between adjacent pulses [5]. A secondary
reason for the delay-bandwidth limitation is the absorption
dispersion [5].

The second class of approaches relied on engineering a
certain photonic structure such that the dispersion curves char-
acterizing the guided modes propagating in the system include
slow light regions and/or a point with a zero group velocity
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(ZGVP). This occurs, e.g., for arrays of coupled microres-
onators, photonic crystals, and photonic crystal waveguides
(especially near their band edges) [23–25], plasmonic waveg-
uides [10,11,26,27] and negative index metamaterials [28],
surface modes in near-zero permittivity metasurfaces [29], etc.
One of the advantages of this approach is that high-quality
fabrication can reduce the attenuation; the slowdown factors
are more modest, but this approach is favorable for high-bit-
rate operation [5].

However, having a ZGVP is not enough—one also needs
to couple the light to the ZGVP. Unfortunately, it is funda-
mentally difficult to couple energy to these regimes of slow
and stopped light because they are characterized by a very
high impedance. Therefore, end-fire excitation schemes suffer
from very high reflectivity. This problem can be somewhat
mediated by using evanescent wave coupling [30] but over-
all, poses a severe limitation. Peculiarly, to the best of our
knowledge, standard techniques for light coupling such as
grating or prism coupling were not applied so far to slow
or stopped guided modes. The only exception we are aware
of is the numeric study in [31] where a (chirped) grating in
a thin metal-dielectric-metal (MDM) waveguide was used to
couple light between the propagating symmetric mode and the
antisymmetric slow light mode. Unfortunately, in similarity
to [32], this study relied on standard coupled mode theory
(CMT), which accounts only for the spatial dynamics but
neglects temporal dynamics (such as walk off, group velocity
dispersion, and higher-order dispersion). Accordingly, the
accuracy of that study is limited to the initial stages of the
dynamics.

Another suggestion for mediating and/or solving the prob-
lem of coupling to the slow or stopped light regime is based
on inflection points and degenerate band edges in the disper-
sion relations of various photonic crystal structures [24]. In
these structures, the impedance at the ZGVP is, surprisingly,
nonzero. This relatively novel concept has not been demon-
strated experimentally, to the best of our knowledge.

Additional recent suggestions to overcome the problem of
coupling light to the ZGVP were based on a tapered waveg-
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uide [28]. Although initial theory and experimental reports
claimed to observe a signature of stopped light [33–35], it
was later shown (theoretically, numerically and experimen-
tally) that the incoming pulse is reflected rather than being
stopped [36]. Indeed, in [36] it was shown that as the waveg-
uide width narrows, the mode gets closer to the ZGVP such
that the coupling to the backward wave (on the other side of
the ZGVP) becomes gradually more efficient; eventually, all
the energy is coupled to the branch with the backward group
velocity rather than being stopped.

In a consequent set of works [10,11,26,37], it was sug-
gested theoretically to circumvent the difficulty associated
with the high impedance at the ZGVP by side illumination;
in this case, the momentum component of the incoming wave
parallel to the interface is identical to the corresponding
component of the excited mode. This approach is thus limited
to coupling light to the nonguided i.e., radiative modes, those
modes that reside above the light line. Thus, by reciprocity,
the energy could freely couple back to the free space modes
and leak out of the “waveguide.” In addition, these suggested
implementations relied on high-permittivity components (e.g.,
semiconductors), which tend to be lossy for the frequency
range where the ZGVP points of the studied configuration oc-
curred. Indeed, no experimental verification of this suggestion
has been reported so far.

In contrast to the above-mentioned passive attempts to
couple light to the slow light regime or to a ZGVP, ac-
tive approaches were more successful; these studies were
sometimes performed in the context of optical nonreciprocity.
Specifically, various previous studies attempted to couple light
to a slow light or ZGVP by employing transient Bragg grating
(TBG) coupling, sometimes referred to as an optical interband
transition [38] (both terms essentially equivalent to temporal
quasi phase matching [39]). For example, in [40] light cou-
pling to a slow light regime was studied experimentally using
a switch pulse which copropagates with the incoming signal
pulse. In another set of experiments [41] based on earlier
ideas of the Fan group [42,43], effective stopping of light was
demonstrated by coupling an optical pulse propagating in a
waveguide to a cavity (a ring resonator) and then adiabatically
perturbing the system to prevent further coupling back to the
waveguide. This allows light to be stored in the cavity for
arbitrarily long times; it could be then released at will by
turning off the perturbation. The procedure resulted in some
spectral modification of the output pulse with respect to the
input one associated with the long recombination time of the
free-carrier-generation–based perturbation. This active tuning
approach exhibits nearly 50% efficiency and overcomes the
traditional delay-bandwidth limitation.

While the scheme of [41–43] is effective and can be inte-
grated with existing optical systems, it does not involve true
light stopping but instead, pulse storage in a cavity (i.e., the
light speed remains high). Furthermore, being experimental in
nature, it did not reveal the complete parametric dependence
on the group velocity or GVD etc., which is necessary for
optimization of the conversion efficiency.

In this article, we show theoretically how light can be truly
stopped by coupling a propagating mode to the ZGVP or slow
light regime in a waveguide by combining the standard (yet
untested, in the current context) approach of grating coupling

with an active approach. The formulation we use is an exten-
sion of the momentum-based expansion introduced in [44] to
the study of multiple mode coupling. In Sec. II, we describe a
toy physical configuration (a grating in a MDM waveguide, as
in [31]) and derive the underlying propagation equations for
the pulse envelopes, including in the presence of absorption.
Unlike the previous works quoted above, we provide a com-
plete quantitative analysis of the spatiotemporal dynamics for
horizontal [45,46], vertical [47–51], and oblique transitions
between modes across the dispersion curves. Specifically, in
Sec. III, we provide a heuristic analysis, and in Sec. IV, we
employ numerical simulations to demonstrate pulse stopping
and release by coupling energy to the ZGVP. When possible,
we complement the numerical simulations with analytic so-
lutions that reveal the parametric dependence on the group
velocity mismatch etc. This shows that the conversion effi-
ciency is essentially limited by walk off. In Sec. V we discuss
implementation and possible follow-up works.

