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Polarization dynamics of a vector cavity soliton in a birefringent fiber resonator
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We investigate theoretically the polarization dynamics of vector cavity solitons in a birefringent fiber resonator
exhibiting net anomalous dispersion. The well-known Lugiato-Lefever equation is adopted to capture the
intracavity field dynamics when two orthogonal modes are coupled via nonlinear cross-phase modulation.
Numerical simulations reveal the coexistence of different nonlinear states, such as cavity solitons (CSs) with
a modulation instability pattern, two identical CSs, or a nonidentical pair of CSs depending on the external
parameters. We distinguish three different types of coexisting CSs based on their polarization properties. Stokes
parameters and Jones vector analysis are employed to extract the spatial energy flux distribution and the complex
electric field associated with each polarization mode, respectively. We observe that the group-velocity mismatch
affects the individual CS dynamics which has direct consequences of their polarization states. Our detailed
findings with the polarization properties of CSs will enrich the understanding of dissipative vector CS dynamics
in a passive birefringent fiber resonator.
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I. INTRODUCTION

Cavity solitons (CSs) are temporally localized short optical
pulses in a continuous-wave (cw) background. They belong
to the dissipative soliton family that exists inside a passive
Kerr cavity pumped by a coherent driving field. The existence
of CSs was predicted theoretically in Ref. [1] and observed
experimentally in a single-mode fiber resonator [2]. Since then
CSs have gained considerable attention in other platforms
such as microcavities which include ring resonators [3–5]
and whispering gallery mode resonators [6,7]. A significant
amount of research has been dedicated to understanding their
origin, fundamental characteristics, and dynamics in the tem-
poral domain [8–10] as well as their spectral signature in
the form of a frequency comb [11–15]. It is a well-known
fact that, apart from the trivial balance between the Kerr
nonlinearity and dispersion in a passive dissipative system,
an optical pulse can maintain its shape only when the total
loss is compensated by an external cw pump source. The
intracavity field dynamics in such a passive dissipative system
can be characterized effectively with the Lugiato-Lefever
equation (LLE) [16–18]. Recent trends show an interest in
complex field evolution when different modes are coupled
and are simultaneously excited [19–25]. In a microresonator
system, mode coupling can occur in several ways, such as be-
tween clockwise (CW) and counterclockwise (CCW) modes
[19,20], guided mode coupling near avoided mode crossings
[21,22], and coupling between two orthogonally polarized
modes in a microresonator [23] or in a birefringent fiber loop
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resonator [24,25]. It has been observed that multiple CSs can
simultaneously exist without affecting each other and can be
individually manipulated [26,27]. In particular, researchers
have used dual pumping or a polychromatic driving field
which excites different mode families of the resonator system,
so that CSs with different polarization can coexist [28,29].
Recently, Averlant et al. predicted theoretically that one can
observe the coexistence of two differently polarized CSs with
unequal peak powers and temporal durations [24], and Nielsen
et al. showed experimentally this kind of coexistence in a
monochromatically driven passive Kerr resonator [25]. In this
article, we revisit various possible modes of existence of
intracavity field dynamics by varying the detuning parameter.
In general, there can be two types of polarized solitons,
(i) Group-velocity-locked vector solitons (GVLVSs) [30–32],
where group-velocity mismatch compensates the cross-phase
modulation (XPM) effect by mutually shifting their center
frequencies in opposite directions and locking the temporal
positions irrespective of their polarization states; and (ii)
Polarization-locked vector solitons (PLVSs) [33,34], where
the solitons maintain their polarization state throughout their
existence. It is interesting to note that CSs with different
polarization properties can be excited in a birefringent fiber-
based resonator by only varying the external parameters. One
can obtain coexistence of different nonlinear states either by
changing the pump power or frequency detuning along one
principal axis. Note that such coexistence is a unique feature
in a dissipative system, where one of the modes along one
principal axis is excited and a significant amount of power
is coupled from its orthogonal mode via XPM. In this work,
we observe three different types of PLVSs. We carried out a
complete analysis of these vector solitons by observing the
evolution of their Stokes parameters which inherently signify
the amount of flux radiated in different spatial orientations.
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The complex electric-field distribution in each of these modes
has further been calculated with the Jones vector. Stokes
and Jones analysis help in deducing several other properties
including total polarized flux, degree of linear polarization,
and degree of circular polarization in each of these three
different cases. The birefringence property of the fiber in-
duces a certain mismatch in the group velocity of the two
orthogonally polarized modes. Through rigorous calculations
and simulations under various external conditions, it has been
observed that soliton propagation in the presence of group-
velocity mismatch (GVM) remains inherent to their state of
polarization. We believe that our elaborate observations and
yet simple conclusions can certainly enrich the understanding
of vector CS dynamics.

II. MEAN-FIELD MODEL FOR COUPLED
LUGIATO-LEFEVER EQUATION

To study the intracavity field dynamics in a birefringent
fiber loop cavity, one can make use of the well-known LLE
model. We assume that a single-frequency pump can excite
two orthogonal modes which are predominantly coupled via
nonlinear XPM. The general form of the coupled LLE in
presence of XPM is the following:

τR
∂ψ1,2

∂τ
=

[
− (α + iν1,2) + iγ Lc(|ψ1,2|2 + B|ψ2,1|2)

−β1(ψ1,2 )Lc
∂

∂t
− i

β2Lc

2

∂2

∂t2

]
ψ1,2 +

√
θP1,2,

(1)

where ψ1,2 are the intracavity fields for two polarization
modes. τ is the slow-time which is related to field confinement
time in the resonator on a scale of photon lifetime. The
term β1(ψi ) is related to group velocity vg(ψi ) as β1(ψi ) =
v−1

g(ψi )
. The fast timescale is denoted t , which characterizes

the temporal envelope of the pulse in a reference frame mov-
ing at the average inverse group velocity [β̄1 = 1

2 (β1(ψ1 ) +
β1(ψ2 ) )], τR is the round trip time within the cavity. The
slow-timescale and fast-timescale are interconnected through
E (τ = mτR, t ) = E (m)(0, t ), where m is the index number
of the round trips. We consider that both the modes suffer
equal loss α. The group-velocity dispersion (GVD) coefficient
β2 < 0 and nonlinear coefficient γ of the fiber are assumed
to be the same [35] for two orthogonal polarization modes
as the cavity is pumped with a single frequency. These two
orthogonal modes are coupled with nonlinear XPM. The
XPM coupling factor is B = 2

3 for linearly birefringent fibers.
Due to the modal birefringence, two orthogonal components
experience different group velocities, i.e., β1(ψ1 ) �= β1(ψ2 ) in
general. In this case, frequency detuning (ν1,2) between the
driving field P1,2 and the nearest cavity resonance are dif-
ferent, i.e., ν1 �= ν2, P1,2 are the driving field amplitudes
given by P1 = P cos(φ) and P2 = P sin(φ), where φ is the
linear polarization direction of the input beam with respect
to slow-axis orientation of the birefringent fiber. θ denotes
the power transmission coefficient from coupler to the res-
onator, and the length of the resonator is Lc. We intro-
duce the rescaling factors τ → ατ/τR, t → t (2α/|β2|Lc)1/2,
ψ1,2 → ψ1,2(γ Lc/α)1/2, P1,2 → P1,2(γ Lcθ/α3)1/2, σ1,2 =

ν1,2/α, represents the normalized detuning frequencies and
δ = (β1(ψ1 ) − β1(ψ2 ) )

√
Lc

2α|β2| denotes the GVM between two
orthogonal polarization modes. Using these rescaling fac-
tors in Eq. (1), we obtain following form of normalized
coupled LLE:

∂ψ1

∂τ
=

[
−(1 + iσ1) + i

(
|ψ1|2 + 2

3
|ψ2|2

)
+ δ

∂

∂t
+ i

∂2

∂t2

]
ψ1

+ P cos (φ), (2)

∂ψ2

∂τ
=

[
−(1 + iσ2) + i

(
|ψ2|2 + 2

3
|ψ1|2

)
− δ

∂

∂t
+ i

∂2

∂t2

]
ψ2

+ P sin(φ). (3)

The coupled LLE mentioned in Eq. (1) neglects the effect
of higher-order dispersion, linear mode coupling, and the
coherent four-wave mixing (FWM) term [24].

III. STEADY AND HOMOGENEOUS SOLUTION OF
COUPLED LUGIATO-LEFEVER MODEL

The homogeneous steady-state (HSS) conditions of
Eqs. (2) and (3) satisfying ∂ψ1,2

∂τ
= ∂nψ1,2

∂t n = 0 lead to nine
different solutions for an individual set of external parameters
(σ1,2, P1,2). The coupled HSS equations take the following
form [11,36]:

X 3 + X 2

(
4

3
Y − 2σ1

)
+ X

(
1 + σ 2

1 + 4

9
Y 2 − 4

3
σ1Y

)
= G1,

(4)