II. METHODOLOGY AND CONFIGURATION

To date, most theoretical studies of pulse dynamics in the
slow and stopped light regimes have been performed with
finite difference time domain (FDTD) simulations [52], an ap-
proach which is accurate but computationally heavy [11,26];
this approach also does not readily provide analytic insights
regarding the underlying physics and parametric dependence.
The computationally lighter envelope formulations and as-
sociated coupled-mode analysis are unsuitable to this con-
figuration because the standard frequency-based dispersion
expansion coefficients diverge near the ZGVP [44]; this makes
the truncation of the dispersion expansion inaccurate and its
inclusion inefficient.

In [44] we showed that this problem can be circumvented
by expanding the dispersion in a series of spatial derivatives
rather than temporal derivatives, such that the divergence of
the coefficients is avoided, and instead, rapid convergence is
obtained. We solved the resulting equation as an initial value
problem in time by constructing the input pulse in momentum
space (i.e., as a superposition of plane waves with different
momenta). This approach also provides a natural way to treat
wave attenuation in waveguides made of absorbing materials
which appear in the complex modal frequency.

Here, in analogy to the recent derivation of coupled-mode
theory for pulse propagation in time-varying media [53–55],
we extend the momentum-based expansion of [44] for the
pulse propagation scheme for the slow and stopped light
regimes to allow accounting for mode coupling due to a
spatiotemporal perturbation of the dielectric constant. Specif-
ically, we consider a situation in which a pulse which initially
belongs to a branch with a “regular group” velocity (denoted
with index 1) is coupled to the ZGVP (index 2) using a
suitable perturbation, specifically, a spatiotemporal grating
(aka as a transient Bragg grating, TBG), see Fig. 1(a). In this
case, the total field is given by

�E (�r⊥, z, t ) = F z
β[ã1(β − β0,1, t )�̃e1(�r⊥, β )e−iω1(β )t

+ ã2(β − β0,2, t )�̃e2(�r⊥, β )e−iω2 (β )t ], (1)
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FIG. 1. (a) Schematic dispersion curve of the symmetric and antisymmetric branches of the MDM waveguide. The numbers correspond
to the symmetric branch (1) and the antisymmetric branch (2). The red regimes demonstrate spectral regimes centered at (β0,1, ω0,1) and
(β0,2, ω0,2), corresponding to the signal pulse and the stopped pulse, respectively. The arrows demonstrate the flow of energy from the
symmetric branch to the ZGVP modes and vice versa due to spatiotemporal perturbation with frequency ω̃ = ω0,2 − ω0,1 and wave number
β̃ = β0,2 − β0,1. (b) and (c) correspond to schematic modes of the antisymmetric and the symmetric branches, respectively, of a MDM
waveguide of width d .

where F z
β ≡ ∫ ∞

−∞ eiβzdβ, ω j is the frequency of the
monochromatic waves constituting pulse j, and ã j represents
the slowly varying amplitudes of a wave packet composed of
waveguide modes with different wave numbers centered at the
different central momenta β0, j ; �̃e j (�r⊥, β ) satisfies the vector
Helmholtz equation

∇ × ∇ × �̃e j (�r⊥, β ) − με(�r⊥, z, ω j (β ))ω2 �̃e j = 0. (2)

Here, the modal frequency and permittivity are assumed to be
a function of the (modal) momentum β. In lossy media, the
resulting modal frequency is complex and can be described
only using analytic formulas or by using auxiliary equations
for the polarization [52] (rather than experimentally measured
tabulated data for the permittivity), which are limited to real
frequencies. This limitation is typical to the use of quasinor-
mal modes, see discussions in, e.g., [56,57].

For concreteness, we assume that the two pulses belong
to different branches (i.e., we study the so-called “interband”
transition [38,39]) of different symmetries,1 see Figs. 1(b)
and 1(c), such that they are coupled by any (transversely)
asymmetric perturbation; this is the case for a simple thin
MDM slab waveguide with a symmetric cladding, see [44]
and references therein. Specifically, the permittivity perturba-
tion is assumed to be a TBG, namely, to have the form

�ε̃(�r⊥, z, t ) = �εW (�r⊥)q(z)m(t ) cos(ω̃t ) cos(β̃z), (3)

where �ε is the dimensionless magnitude of the permittiv-
ity perturbation, m(t ), W (�r⊥), and q(z) are unity-amplitude
(i.e., max[m(t )] = 1, max[W (�r⊥)] = 1 and max[q(z)] = 1),
dimensionless functions representing the temporal and (trans-
verse and longitudinal) spatial “slowly varying envelopes”
of the perturbation, respectively; for concreteness, W (�r⊥) is
assumed asymmetric. ω̃ and β̃ represent the central temporal
and spatial frequencies of the perturbation, i.e., the rapidly os-
cillating components of the TBG, which provide the missing
spatial (and temporal) frequencies to bridge the mode mis-
match, thus enabling an efficient coupling. For convenience,

1In this case, if ε(�r⊥, ω) is symmetric in �r⊥, the two modes are
decoupled in the absence of a perturbation.

we chose ω̃ ≡ ω0,2 − ω0,1 and β̃ ≡ β0,2 − β0,1 to match the
relevant (generally oblique) transition, see Fig. 1(a).

In this case, the coupled-mode theory equations for the
amplitudes of the two pulses are given, up to second-order
(i.e., group velocity) dispersion, by

∂A1(z, t )

∂t
+ vg,1

∂A1(z, t )

∂z
− i

ω′′
0,1

2

∂2A1(z, t )

∂z2

− iω0,1�ε|O|eiδm(t )A2(z, t ) = 0, (4)

∂A2(z, t )

∂t
− i

ω′′
0,2

2

∂2A2(z, t )

∂z2

− iω0,2�ε|O|e−iδm(t )A1(z, t ) = 0, (5)

see derivation in [58] and in Appendix A. Here, Aj are the
slowly varying amplitudes of the two different pulses, defined
via

Aj (z, t ) = 2πe−iβ0, j zF z
β[ã j (β − β0, j, t )e−i[ω j (β )−ω0, j ]t ], (6)

where ω0, j = ω(β0, j ), vg, j , and ω′′
0, j are their central frequen-

cies, group velocities, and group velocity dispersion (GVD)
coefficients, respectively. Furthermore, Oi j is the dimension-
less coupling coefficient given by

O j, j′ (β, β0, j ) = ε0

∫
W (�r⊥)�̃e j (�r⊥, β )�̃e∗

j′ (�r⊥, β )d�r⊥
Uj, j′ (β, β0, j )

, (7)

where we normalize by the (potentially complex) quantity

Uj, j′ (β, β0, j ) =
∫ (

ε(�r⊥, ω) + ω

2

ε(�r⊥, ω)

dω

)∣∣∣∣
ω0, j

× �̃e j (�r⊥, β )�̃e∗
j′ (�r⊥, β )d�r⊥. (8)

As shown in [44], in the case of lossless media, Uj, j (β0, j, β0, j )
is a real quantity proportional to the energy density (per unit
length) of the carrier mode β0, j of pulse j.2 In the current con-
text of two modes of different symmetries, Uj, j′ is diagonal,
see Appendix A. Lastly, δ = arg(O1,2) = − arg(O2,1) is the

2Note that this statement refines the slightly inaccurate explanation
in [44].
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phase of the coupling coefficient. Since �ε and |Oi, j | appear
together, it is convenient to refer to them as a single parameter;
for simplicity, we just set |Oi, j | = 1.

The temporal profile of the perturbation is assumed to be

m(t ) = e−[(t−tm )/Tsw]2
, (9)

where the switching time, Tsw, represents the duration of
the perturbation, and tm (chosen for convenience such that
it is much longer than Tsw) represents the time at which
the perturbation peaks. For simplicity, we assumed below
q(z) = 1.

Following [44], Eqs. (4) and (5) are solved as an initial
value problem in time. Specifically, the initial condition for
this set of equations is written in momentum space, ã1(β −
β0,1, t = 0) =

√
π

Z e(
β−β0,1
2Z−1 )

2

, where Z = 2
�β

is the initial spatial
length of the input pulse. Thus, in real space, the initial
envelope profile is

A1(z, t = 0) = e−( z
Z )2

. (10)

The initial pulse of the stopped light has zero amplitude,
namely, A2(z, t = 0) = 0.

III. HEURISTIC ANALYSIS

The dynamics of the two interacting pulses, represented
by the solution of Eqs. (4) and (5), can be characterized by
the interplay between the duration of the perturbation (i.e.,
the switching time, Tsw) and two additional timescales. First,
the timescale representing the propagation of the input signal
pulse can be defined as Tw ≡ Z/|vg,1 − vg,2| = Z/vg,1 (since
vg,2 corresponds to the stopped light branch); this timescale
is nothing but the standard walk-off scale (see, e.g., [59])—it
describes the time required for the signal pulse to propagate a
distance comparable to its own initial spatial extent [relative
to the (stopped) pulse it interacts with]. In the current context,
in which one pulse is static, this timescale is essentially the
incident pulse duration such that it can naturally be tuned via
that initial extent. Second, the timescale that represents the
rate of energy exchange between the pulses is given (in the ab-
sence of any walk off) by the (generalized) Rabi period TR ≡
2π (

√
ω0,1ω0,2�ε)

−1
, see derivation in Appendix B. Notably,

the definition of TR here adds upon the analysis performed in
some of our previous work (specifically, [50,51,60]).

These timescales allow us to interpret the dynamics in two
limits—if the switching time Tsw is much shorter than the
walk-off time Tw, the pulses are essentially static during their
mutual interaction so that the energy exchange between the
pulses occurs under conditions of a good (and time-invariant)
spatial overlap. This case is similar to the standard two-
level system [61] in the sense that it lacks spatial dynamics;
hence, the exchange is relatively efficient and complete energy
exchange can be achieved if Tsw ∼ TR/2 � Tw. In that sense,
this interaction is nonadiabatic [46,50,51] such that the shape
and spectrum of the stopped pulse are similar to those of the
incident pulse. This behavior has a simple interpretation. As
explained in [46,50,51], the short perturbation is also broad
spectrally with respect to 1/Tw such that all the frequency
components in the signal pulse can find the necessary mo-
mentum and frequency components needed to phase-match

them to the ZGVP. Therefore, the spectra of the signal pulse
is transferred efficiently to the ZGVP branch. As the pertur-
bation becomes longer in time, it narrows in spectrum such
that less frequency components of the signal pulse are phase
matched. The resulting stopped pulse is spectrally narrower.
In this way, by controlling the switching time, one can filter
the spectrum of the stored pulse.

If, on the other hand, the walk-off time is comparable to
or even shorter than the (generalized) Rabi period, then the
spatial overlap between the two pulses deteriorates during
the switching time so that the energy exchange becomes
slower and spreads over a wider portion of space. As a result,
different regions of space might exhibit different rates of
energy exchange, the overall dynamics is more complicated,
the stopped pulse becomes smeared in space and only a partial
transfer of energy to the ZGVP can be achieved (with an
overall decrease of the coupling efficiency for faster walk off).

IV. RESULTS

We now demonstrate the validity of the intuitive pic-
ture via numerical simulations. All numerical simulations
below are performed for β0,1 = 2 × 108 m−1, β0,2 = 1.5 ×
108 m−1, and ω0,1 = ω0,2 = 5.184 × 1015 s−1 (i.e., a horizon-
tal transition over the energy-momentum dispersion relation),
which results in vg,1 = 1.3 × 10−3 c. The initial condition
corresponds to �β = 107 m−1 so that Z = 0.2 μm and Tw =
0.52 ps. The duration of the simulations below is significantly
shorter than the dispersion time [44], so that the GVD-induced
broadening is weak. In order to focus on the coupling dynam-
ics, we neglect below the absorption loss in the metal.

A. Numerical results – Stopping light

Figure 2 shows the numerical solution of Eqs. (4) and (5)
for negligible walk off (Tsw � Tw). The incoming signal pulse
propagates at a velocity vg,1 and undergoes very weak dis-
persive broadening during the simulation time, see Figs. 2(a)
and 2(b). The pulse that is coupled to the ZGVP builds up at
around tm and indeed remains static; it also undergoes only
weak dispersive broadening. As expected, the most efficient
coupling occurs when the switching time is half of the Rabi
period [Figs. 2(d)–2(e)], and the least efficient conversion
occurs when it is chosen to be a full Rabi period [Figs. 2(g)
and 2(h)].