Y 3 + Y 2

(
4

3
X − 2σ2

)
+ Y

(
1 + σ 2

2 + 4

9
X 2 − 4

3
σ2X

)
= G2,

(5)

where X = |ψ1|2, Y = |ψ2|2, G1 = |P|2 cos2(φ), G2 =
|P|2 sin2(φ). Although analytical solutions are not possible for
these coupled LLEs, one can certainly estimate HSS features
from Fig. 1 showing total HSS intracavity field as a function
of external parameters like detuning and pump power. In
Fig. 1(a), we plot total HSS solution (|ψ |2 = |ψ1|2 + |ψ2|2)
as a function of σ1 keeping equal pump power (φ = π/4) to
each orthogonal mode. We observe that the cavity resonance
is tilted and also split in presence of a detuning mismatch
�σ = σ2 − σ1 between two orthogonal modes. One can
interpret that different nonlinear states can simultaneously
coexist from the overlap of two resonances corresponding
to two peaks. We have marked three different detuning
values on this HSS resonance curve for which we observe
the three different coexisting nonlinear states shown in
Figs. 1(c)–1(e). In Fig. 1(b) we plot the total HSS field as a
function of external pump power P while individual detuning
is fixed. The two negative slopes are unconditionally unstable
(marked with filled circles) and the three positive slopes
are stable against homogeneous perturbations. The position
and width of these two bistable (A-B, C-D) regions can be
well manipulated with external detunings [24]. In a passive
resonator, the growing modulation instability (MI) pattern
eventually stabilizes due to dissipation, which ultimately
forms a stationary periodic pattern [18]. In Fig. 1(c) for
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FIG. 1. (a) Total intracavity field (HSS solution; |ψ |2 = |ψ1|2 +
|ψ2|2) as a function of detuning (σ1, σ2), where �σ = σ2 − σ1 with
equal pump power (P1 = P2 = 2.54) in both orthogonal modes.
(b) HSS solution as a function of pump power P with the same detun-
ing mismatch �σ . Solid lines showing the stable solutions, negative
slopes (filled circles) represent unstable branches. (c)–(e) Stationary
field profile obtained from coupled LLE at selected detunings [shown
with dotted lines in panel (a)] depicting coexistence of different non-
linear states. (c) MI and CS coexistence, σ1A = 2.71. (d) Coexistence
of two nonidentical CSs, σ1B = 2.75. (e) Coexistence of two identical
CSs, σ1C = 2.9.

σ1A = 2.71, we observe the coexistence of a stable MI pattern
and a CS which was recently observed experimentally [25].
In Fig. 1(d) for σ1B = 2.75, we observe two nonidentical CSs
(peak power and polarization properties) and in Fig. 1(e) for
σ1C = 2.9, we observe the coexistence of two identical CSs
in two orthogonal modes.

IV. ANALYSIS OF THE POLARIZATION PROPERTIES OF
CAVITY SOLITONS

In this section, we analyze the dynamics of the coexisting
CSs in the fiber-based cavity and their intrinsic polarization
properties. Due to the birefringence of the fiber, two orthog-
onal modes with two different resonance frequencies can be
simultaneously excited with a single linearly polarized light.
The amplitudes of the driving field in individual modes can be
controlled externally by the projection angle φ with respect to
the slow-axis orientation. Note that the frequency detuning for
two modes are in general unequal (σ1 �= σ2). In a very recent
experimental work [25], control over detuning parameters
(�σ ) with the help of a polarization controller (PC) in a
cavity has been achieved. In the present work, we consider
the polarization properties of CSs with equal driving power
(φ = π/4) and small detuning mismatch (�σ ≈ 1). With the
choice of external parameters, we observe PLVSs. Numerical
results reveal that CS dynamics in the presence of GVM can
be well predicted from their inherent polarization state.

FIG. 2. Coexistence of CSs in both orthogonal polarization
modes with variations in detuning mismatch (�σ = σ2 − σ1) be-
tween two modes: σ1 = 2.75, (a) σ2 = 4.2, identical CSs; (b) σ2 =
4.32, nonidentical CSs; (c) σ2 = 4.5, identical CSs. Identical coex-
isting CSs in panels (a) and (c) differ by their polarization states.