Figures 3(a) and 3(b) show the corresponding numerical
results for Tsw � Tw . In this case, the more significant walk
off results in more complicated dynamics. Specifically, as the
signal pulse now propagates relatively faster with respect to
the energy exchange rate (Tw/TR = 1/16), it effectively trans-
fers its energy to the stopped pulse over an extended segment
of space at roughly the same efficiency, causing the stopped
pulse to smear out in space; this causes the energy transfer to
the stopped pulse to be lower overall and to continue beyond
t = TR/2. Furthermore, one can see energy transfer back to
the signal branch.

In that sense, not only does the stopped pulse become
distorted with respect to the incoming signal pulse, but also
the signal pulse develops additional lobes in its trailing edge.
This effect is accompanied by the signal depletion.
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FIG. 2. Maps of the spatiotemporal dynamics of the signal [(a), (d), and (g); solutions of Eq. (4)] and the corresponding stopped pulses
[all other subplots; solutions of Eq. (5)] with the perturbation parameters of the form (9) and the spectral parameters indicated in the main text.
The magnitude of the perturbation is �ε = 3.6 × 10−3, which results in TR = 0.3Tw . The total duration of propagation of all pulses presented
is 8TR = 1.3 ps. In all cases, tm = 3TR, where the switching times are (a)–(c) Tsw = 0.25TR, (d)–(f) Tsw = 0.5TR, and (g)–(i) Tsw = TR. (c), (f),
and (i) show the analytic solution (11) for each row. In all color maps, the amplitudes vary in the range [0, 1].

In Figs. 4(a) and 4(b) we now show the spectrum of the
stopped pulse in momentum space, long after the permittivity
perturbation vanished. For simplicity, we set TR � Tw. In the
nonadiabatic limit [Tsw � Tw, Fig. 4(a); nonadiabatic limit],
the spectrum of the stopped pulse is nearly identical to the
spectrum of the incoming pulse, while away from that limit

[Fig. 4(b)], the spectrum of the stopped pulse is narrower.
This result is similar to those obtained in previous studies of
nonadiabatic pulse interactions, e.g., for the case of wavefront
reversal due to the coupling of pulses with opposite mo-
menta [46]. This behavior is in accordance with the analysis
presented in Sec. III.

FIG. 3. Dynamics of the (a) signal and the (b) stopped pulse for �ε = 7.2 × 10−5 and Tsw � TR = 16Tw (other parameters are specified
in the main text). (c) The analytic solution (12) corresponding to the stopped pulse. In all color maps, the amplitudes vary in the range [0, 1].
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FIG. 4. The spatial spectrum of the stopped pulse as t → ∞ in
the case of TR = 17 ps, Tw = 0.5 ps and (a) Tsw = 2 ps and (b) Tsw =
0.1 ps. In both cases, the green line represents the outcome of the
simulation, and the dashed red line corresponds to the analytic
solution (12). The corresponding final widths of the spectra are
(a) �β̃ = 107 m−1 (as in Figs. 2 and 3; essentially identical to the
input spectral width) and (b) �β̃ = 4.5 × 106 m−1.

B. Analysis

As long as only a small fraction of the incoming pulse
power is coupled to the ZGVP, one can adopt the so-called
“undepleted signal approximation” [46,50,51,55,60], namely,
to neglect the energy coupling to the stopped pulse such that
the signal undergoes unperturbed (dispersive) propagation. In
this case, the equation for the dynamics of the stopped pulse
can be solved analytically, thus providing a clear picture of the
parametric dependence. If one neglects the GVD, this solution
is

A2(z, t ) =
√

πTswZω0,2�ε

Z̃
e− (z−vg,1tm )2

Z̃2

×
[

erf

(
Z̃

Z

t

Tsw
− Tsw

Tw

z

Z̃
− tmZ

TswZ̃

)
− erf

(
−Tsw

Tw

z

Z̃
− tmZ

TswZ̃

)]
, (11)

where Z̃2 = Z2 + v2
g,1T 2

sw. It is insightful to explore Eq. (11)
in the limit of t → ∞, i.e., after the perturbation ends (recall
that tm � Tsw).3 Then, in the nonadiabatic case (Tsw � Tw),
Eq. (11) reduces to

A2(z, t → ∞) =
√

πTswZω0,2�ε

Z̃
e− (z−vg,1tm )2

Z̃2 . (12)

Thus, the stopped pulse is static and identical in shape to the
incoming pulse, as expected.

The analytic solution (11) corresponding to the numeric
results is shown in Figs. 2(c), 2(f) and 2(h). In Fig. 2(c),
the analytic result matches the numerics reasonably well.
Here, the time duration of the energy transfer Tsw is short
enough with respect to TR to permit the undepleted signal
approximation. In Fig. 2(f), Tsw is longer, and therefore more
energy is transferred to the stopped pulse. In this case, the
undepleted signal approximation breaks down such that the
analytic result matches the numeric one qualitatively but not

3Note that tm affects only the position of the pulse center. This is
seen explicitly in Eq. (12).

FIG. 5. (a) Stopped and (b) signal pulse dynamics [solutions of
Eqs. (4) and (5)] where the perturbation is switched twice (at tm1 =
0.5 ps and at tm2 = 1.5 ps). All other parameters are the same as in
Fig. 2. In all color maps, the amplitudes vary in the range [0, 1].

quantitatively. In Fig. 2(h), Tsw exceeds the time in which the
undepleted approximation is valid, and therefore, the analytic
solution does not predict the correct ZGVP pulse dynamics in
this case even qualitatively.

In order to find an analytic expression for the spectrum dy-
namics in the stopped light regime at time t → ∞, we apply
a spatial Fourier transform to Eq. (12) and get Fβ

z [A2(z, t →
∞)] ∼ e

−( β

�β̃
)
2

, where

�β̃ = 2√
Z2 + v2

g,1T 2
sw/4

. (13)

Fitting the Fourier transform of Eq. (12) to the numerical
results in Fig. 4 yields an excellent match.