A. Case I: Zero group-velocity mismatch (δ = 0)

In this subsection, we investigate the polarization dynamics
of two coexisting CSs considering zero GVM (δ = 0) be-
tween two orthogonal modes. We numerically solve the set
of coupled differential equations (2) and (3). Different polar-
ization states are obtained by varying the cavity detuning σ2

along one orthogonal mode while keeping the other detuning
σ1 fixed. We choose the initial field in the form of a sech pulse
resting over a cw background, as mentioned below:

ψ10 = ψ1hom +
√

2σ1sech(
√

(1 + B)2σ1(t + t0)), (6)

ψ20 = ψ2hom +
√

2σ2sech(
√

(1 + B)2σ2(t − t0)), (7)

where ψ1hom = P cos(φ)/σ 2
1 , ψ2hom = P sin(φ)/σ 2

2 , B = 2
3 ,

and t0 denotes initial delay. At first, we excite only one mode
along each orthogonal axis and the nonlinear interaction leads
to a steady state in the resonator where we observe a coexis-
tence of both modes along individual orthogonal axes. Due to
XPM, each CS sheds some of its energy into its orthogonal
counterpart such that either two identical (equal amplitude
and width) CSs or nonidentical (both different amplitude and
width) CSs coexist along each orthogonal axis. In Fig. 2,
we demonstrate the evolution of two coexisting CS states by
changing the detuning σ2 along one of the orthogonal axes.
For polarization mode I (II) we launch ψ10 and ψ20 along two
polarization axes and capture the evolution of |ψ10|2 (|ψ20|2)
over slow time τ . We notice, at initial stage, that the energy
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FIG. 3. (a) Relative energy (E1,2/Emax) of two orthogonal polar-
ization modes [filled circles (mode I) and filled squares (mode II)] as
a function of detuning frequency σ2. Patterned regions (σ2 < 4.2 and
σ2 > 5.7) do not contain coexisting CSs. Three types of polariza-
tion states have been marked in the region 4.2 � σ2 � 5.7 (shaded
region) corresponding to three distinct energy levels. (b) Power
distribution in the form of coexisting CSs with cw background in
individual orthogonal modes. CSs are either identical (amplitude,
polarization state) (type I and type III) or nonidentical (type II).

is periodically transferred from one mode to other and finally
stabilizes. We identify three distinct coexisting CSs based on
their polarization states. As illustrated in Fig. 2, a pair of
identical [see Figs. 2(a) and 2(c)] or nonidentical CSs [see
Fig. 2(b)] are emerged depending on the value of detuning
mismatch �σ = σ2 − σ1 along each orthogonal mode. In
Fig. 3(a), we evaluate the energy (E1,2 = ∫ |ψ1,2|2dt ) asso-
ciated with two orthogonal modes as a function of detuning
parameter σ2. Filled circles and filled squares indicate the
relative energy levels of mode I and mode II, respectively.
Using the E -σ2 diagram we can map the polarization states
(type I, type II, and type III) of the individual CS pairs.
The three distinct relative energy levels (E1,2 → E1,2/Emax)
in each orthogonal mode indicate a change of polarization
state. An iterative simulation for σ1 = 2.75 reveals that the
coexisting CS can emerge in the range 4.2 < σ2 < 5.7. No CS

pairs are observed in the patterned regions corresponding to
either σ2 < 4.2 or σ2 > 5.7, which marks the lower and upper
boundary limits to observe coexisting CSs. In Fig. 3(b), we il-
lustrate the existence of CS pairs having different polarization
states. Identical soliton pairs emerge in the first (type I) and
third (type III) window where the power distribution is equal.
A distinct nonidentical CS pair evolves in the second window
(type II) with unequal power distribution. To characterize and
analyze the polarization states of the intracavity field, we
exploit three well-known properties: (i) Stokes parameters,
(ii) Jones vectors, and (iii) polarization ellipse, associated
with each case. Stokes parameters are a convenient way of
expressing the polarization state of any unpolarized, partially
polarized, or fully polarized beams. The Stokes parameters
contain four real quantities which can be calculated numer-
ically by solving a coupled LLE. The four real quantities
are defined as S0 = |ψ1|2 + |ψ2|2, S1 = |ψ1|2 − |ψ2|2, S2 =
ψ∗

1 ψ2 + ψ1ψ
∗
2 , and S3 = i(ψ∗

1 ψ2 − ψ1ψ
∗
2 ). Physically, these

parameters signify the amount of flux radiated in space along
different orientations. One can write this in the following
form [37]:

S =

⎛
⎜⎝

S0

S1

S2

S3

⎞
⎟⎠ =

⎛
⎜⎝

PH + PV

PH − PV

Pπ/4 − P3π/4

PR − PL

⎞
⎟⎠, (8)

where S0 signifies the total irradiance of the light beam, S1 cor-
responds to the difference between horizontal- and vertical-
polarized flux components, and S2 denotes flux components
along the π/4 and 3π/4 orientations. Therefore, a positive
S2 signifies an excess of net flux along the π/4 direction
and is negative if P3π/4 > Pπ/4. Similarly S3 measures the
difference between right (PR) and left (PL ) circularly polarized
flux components. In Fig. 4, we plot the S parameters for three
different cases of coexisting CSs by solving Eqs. (2) and (3)
numerically for three different sets of detuning parameters
(σ1, σ2), with the help of the split-step Fourier method. From
Figs. 4(a) and 4(c), we observe two CSs along two orthogonal
principal axes correspond to similar S parameters. For type I,
both the CSs are dominated by the linear flux component with
vertical polarization (S1 < 0) and π/4 polarization (S2 > 0),
whereas in type III both CSs are dominated by linear flux
component with horizontal polarization (S1 > 0) and 3π/4
polarizations (S2 < 0), whereas both above-mentioned types
of CSs have similar circular polarization (left circular S3 < 0).
For the case of nonidentical CSs (type II), the S parameters
are nonidentical, either in magnitude (S0 and S3) or both
in magnitude as well as polarization orientations (S1 and
S2). Exploiting the S-parameter analysis, we calculate several
other properties related with the output polarization state of
the light beam. When a linearly polarized light is launched, the
output electric field associated with the individual CS is also
fully polarized. One can be assured by calculating the degree
of polarization (DoP), which characterizes the randomness of
a polarization state [37]:

DoP(S) =
√

S2
1 + S2

2 + S2
3

S0
, 0 � DoP � 1. (9)
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FIG. 4. Stokes parameters for three different polarized states
with σ1 = 2.75. (a) σ2 = 4.2, (b) σ2 = 4.32, and (c) σ2 = 4.5, nu-
merically obtained by solving Eqs. (2) and (3). S0 represents total flux
whereas S1 and S2 dictate flux from linearly polarized components,
and S3 denotes the circularly polarized flux component.

In each case, we numerically calculate the DoP and observe
its value as one, which confirms that the output light is fully
polarized. With the help of these S parameters, one can also

identify several other characteristics such as the total flux
associated with individual CSs in each of these three cases.
Total polarized flux is defined by (S2

1 + S2
2 + S2

3 )1/2. The
degree of linear polarization (DoLP) (S2

1 + S2
2 )1/2/S0 signifies

the amount of polarization confined in a plane. We calculate
the DoLP in every case and find that it is neither zero (fully
circularly polarized) nor one (fully linearly polarized), which
means that both CSs are elliptically polarized. Furthermore,
we calculate the degree of circular polarization (DoCP) by
using S3

S0
, which characterizes the amount of flux polarized

in circular (left or right) orientation. The ellipticity ε of the
polarization ellipse,

|S3|√
S2

1 + S2
2 + S2

3 +
√

S2
1 + S2

2

= b

a
,

is a measure of the ratio of the minor axis to the major axis.
Numerical values for all three cases are listed in Table I.
While the S parameters provide detailed information about the
polarization state of the output field, they do not provide phase
information about the complex electric field associated with
the CS. To extract the phase information, we rely on a Jones
vector analysis. The Jones vector comprises two complex
electric-field vectors and also indicates the polarization state
of the field. Because we deal with two orthogonal modes of
the system, the Jones vectors can be written as

J(ψ1) =
(

A1,xe−iχ1,x

A1,ye−iχ1,y

)
, J(ψ2) =

(
A2,xe−iχ2,x

A2,ye−iχ2,y

)
, (10)

where ψ1 = A1, je−iχ1, j and ψ2 = A2, je−iχ2, j , j = x, y. Each
Jones vector has four degrees of freedom, two indicating their
amplitudes (Ax, Ay) and two corresponding to their phase
(χx, χy). One can therefore easily create the polarization
ellipse. For an elliptically polarized state, the ellipse is traced
by the tip of the electric-field vector as a function of time.
The Stokes parameter and Jones vector are related to the
polarization dynamics of the output field, so they can be
interlinked as

S = ε0c

2

⎛
⎜⎜⎜⎝

A2
x + A2

y

A2
x − A2

y

2AxAy cos(χx − χy)

2AxAy sin(χx − χy)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎝

S0

S1

S2

S3

⎞
⎟⎠.