C. Numerical simulations – Delay line

In Sec. IV A, we showed that light can be stored efficiently
when employing a perturbation of time duration Tsw = 0.5TR.
Correspondingly, when a second perturbation of the same
duration occurs, the light can be coupled back into the original
branch and resume the forward propagation. Specifically, this
would happen if the perturbation is switched at times tm1 and
tm2 according to

m(t ) = e−[(t−tm1 )/Tsw]2 + e−[(t−tm2 )/Tsw]2
. (14)

In Figs. 5(a) and 5(b), we show the dynamics of the stopped
and signal pulses, respectively. During the first switching
pulse, the energy builds up in the stopped light regime, where
it is static until tm2 ; a small amount of energy is left in the
original branch; this imperfect coupling is due to the relative
movement of the pulses (walk off; equivalently, the deviation
from nonadiabaticity). When the perturbation is switched on
again at tm2 , most of the energy is coupled back to the signal
pulse. At time t > tm2 we observe two weak remnants of
energy in the stopped light branch. The remnant at the trailing
edge is, again, a result of imperfect energy transfer back to the
original (forward) branch. The remnant at the leading edge is
energy that initially remained in the signal branch and then
was coupled to the stopped pulse during the second switching
event.

Notably, this active switching approach allows us to sur-
pass the delay-bandwidth limitation, as in previous active
switching approaches (see, e.g., [41–43]).
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V. IMPLEMENTATION AND OUTLOOK

For simplicity, we analyzed so far an idealized nonlossy
MDM waveguide at optical frequencies; however, in practice,
such a system is expected to be too lossy. More practical
(yet, more complicated) lower-loss optical systems where
ZGVPs might be found are photonic crystals (e.g., near the
band edges [62–65], as for layered media), photonic crys-
tal waveguides, high-index (e.g., silicon) waveguides, near-
zero permittivity metasurfaces based on phononic materials
(see [29] and references therein), etc.

The necessary periodic illumination patterns can be gener-
ated by direct interference, imaging [66], or through a phase
mask (see e.g., [67]). For optical frequencies, the TBG can
be based on an incoherent nonlinear optical effect which is
associated with an intensity-dependent index change [e.g., the
Kerr effect [68], free-carrier (FC) generation [69,70], multi-
photon absorption, and (consequent) thermal effects [67,71]
etc.]. The slowness usually associated with the latter tempo-
rally nonlocal effects can be conveniently circumvented in the
TBG configuration—the inherent rapid spatial nonuniformity
of the periodic perturbation is washed out by FC or heat
diffusion on a relatively fast timescale [67,71,72]. For lower
frequencies, the TBG can be realized electronically, as e.g.,
in [47,73]. Oblique transitions (i.e., moving perturbations) can
be realized using coherent three- or four-wave mixing, as e.g.,
in [38]; these are useful for isolation purposes [38,74].

The ideas explored in the current manuscript are not
limited to optical waves. Indeed, they can be applied to
the terahertz regime (e.g., employing ultrafast modulations
of graphene [74,75]), microwave regime, or to other wave
systems such as elastic waves, spin waves [47], water
waves [76,77], etc.

The current study focused on relatively ultrafast switch-
ing of low-intensity picosecond pulses. For shorter pulses,
one would need to account for higher-order dispersion
terms. The associated coupling terms become quite involved
(see [44]) such that intrapulse coupling and broadening in-
duced by group velocity dispersion or higher-order disper-
sion will cause distortions of stopped pulse with respect to
the signal pulse. However, these distortions are not differ-
ent, in principle, from those experienced by a pulse prop-
agating in a “regular group velocity” branch for the same
duration.

An additional degree of freedom that can allow a higher
level of control over the stopped pulse spatiotemporal shape
is the spatial extent of the TBG, namely, of q(z). Indeed, the
configuration studied above can allow, e.g., a TBG with a
finite spatial extent given by

q(z) = e−((z−z0 )/vgTpass )2
, (15)

with Tpass being an additional timescale that represents the
time required for a photon to cross the TBG. For Tpass → ∞,
the stopped pulse has the same spatial length as the signal.
However, as Tpass gets shorter, the stopped pulse shrinks in
space. Once Tpass becomes the shortest timescale, the modula-
tion samples the signal at a single point [60].
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APPENDIX A: DERIVATION OF THE COUPLED-MODE EQUATIONS USING THE MOMENTUM-BASED EXPANSION

We start from the vector wave equation

�∇ × �∇ × �E (�r⊥, z, t ) − μ0
∂2

∂t2
[ �P(�r⊥, z, t ) + � �P(�r⊥, z, t )] = 0, (A1)

where �P(�r⊥, z, t ) = F t
ω{[ε(�r⊥, ω) − 1]Fω

t [ �E (�r⊥, z, t )]}, and where � �P(�r⊥, z, t ) is a perturbation which can be caused by any
alteration of the permittivities of the constituents such as a nonlinearity or a defect.

In analogy to [55], we use the following ansatz for the electric field:

�E (�r⊥, z, t ) = F z
β[ �̃E (�r⊥, β, t )] = F z

β

[∑
j

ã j (β − β0, j, t )�̃e j (�r⊥, β )e−iω j (β )t

]

= e−iω0, j tF z
β

[∑
j

(∫
dz′Aj (z

′, t )e−i(β−β0, j )z′
)(∫

dz′′F z′′
β [�̃e j (�r⊥, β )]e−iβz′′

)]

= e−iω0, j t
∑

j

∫
dζAj (z − ζ , t )eiβ0, j (z−ζ )F ζ

β [�̃e j (�r⊥, β )], (A2)

where j is an index corresponding to the different pulses in the waveguide. Here,

Aj (z, t ) = 2πe−iβ0, j zF z
β[a j (β − β0, j, t )] (A3)

and

aj (β − β0, j, t ) = ã j (β − β0, j, t )e−i[ω j (β )−ω0, j ]t , (A4)
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where β0, j is the central propagation constant of pulse j, ω0, j = ω(β0, j ), and �̃e j (�r⊥, β ) satisfies the Helmholtz equation,[(
∂2ẽy

∂x∂y
− ∂2ẽx

∂y2
+ β2ẽx + iβ

∂2ẽz

∂x

)
x̂ +

(
∂2ẽx

∂x∂y
− ∂2ẽy

∂x2
+ β2ẽy + iβ

∂2ẽz

∂y

)
ŷ +

(
iβ

[
∂ ẽx

∂x
+ ∂ ẽy

∂y

]
− ∂2ẽx

∂x2
− ∂2ẽy

∂y2

)
ẑ

]
+ μ0ε(�r⊥, β )ω2 �̃e(�r⊥, β ) = 0, (A5)

independently for every value of j.
We now use the expansion of the permittivity in time domain,

R(�r⊥, t ) ∗ �E (�r⊥, z, t ) =
∞∑

n=0

in

n!