We follow the sign convention of Ref. [37] which considers
right-circular polarization as positive for Stokes parameters
and left-circular polarization as positive for the Jones vector.
The factor ε0c

2 is introduced just to balance the units and
further considered as one, because it only acts as a scal-
ing factor for the numerical values. From the above matrix
we find

Ax =
√

S0 + S1

2
, Ay =

√
S0 − S1

2
, (11)

χx − χy = tan−1 S3

S2
. (12)

Exploiting the above information one can draw the polar-
ization ellipse, which must be confined in a box with area
[2Ax × 2Ay]. Using Eqs. (11) and (12), we find the Jones
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TABLE I. Polarization properties of generated CSs for three different sets of detuning parameters.

Type I Type II Type III
Measured quantities σ1 = 2.75, σ2 = 4.2 σ1 = 2.75, σ2 = 4.32 σ1 = 2.75, σ2 = 4.5

Identical CS Left CS Right CS Identical CS
S parameters S0 = 10.83, S1 = −3.09 S0 = 10.92 S1 = −3.31 S0 = 7.63, S1 = 3.73 S0 = 7.23, S1 = 4.94

S2 = 9.09, S3 = −4.99 S2 = 8.92, S3 = −5.36 S2 = −0.81, S3 = −6.61 S2 = −1.04, S3 = −5.18
Polarized flux 10.83 10.92 7.63 7.23
Degree of linear polarization (DoLP) 0.89 0.87 0.50 0.69
Degree of circular polarization (DoCP) −0.46 −0.49 −0.87 −0.72
Ellipticity 0.24 0.26 0.58 0.42

vectors in terms of S parameters as follows:

J (ψ1,2) =
⎛
⎝

√
S0+S1

2√
S0−S1

2 e
i tan−1

(
S3
S2

)
⎞
⎠. (13)

From Table II, one can obtain required information of
polarization ellipse for three different cases and also the cor-
responding flux distribution in different spatial orientations.
In Fig. 5 we illustrate the graphical representation of the
polarization states for three different types of coexisting CSs.
We observe that all ellipses are left-circularly polarized, as
indicated by the arrowhead, which is also obvious from the
fourth column in each case that shows that the diameter of
the left-circular flux is larger than that of the right-circular
flux (PL > PR). The part of the total linear polarization com-
ponents are indicated by PH,V and Pπ/4,3π/4 components. The
length of the vectors in each case signifies the strength of
the flux component along that direction. In Fig. 5(a) (type-I),
both CSs are dominated by vertical (PV > PH ) and along
45◦ polarized (Pπ/4 > P3π/4) flux components, Figs. 5(b) and
5(c) represent type-II polarization where two nonidentical CSs
coexist; the left CS is vertically (PV > PH ) and along 45◦
polarized (Pπ/4 > P3π/4) [Fig. 5(b)], whereas the right CS
is horizontally (PV < PH ) and along 135◦ polarized (Pπ/4 <

P3π/4) [Fig. 5(c)]. In Fig. 5(d) we observe identical CSs
(type-III), both dominated by horizontal (PV < PH ) and along
135◦ polarized (Pπ/4 < P3π/4) flux components. From the
basis vectors of Stokes parameters or Jones vectors, one
can obtain the magnitude of these flux components, shown
in Appendix.

B. Case II: Finite group-velocity mismatch (δ �= 0)

A fiber with constant modal birefringence (Bm = |n1 −
n2|) has two principal axes along which it can maintain the

linear-polarized state of input cw light. We assume n1 > n2,
where n1 and n2 are the mode indexes along the slow and fast
axes, respectively. Depending on the beat length (LB = λ

Bm
),

which is typically ≈1 cm for high-birefringent fiber and ≈1 m
[16] for low-birefringent fiber, one may need to consider the
effect of GVM while considering CS propagation in birefrin-
gent fiber. For δ �= 0 in the coupled equations (2) and (3), we
consider the effect of GVM on CS dynamics along the slow
and fast axes. In Fig. 6 we plot the dynamics of type-I and
type-III coexisting CSs. We observe an identical monotonic
temporal drift of two CSs which is influenced by the GVM
term. One can correlate their direction of propagation with
their inherent linear polarization state. For Fig. 6(a), both CSs
are dominated by a 45◦ linear polarized component (Pπ/4 >

P3π/4), whereas for the case in Fig. 6(b) both CSs are dom-
inated by a 135◦ linear polarized component (Pπ/4 < P3π/4).
The numerical simulation reveals that, in presence of GVM
(δ �= 0), both CSs either slow down [when the CSs are 45◦
linearly polarized, Fig. 6(a)] or speed up (when the CSs are
135◦ linearly polarized, Fig. 6(b)], depending on their inherent
linearly polarized state. In Figs. 6(c) and 6(d) we show the
velocity of a CS (vcs) as a function of the GVM parameter
ranging from a low-birefringence value (δ = 0.01) to a high-
birefringence value (δ = 0.3) [35,38,39]. For type-I polariza-
tion in Fig. 6(c), the velocity increases monotonically as the
GVM increases, whereas the opposite pattern is observed in
the case of type-III polarization in Fig. 6(d) where velocity
decreases monotonically as we increase the GVM. Next, we
investigate the dynamics of two nonidentical CSs which have
type-II polarization. In Fig. 7, we show the case (σ1 = 2.75,
σ2 = 4.32) where two coexisting nonidentical CSs evolve
over several round-trips. We vary the GVM parameter from
a very low value (δ = 0.01) to a higher value (δ = 0.2) and
observe different evolution dynamics. To capture the role of
polarization state on the temporal dynamics of the soliton pair,

TABLE II. Parameters for polarization ellipse and the corresponding decomposed spatial polarized flux distribution.

Type I Type II Type III
σ1 = 2.75, σ2 = 4.2 σ1 = 2.75, σ2 = 4.32 σ1 = 2.75, σ2 = 4.5

Identical CS Left CS Right CS Identical CS

J (ψ1,2 =
(

1.97
2.64e−0.5i

)
J (ψ1) =

(
1.95

2.67e−0.54i

)
J (ψ2) =

(
2.38

1.39e1.45i

)
J (ψ1,2) =

(
2.47

1.07e1.37i

)
PH = 3.87, PV = 6.96 PH = 3.81, PV = 7.11 PH = 5.68, PV = 1.95 PH = 6.08, PV = 1.15
Pπ/4 = 9.96, P3π/4 = 0.87 Pπ/4 = 9.92, P3π/4 = 0.99 Pπ/4 = 3.41, P3π/4 = 4.22 Pπ/4 = 3.09, P3π/4 = 4.14
PL = 7.91, PR = 2.92 PL = 8.14, PR = 2.78 PL = 7.12, PR = 0.51 PL = 6.20, PR = 1.03
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FIG. 5. Analysis of polarization states for three types of co-
existing CSs with σ1 = 2.75; (row-wise) polarization ellipse, flux
components in horizontal-vertical orientation, π/4-3π/4 orientation,
left-right circular orientation. (a) (σ2 = 4.2) Type-I identical CS
state. (b), (c) Type-II nonidentical CS state (σ2 = 4.32): (b) left CS
(c) right CS. (d) Type-III identical CS state (σ2 = 4.5).

we numerically calculate the S parameters at two different
propagation stages. Our simulation reveals that the GVM does
not affect the helicity or state of circular polarization because
S3 is always negative (left-circularly polarized) in all three
cases. In Fig. 7(a) we demonstrate that two coexisting CSs
evolve at different velocities. In the presence of small GVM
(δ = 0.01), the fast-axis CS (left CS) and the slow-axis CS
(right CS) either slow down or accelerate, respectively. We
find that the fast-axis CS is dominated by π/4 polarization
(as S2 > 0) whereas the slow-axis CS is dominated by 3π/4
polarization (as S2 < 0). After a long evolution, the relative
velocity of the two coexisting CSs becomes fixed around τ ≈
1400 but maintains its initial polarization state. In Fig. 7(b),
we show the CSs dynamics for medium birefringence (δ =
0.1). We simulate the dynamics of CS pairs for a range
of GVM values 0.02 < δ < 0.13. It is observed that two
orthogonally polarized CSs evolve with different velocities
and experience a sharp change in their velocities around τ ≈
160 for the given set of external parameters. For τ > 160, two
CSs propagate with identical velocity by forming a merged
state. It is observed that the dominated linear polarized flux
component P3π/4 translates into Pπ/4 for the slow-axis CS, and

FIG. 6. (a), (b) Mesh plot of total power |ψ |2 in presence of
group-velocity mismatch (GVM = 0.1) for coexisting identical CSs.
(a) Type-I polarization: σ1 = 2.75, σ2 = 4.2, corresponding to S2 >

0. (b) Type-III polarization: σ1 = 2.75, σ2 = 4.5, corresponding to
S2 < 0. Velocity profile of CS as a function of GVM for (c) Type-I
polarization and (d) Type-III polarization.