dnε(�r⊥, ω)

dωn

∣∣∣∣∣
ω0

∂n �E (�r⊥, z, t )

∂t n
, (A6)

where we substitute Eqs. (A6) and (A2)–(A4) in Eq. (A1) and transform to momentum space. This gives

∑
j

{[(
∂2ẽy, j

∂x∂y
− ∂2ẽx, j

∂y2
+ β2ex, j + iβ

∂2ẽz, j

∂x

)
x̂ +

(
∂2ẽx, j

∂x∂y
− ∂2ẽy, j

∂x2
+ β2ẽy, j + iβ

∂2ez, j

∂y

]
ŷ

+
(

iβ

[
∂ ẽx, j

∂x
+ ∂ ẽy, j

∂y

]
− ∂2ẽx, j

∂x2
− ∂2ẽy, j

∂y2

)
ẑ

]
a j (β − β0, j, t ) + μ0ω

2
0, jε(�r⊥, ω0, j )�̃e j (�r⊥, β )a j (β − β0, j, t )

+ iμ0 �̃e j (�r⊥, β )

(
2ω0, jε(�r⊥, ω0, j ) + ω2

0, j

dε(�r⊥, ω)

dω

∣∣∣∣
ω0, j

)
∂a j (β − β0, j, t )

∂t
+ μ0 �̃e j (�r⊥, β )

∞∑
n=2

in

(
1

(n − 2)!

dn−2ε(�r⊥, ω)

dωn−2

∣∣∣∣
ω0, j

+ 2

(n − 1)!
ω0, j

dn−1ε(�r⊥, ω)

dωn−1

∣∣∣∣
ω0, j

+ 1

n!
ω2

0, j

dnε(�r⊥, ω)

dωn

∣∣∣∣
ω0, j

)
∂na j (β − β0, j, t )

∂t n

}
e−iω0, j t + ∂2

∂t2
Fβ

z [� �P(�r⊥, z, t )] = 0. (A7)

Substituting Eq. (A5) in Eq. (A7) allows us to replace the first two terms by ε(�r⊥, ω)ω2a j (β − β0, j, t )�̃e j (�r⊥, β ). We now get

∑
j

{[
ε(�r⊥, ω)ω2− ε(�r⊥, ω0, j )ω

2
0, j

]
a j (β− β0, j, t )�̃e j (�r⊥, β )− i�̃e j (�r⊥, β )

(
2ω0, jε(�r⊥, ω)+ ω2

0, j

dε(�r⊥, ω)

dω

∣∣∣∣
ω0, j

)

× ∂a j (β− β0, j, t )

∂t
− �̃e j (�r⊥, β )

∞∑
n=2

in

(
1

(n − 2)!

dn−2ε(�r⊥, ω)

dωn−2

∣∣∣∣
ω0, j

+ 2

(n − 1)!
ω0, j

dn−1ε(�r⊥, ω)

dωn−1

∣∣∣∣
ω0, j

+ 1

n!
ω2

0, j

dnε(�r⊥, ω)

dωn

∣∣∣∣
ω0, j

)
∂na j (β − β0, j, t )

∂t n

}
e−iω0, j t − ∂2

∂t2
Fβ

z [� �P(�r⊥, z, t )] = 0. (A8)

We now multiply Eq. (A8) by �̃e∗
j′ (�r⊥, β ) and integrate over �r⊥. This gives

∑
j

{
2ω0, jUj, j′ (β, β0, j )

∂a j (β − β0, j, t )

∂t
+ i

[ ∫ (
ε(�r⊥, ω)ω2 − ε(�r⊥, ω0, j )ω

2
0, j

)
�̃e j (�r⊥, β )�̃e∗

j′ (�r⊥, β )d�r⊥

]
a j (β − β0, j, t )

+ i
∞∑

n=2

in

[∫ (
1

(n − 2)!

dn−2ε(�r⊥, ω)

dωn−2

∣∣∣∣
ω0, j

+ 2

(n − 1)!
ω0, j

dn−1ε(�r⊥, ω)

dωn−1

∣∣∣∣
ω0, j

+ 1

n!
ω2

0, j

dnε(�r⊥, ω)

dωn

∣∣∣∣
ω0, j

)
�̃e j (�r⊥, β )�̃e∗

j′ (�r⊥, β )d�r⊥

]
∂na j (β − β0, t )

∂t n

}
e−iω0, j t + i

∂2

∂t2

∫
Fβ

z [� �P(�r⊥, z, t )]�̃e∗
j′ (�r⊥, β )d�r⊥ = 0,

(A9)

where we defined

Uj, j′ (β, β0, j ) =
∫ (

ε(�r⊥, ω) + ω

2

ε(�r⊥, ω)

dω

)∣∣∣∣
ω0, j

�̃e j (�r⊥, β )�̃e∗
j′ (�r⊥, β )d�r⊥. (A10)

As shown in [44], Uj, j is proportional to the energy density of the carrier mode β0 of pulse j in the case of lossless media.
Equation (A9) represents a set of N equations, where N is the number of coupled pulses in the waveguide. Importantly,

since �̃e j and �̃e∗
j′ correspond to the same values of β but different values of ω, then they are not orthogonal, so that in general,
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Uj, j �= j′ is not diagonal (Uj, j �= j′ �= δ j, j′ ). Accordingly, pulses with a different central frequency are coupled even in the absence of
a perturbation (see also [54,56]). We note that the values of Uj, j �= j′ may be not negligible with respect to Uj, j , particularly if j
and j′ belong to the same branch or for complex systems, where the symmetry is not defined. However, the terms Uj, j′ �= j have
phase of different frequency, and therefore they are averaged off in time [54].

The system (A9) consists of additional terms of the form∫
dnε(�r⊥, ω)

dωn

∣∣∣∣
ω0, j

�̃e j (�r⊥, β )�̃e∗
j′ (�r⊥, β )d�r⊥, (A11a)

∫
dmε(�r⊥, ω)

dωm

∣∣∣∣
ω0, j

�̃e j (�r⊥, β )�̃e∗
j′ (�r⊥, β )d�r⊥, (A11b)

which also contribute to the modal coupling, hence, making the system (A9) even more complicated. These terms do not have
an analog in the standard derivation [55], where Eq. (A11a) arises from the expansion of the convolution in Eq. (A6) which is
not needed in the standard derivation.