also the amount of circular flux component varies within two
orthogonal modes (along the fast and slow axes) in a merged
state beyond τ ≈ 160. In Fig. 7(c), we further increase the
value of GVM (δ = 0.2), which signifies a high-birefringence
value. We notice that two nonidentical CS eventually form a
stable identical soliton pair. We also notice that the initial lin-
ear polarization state of the slow CS flips after a certain round
trip evolution around τ ≈ 50. Not only does the orientation of
the linear polarized flux components flip, but it also becomes
identical with the fast CS. Upon further increasing the value
of δ for this nonidentical coexisting CSs state, we observe a
similar scenario as mentioned in Fig. 7(c), only the flipping
occurs at a smaller τ value. From this detailed analysis, we
conclude that, in a weakly birefringent fiber, one can observe
the coexistence of identical and nonidentical polarized CS
states by properly selecting the external parameters. The
dynamics of the CS pair can be well interpreted by analyzing
their inherent polarization state. We also point out that it is
very unlikely to observe the coexistence of nonidentical CSs
in a resonator made from a high-birefringent fiber when both
orthogonal modes of the fiber are equally pumped.

V. CONCLUSION

We have studied theoretically the polarization dynamics of
vector CSs in a birefringent fiber resonator. With the help of
coupled LLEs, we observe the coexistence of identical and
nonidentical CSs in both orthogonal modes which are coupled
via nonlinear XPM. Different detuning mismatch between the
resonator eigenmode and the external pump mode can lead to
the generation of CSs with different polarization properties.
With the help of Stokes parameters and the Jones vector, we
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FIG. 7. Total power (|ψ |2) in the presence of GVM for coex-
isting nonidentical CSs with σ1 = 2.75, σ2 = 4.32 along with the
evolution of the S parameters (S1, S2, S3). (a) GVM = 0.01, both CSs
maintain their state of polarization. (b) GVM = 0.1, around τ ≈ 160
the slow-axis CS (right one) changes its polarization state (S2 flips
sign) but both remain nonidentical. (c) GVM = 0.2, around τ ≈ 50
the polarization state of the slow-axis CS (right one) changes and the
two CSs become identical.

analyze in detail the polarization states of generated CSs.
Furthermore, we incorporate the effects of group-velocity
mismatch (GVM) between the fast- and the slow-moving
component in each of these coexisting identical and noniden-
tical CSs. In spite of GVM between the two CSs, identical CSs
behave in the same fashion. They either slow down or acceler-
ate depending on their linear polarization state. For nonidenti-
cal CSs, the slow-axis CS changes its linear polarization state
for a higher GVM value after a certain time of confinement in
such a way that both CSs become identical in the steady state.
Thus, it is unfavorable to observe nonidentical coexisting CSs
in the case of a high-birefringent fiber resonator while two

TABLE III. Basis of Stokes parameters and Jones vector.

Polarization types Symbol Stokes parameters Jones vector

Horizontal linear H (1,1,0,0) (1,0)
Vertical linear V (1, −1, 0, 0) (0,1)
45◦ linear π/4 (1,0,1,0) (1, 1)/

√
2

135◦ linear 3π/4 (1, 0, −1, 0) (1, −1)/
√

2
Right circular R (1,0,0,1) (1, −i)/

√
2

Left circular L (1, 0, 0, −1) (1, i)/
√

2

orthogonal modes are equally pumped. We believe that these
findings will certainly enrich the fundamental understanding
of the polarization properties of dissipative solitons based on
passive resonators.
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APPENDIX: CALCULATIONS OF THE POLARIZATION
FLUX MEASUREMENT

The Stokes parameters and Jones vector are two parallel
approaches to measure the polarization properties of a light
beam. To obtain the six fundamental polarization flux compo-
nents (PH , PV , Pπ/4, P3π/4, PR, PL ), we need to use the basis
of each representation, as shown in Table III. With the help of
these basis vectors and using the form of Ax, Ay and χx − χy

obtained in Eqs. (11) and (12), one can readily derive the flux
in different orientations as follows:

PH = S0 + S1

2
= ε0c

2
A2

x, (A1)

PV = S0 − S1

2
= ε0c

2
A2

y, (A2)

Pπ/4 = S0 + S2

2
= ε0c

2

(
A2

x + A2
y

2
+ AxAy cos χ

)
, (A3)

P3π/4 = S0 − S2

2
= ε0c

2

(
A2

x + A2
y

2
− AxAy cos χ

)
, (A4)

PR = S0 + S3

2
= ε0c

2

(
A2

x + A2
y

2
+ AxAy sin χ

)
, (A5)

PL = S0 − S3

2
= ε0c

2

(
A2

x + A2
y

2
− AxAy sin χ

)
, (A6)

where χ = χx − χy. During the calculation of the flux com-
ponents, we have taken the scaling factor ε0c

2 to be unity.
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