We continue by Taylor expansion of all the functions of ω in terms of β as follows:

∑
j

{
2ω0, jUj, j′ (β, β0, j )

∂a j (β − β0, j, t )

∂t
+ i

∞∑
m=1

D̃ j, j′
m (β − β0, j )

maj (β − β0, j, t )

+
∞∑

n=2

∞∑
m=0

in+1D̃ j, j′
n,m(β − β0, j )

m ∂na j (β − β0, j, t )

∂t n

}
e−iω0, j t + i

∂2

∂t2

∫
Fβ

z [� �P(�r⊥, z, t )]�̃e∗
j′ (�r⊥, β )d�r⊥ = 0, (A12)

where

D̃ j, j′
m = 1

m!

dm

dβm

[∫ [
ω2(β )ε(�r⊥, ω(β )) − ω2

0, jε(�r⊥, ω0, j )
]
�̃e j (�r⊥, β )�̃e∗

j′ (�r⊥, β )d�r⊥

]∣∣∣∣
β0, j

, (A13)

and

D̃ j, j′
n,m = 1

m!

dm

dβm

[∫ (
1

(n − 2)!

dn−2ε(�r⊥, ω)

dωn−2
+ 2

(n − 1)!
ω0, j

dn−1ε(�r⊥, ω)

dωn−1
+ 1

n!
ω2

0, j

dnε(�r⊥, ω)

dωn

)
�̃e j (�r⊥, β )�̃e∗

j′ (�r⊥, β )d�r⊥

]∣∣∣∣
ω0, j

.

(A14)

Transforming Eq. (A12) back to real space, via a shifted Fourier transform (F z
β−β0

), gives

∑
j

⎧⎪⎪⎪⎨⎪⎪⎪⎩iD̃ j, j′
2,0

∂2Aj (z, t )

∂t2
+ F z

β−β0

[
2ω0, jUj, j′ (β, β0, j )

∂a j (β − β0, j, t )

∂t

]

+ iω′
0, jF z

β−β0
[2ω0, jUj, j′ (β, β0, j )(β − β0, j )a j (β − β0, j, t )] − iD̃ j, j′

2

∂2Aj (z, t )

∂z2

+
∞∑

m=3

(−i)m−1D̃ j, j′
m

∂mAj (z, t )

∂zm
+

∞∑
n=2

∞∑
m = 0

m �= 0 if n = 2

(−1)min+m+1D̃ j, j′
n,m

∂n+mAj (z, t )

∂t n∂zm

⎫⎪⎪⎪⎬⎪⎪⎪⎭e−iω0, j t

+ iF z
β−β0

[
∂2

∂t2

∫
Fβ

z [� �P(�r⊥, z, t )]�̃e∗
j′ (�r⊥, β )d�r⊥

]
= 0, (A15)

where ω′
0, j ≡ dω

dβ
|β0, j

. Equation (A15) represents the full dynamics of the N pulses propagating in a waveguide.
We apply Eq. (A15) to a symmetric plasmonic slab waveguide as in Fig. 1. Such a structure supports only two modes, a

symmetric and an antisymmetric mode. Here, we choose two interacting pulses, corresponding to each branch, namely, N = 2.
In this case the electric field is given by

�E (�r⊥, z, t ) = �E1(�r⊥, z, t ) + �E2(�r⊥, z, t ), (A16)

where the indices correspond to the pulse in the antisymmetric and symmetric branches, respectively.
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If ε(�r⊥, ω) is symmetric in �r⊥, the overlap integrals in Eqs. (A10) and (A11) vanish for j �= j′ such that the N equations in
Eq. (A15) are coupled only in the presence of a perturbation, � �P �= 0.

In the next step, we decompose � �P as follows:

� �P = ε0�ε̃(�r⊥, z, t ) �E (�r⊥, z, t ), (A17)

where �ε̃(�r⊥, z, t ) is a dimensionless number which represents the permittivity change. The separation (A17) is valid for
temporally and spatially local perturbations (e.g., due to a Kerr media).

Substituting Eq. (A16) and Eq. (A2) in Eq. (A17) gives

� �P(�r⊥, z, t ) = ε0�ε̃(�r⊥, z, t )[A1(z, t )ei(β0,1z−ω0,1t ) �̃e1(�r⊥, β ) + A2(z, t )ei(β0,2z−ω0,2t ) �̃e2(�r⊥, β )]. (A18)

Next, we assume that the perturbation has a separable form, namely,

�ε̃(�r⊥, z, t ) = �εW (�r⊥)q(z)m(t ) cos(ω̃t ) cos(β̃z), (A19)

where �ε is a dimensionless constant carrying the magnitude of the permittivity, m(t ) and q(z) are unity-size (i.e., maxt [m(t )] =
1, maxz[q(z)] = 1), dimensionless functions representing the temporal and spatial “slowly varying envelope” of the perturbation,
respectively, while ω̃ and β̃ represent the central temporal and spatial frequencies of the perturbation, and W (�r⊥) can be any
function representing the transverse profile of the perturbation. We further limit ourselves to the case where W (�r⊥) is an
asymmetric function in �r⊥. This choice ensures a nonvanishing coupling between the symmetric and antisymmetric modes,
as well as a vanishing coupling between modes belonging to the same branch. In this context, it should be noted that while
perturbation profiles W (�r⊥) with nonantisymmetric profiles would yield a nonvanishing intrabranch coupling, such transitions
will typically not be phase matched and hence remain inefficient.

Substituting Eqs. (A17), (A18), and (A19) in Eq. (A15) gives

iD1,1
2,0

∂2A1(z, t )

∂t2
+ ∂A1(z, t )

∂t
+ vg,1

∂A1(z, t )

∂z
− iD̃1,1

2

∂2A1(z, t )

∂z2
− iq(z)m(t )eiω0,1t

ω0,1

×
{

1

2
[(ω0,1 − ω̃)2e−i(ω0,1−ω̃)t + (ω0,1 + ω̃)2e−i(ω0,1+ω̃)t ] cos(β̃z)O1,1A1(z, t ) + 1

8
[(ω0,2 − ω̃)2e−i(ω0,2−ω̃)t

+ (ω0,2 + ω̃)2e−i(ω0,2+ω̃)t ][ei(β0,2−β0,1+β̃ )z + ei(β0,2−β0,1−β̃ )z]O1,2A2(z, t )

}
= 0, (A20a)

iD2,2
2,0

∂2A2(z, t )

∂t2
+ ∂A2(z, t )

∂t
+ vg,2

∂A2(z, t )

∂z
− iD̃2,2

2

∂2A2(z, t )

∂z2
− iq(z)m(t )eiω0,2t

2ω0,2

×
{

[(ω0,1 − ω̃)2e−i(ω0,1−ω̃)t + (ω0,1 + ω̃)2e−i(ω0,1+ω̃)t ]
1

8
[ei(β0,1−β0,2+β̃ )z + ei(β0,1−β0,2−β̃ )z]O2,1A1(z, t )

+ 1

2
[(ω0,2 − ω̃)2e−i(ω0,2−ω̃)t + (ω0,2 + ω̃)2e−i(ω0,2+ω̃)t ] cos(β̃z)O2,2A2(z, t )

}
= 0, (A20b)

where we defined vg,1 = Re(ω′
0,1), vg,2 = Re(ω′

0,2),

D j, j
2,0 = 1

2ω0, jUj, j′ (β, β0, j )
D̃ j, j

2,0, (A21)

D j, j
2 = ω′′

0, j

2
+ D j, j

2,0ω
′2
0, j, (A22)

and the dimensionless coupling coefficient

O j, j′ (β ) = ε0

∫
W (�r⊥)�̃e j (�r⊥, β )�̃e∗

j′ (�r⊥, β )d�r⊥
4Uj, j′ (β, β0, j )

. (A23)

In Eqs. (A20) we omitted the higher-order dispersion terms
as their contribution to the pulse propagation is negligible
(see [44]). We also omitted terms which are related to ab-
sorption such as Im[ω′

0,1]. Those terms were found to have
a negligible effect on the simulation results (not shown).

We now consider a perturbation where the oscillating terms
match the condition ω̃ = ω0,2 − ω0,1 and β̃ = β0,2 − β0,1.
Equations (A20) then become

iD1,1
2,0

∂2A1(z, t )

∂t2
+ ∂A1(z, t )

∂t
+ vg,1

∂A1(z, t )

∂z

− iD̃1,1
2

∂2A1(z, t )

∂z2
− iω0,1q(z)m(t )eiδ�ε|O|A2(z, t ) = 0,

(A24a)

iD2,2
2,0

∂2A2(z, t )

∂t2
+ ∂A2(z, t )

∂t
+ vg,2

∂A2(z, t )

∂z

− iD̃2,2
2

∂2A2(z, t )

∂z2
− iω0,2q(z)m(t )e−iδ�ε|O|A1(z, t )= 0,

(A24b)

where |O|=|O1,2|=|O2,1| and δ=arg(O1,2)= − arg(O2,1). In
Eqs. (A24) we omitted all the fast oscillating terms as their
contribution to the coupling is negligible.
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Finally, in order to be able to neglect the nonparaxial terms,
we transform both pulses into the reference of the moving
frame, and Eq. (A24) then becomes

∂A1(z∗, t∗)

∂t∗ − i
ω′′

0,1

2

∂2A1(z∗, t∗)

∂z∗2

− iω0,1q(z∗)m(t∗)eiδ�ε|O|A2(z∗, t∗) = 0, (A25a)

∂A2(z∗∗, t∗∗)

∂t∗∗ − i
ω′′

0,2

2

∂2A2(z∗∗, t∗∗)

∂z∗∗2
− iω0,2

× q(z∗∗)m(t∗∗)e−iδ�ε|O|A1(z∗∗, t∗∗) = 0, (A25b)

where the new coordinates are

z∗ = z − vg,1t, (A26a)

z∗∗ = z − vg,2t, (A26b)

t∗ = t∗∗ = t . (A26c)

Boosting the coordinates back to the laboratory reference,
Eqs. (A25) become

∂A1(z, t )

∂t
+ vg,1

∂A1(z, t )

∂z
− i

ω′′
0,1

2

∂2A1(z, t )

∂z2

− iω0,1q(z)m(t )eiδ�ε|O|A2(z, t ) = 0, (A27a)

∂A2(z, t )

∂t
+ vg,2

∂A2(z, t )

∂z
− i

ω′′
0,2

2

∂2A2(z, t )

∂z2

− iω0,2q(z)m(t )e−iδ�ε|O|A1(z, t ) = 0. (A27b)

APPENDIX B: DERIVATION OF THE RABI FREQUENCY

In the case of copropagating pulses, with vg,1 = vg,2 = vg,
we solve Eqs. (A27) in a matrix form as follows:(

∂

∂t
+ vg

∂

∂z

)(
A1

A2

)
− i�ε

(
0 ω0,1

ω0,2 0

)(
A1

A2

)
= 0, (B1)

where we used the normalization m = q = 1 and |O| = 1, and
considered a lossless case which results in δ = 0. One of the
derivatives can be eliminated by a proper transformation to a
moving frame.

Diagonalizing the second matrix in Eq. (B1) gives
two eigenvalues, ±√

ω0,1ω0,2�ε, with the corresponding
eigenvectors (

√
ω0,1,±√

ω0,2)/
√

ω0,1 + ω0,2. The solution of
Eq. (B1) in the diagonalized basis is then

V± = e± i
2

√
ω0,1ω0,2�ε

2
(t−z/vg), (B2)

where the amplitudes can be found from the eigenvectors
setup as follows:

V± =
√

ω0,1 + ω0,2

ω0,2
A1 ±

√
ω0,1 + ω0,2

ω0,2
A2. (B3)

Extracting the amplitudes from Eqs. (B2) and (B3) gives

A1 =
√

ω0,1 + ω0,2

ω0,2

(
V+ + V−

2

)

=
√

ω0,1 + ω0,2

ω0,2
cos

(
1

2
√

ω0,1ω0,2�ε(t − z/vg)

)
, (B4a)

A2 =
√

ω0,1 + ω0,2

ω0,2

(
V+ − V−

2

)

=
√

ω0,1 + ω0,2

ω0,2
i sin

(
1

2
√

ω0,1ω0,2�ε(t − z/vg)

)
. (B4b)

Equations (B4) represent two propagating pulses, where the
energy is perfectly transferred from one pulse to another
according to the frequency

√
ω0,1ω0,2�ε. The oscillations of

two coupled states are known as “Rabi oscillations.”
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